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Abstract— Object detection in remote-sensing images is a cru-
cial task in the fields of Earth observation and computer vision.
Despite impressive progress in modern remote-sensing object
detectors, there are still three challenges to overcome: 1) complex
background interference; 2) dense and cluttered arrangement
of instances; and 3) large-scale variations. These challenges
lead to two key deficiencies, namely, coarse features and coarse
samples, which limit the performance of existing object detec-
tors. To address these issues, in this article, a novel coarse-
to-fine framework (CoF-Net) is proposed for object detection in
remote-sensing imagery. CoF-Net mainly consists of two parallel
branches, namely, coarse-to-fine feature adaptation (CoF-FA)
and coarse-to-fine sample assignment (CoF-SA), which aim to
progressively enhance feature representation and select stronger
training samples, respectively. Specifically, CoF-FA smoothly
refines the original coarse features into multispectral nonlocal fine
features with discriminative spatial-spectral details and semantic
relations. Meanwhile, CoF-SA dynamically considers samples
from coarse to fine by progressively introducing geometric and
classification constraints for sample assignment during training.
Comprehensive experiments on three public datasets demonstrate
the effectiveness and superiority of the proposed method.

Index Terms— Coarse-to-fine paradigms, geometric con-
straints, object detection, remote-sensing imagery, spatial-
spectral nonlocal features.

I. INTRODUCTION

BJECT detection has a wide range of real-world appli-
Ocations, including vehicle and people detection, and
construction-site object detection. It also plays a vital role in
processing large-scale optical remote-sensing imagery, which
is one of the most fundamental tasks in civil and military
intelligence systems and has applications in emergency rescue,
environmental monitoring, resource exploration, and urban
planning [1], [2], [3], [4], [5]. This topic has been studied
in the Earth observation community for several decades, due
to its promising practical value [6], [7], [8]. In general,
remote-sensing object detection aims to accurately identify the
locations and categories of specific geospatial objects, such
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as airplanes and vehicles [9], [10], [11]. With the vigorous
development of deep convolutional neural networks (CNNs),
the performance of object detection in natural images has
been impressively improved in recent years, further promoting
the development of object detection in remote-sensing images
[12], [13], [14], [15].

In order to effectively facilitate the deep learning-based
geospatial object detection methods, various large-scale
datasets have been publicly released, such as DOTA [16],
DIOR [17], NWPU VHR-10 [6], [18], HRRSD [19], and
HRSC2016 [20]. Compared with common natural scenes,
remote-sensing and aerial images are usually captured from
a bird’s-eye view of arbitrary horizontal or oriented objects in
unforeseen circumstances, making object detection much more
challenging. Some algorithms have been specifically explored
for rotated object detection [21], [22], [23], [24], [25], [26]
and achieved improved performance in different scenarios.
However, more generally and conclusively, there are still three
prevailing major challenges to be tackled in remote-sensing
images.

1) Highly Complex Background Interference: The fore-
ground geospatial regions are easily interfered with,
or even overwhelmed by, the complicated surrounding
scenes, such as buildings, vegetation, and other back-
ground noises, which coarsens both the spatial details
and semantic relations.

2) Densely Packed and Cluttered Instances: Geospatial
objects with specific categories, such as vehicles, ships,
and storage tanks, appear inclined in densely arranged
and cluttered forms, leading to instance-level coupling
and ambiguity.

3) Large-Scale Variations: Since remote-sensing images
are often taken from various ground sampling distances
with respect to diverse capture devices, the object scale
varies dramatically with image resolution. Such tremen-
dous scale variations hinder accurate object detection.

To address these issues, most state-of-the-art geospatial
object detectors are constructed for better performance, based
on a sophisticated two-stage R-CNN framework [27], [28],
[29], which is composed of a detection stem and an addi-
tional region proposal network (RPN). Furthermore, modern
mainstream methods [30], [31], [32], [33], [34], [35] are
devoted to introducing external auxiliary branches or modules
for adaptation to challenging remote-sensing scenes. However,
these enhanced detectors suffer from a problem with the
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Fig. 1. Illustration of coarse features and coarse training samples that degrade
object detection performance in remote-sensing images. (a) Input image with
the ground truths. (b) Coarse features. (c) Fine features with noises suppressed
and semantic relations enhanced. (d) Detection results based on the fine
features and samples. (e) Coarse training samples. (f) Fine training samples
that are accurate and explicit.

two-stage frameworks, which have high computational com-
plexity. In contrast, with the removal of the region proposal
stage, single-stage detectors directly regress the final detection
results from deep features and dense anchors, achieving higher
computational efficiency and fewer memory footprints. How-
ever, these methods usually struggle with reduced accuracy
and robustness, especially in complicated scenarios. As shown
in Fig. 1(b) and (e), the inferiority of single-stage detectors
can be attributed to two critical aspects: coarse features
and coarse samples. On the one hand, in view of the first
challenge mentioned above, complex background interference
in remote-sensing images causes difficulties in differentiating
foreground geospatial regions with various appearances at the
feature level. The backbone features are interfered with and
misaligned by background noises, as shown in Fig. 1(b).
This will result in inappropriate results, without using any
effective refinement. In other words, with the degradation of
spatially explicit details and semantically implicit relations,
e.g., reduced subtle boundary information and global location
constraints, only coarse features are generated for object local-
ization and classification in the single-stage framework. On the
other hand, referring to Fig. 1(e), redundant and near-duplicate
anchors are selected during training, without using advanced
assignment rules. Due to the dense and cluttered arrangements,
as described in the second challenge, coarse samples result
in inaccurate and confusing supervision at the instance level.
These challenges make training less effective, and the detector
has high computational requirements.

Concerning the two issues, i.e., coarse features and coarse
samples, in this article, we explore a single-stage detection
framework that performs a favorable tradeoff between per-
formance and efficiency. The goal is to refine the coarse
features and samples so as to enhance the features and the
training process, making the object detector fine to conquer the
aforementioned three challenges in remote-sensing scenarios.
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Fine features and samples are shown in Fig. 1(c) and (f),
respectively. To this end, a novel progressive coarse-to-fine
framework (CoF-Net) is proposed, which consists of two
pivotal stages: coarse-to-fine feature adaptation (CoF-FA)
and coarse-to-fine sample assignment (CoF-SA). Specifically,
as shown in Fig. 2, CoF-FA and CoF-SA are designed sep-
arately as two parallel branches for model flexibility. The
former forwardly refines coarse features to become finer
against complex background interference (the first challenge),
to prevent detail distortion and contextual confusion. The latter
constrains the selection of samples from coarse to fine in
stages under sparse and explicit supervision for the dense and
cluttered arrangements of instances (the second challenge).
Both CoF-FA and CoF-SA follow the progressive “coarse-
to-fine” strategy proposed in this work, which guarantees their
effectiveness and efficiency. Meanwhile, the overall feature
extraction network adopts a feature pyramid network (FPN)-
like architecture [36] to produce fine hierarchical features,
with the capability of dealing with large-scale variations (the
third challenge). Finally, extensive experiments are conducted
on different challenging datasets, DOTA [16], DIOR [17],
and NWPU VHR-10 [18], for horizontal and oriented object
detection in remote-sensing images, which demonstrate the
superiority of CoF-Net. Moreover, due to its high flexibility
and efficiency, the proposed coarse-to-fine paradigm can be
adapted to various real-world single-stage object detectors to
improve their detection performance in complex scenarios.
The main contributions of this article can be summarized as
follows.

1) A novel end-to-end single-stage framework, called
CoF-Net, whose most notable property is its progressive
coarse-to-fine paradigm, is proposed for remote-sensing
object detection. With this advanced paradigm that over-
comes the crucial challenges, CoF-Net can achieve high
detection accuracy and robustness.

The proposed CoF-FA is devised in a coarse-to-fine
manner for multispectral nonlocal feature adaptation.
CoF-FA distinctively enriches spatial-spectral feature
details in the frequency domain and boosts the implicit
semantic discrimination for fine-grained alignment.
The proposed CoF-SA introduces geometric and
classification-aware constraints to progressively and
dynamically assign samples during training, avoiding
supervision disturbance. Complementary to CoF-FA,
CoF-SA considerably contributes to accurate and robust
localization of dense and cluttered objects in remote-
sensing images.

The rest of this article is organized as follows. Section II
briefly reviews the related work. The proposed CoF-Net is
described in Section III. Section IV reports and analyzes the
experimental results on three challenging datasets. Finally, the
conclusion is drawn in Section V.

2)

3)

II. RELATED WORK

Object detection has been extensively investigated in both
computer vision and Earth observation communities due to
its important role in various applications. In this section, first,
we briefly review geospatial object detection in remote-sensing
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images and, then, discuss two important techniques, the
visual attention mechanism and the anchor-based/anchor-free
strategies.

A. Geospatial Object Detection

Geospatial object detection has received considerable atten-
tion over the past two decades since it forms the basis
for high-level remote-sensing tasks such as urban planning.
Different from objects in natural images, geospatial objects
in remote-sensing images (such as planes, ships, and storage
tanks) are usually cluttered and densely arranged with large
variations in aspect ratio (AR), scale, and orientation, leading
to the ineffectiveness of many generic object detection meth-
ods. In general, existing geospatial object detection methods
can be divided into two categories: traditional algorithms
and deep learning-based algorithms. In traditional methods,
handcrafted features are designed to represent and localize
specific objects, based on shape and texture information [37],
saliency features [38], [39], [40], and scale-invariant features
[41], [42]. For example, in [43], the histogram of oriented
gradients (HOG) was employed as the feature descriptor to
detect airborne vehicles in dense urban regions. Han et al.
[41] proposed to integrate visual saliency and sparse coding
for geospatial object localization. However, these traditional
handcrafted feature-based methods are always sensitive to
complex background interference, due to a lack of discrimi-
native semantics, which limits their performance in real-world
applications.

Due to the rapid development of deep learning, numerous
object detection algorithms have been studied and proposed
during the past few years. Compared to traditional algorithms,
deep CNNs can extract powerful high-level feature repre-
sentations with rich semantic information, yielding promis-
ing and robust classification and localization performance.
Motivated by generic object detection, deep learning-based
remote-sensing object detection methods can be categorized
into two- and single-stage frameworks, according to whether

Overview of the proposed CoF-Net. It consists of a backbone, a detection head, and two critical parallel branches, namely, CoF-FA and CoF-SA.

or not region proposals are generated. With regard to the
former, the representative Faster R-CNN architecture [29] has
been widely exploited and improved for geospatial object
detection [30], [32], [44], [45], [46], [47]. For instance, in [47],
additional multiangle anchors were introduced into the RPN
stage of Faster R-CNN, in view of the arbitrary orientations of
geospatial objects. Following the pipeline of Faster R-CNN,
Ye et al. [44] proposed a feature fusion and filtration network,
namely, F 3_Net, which leveraged a feature fusion module to
extract multiscale contextual information and a feature filtra-
tion module to suppress the background interference, resulting
in competitive detection performance. Based on FPN [36] and
Faster R-CNN, Qin et al. [32] decoupled detection into several
subtasks and proposed multiple heads for detecting objects
with different scales. Recently, Wu et al. [45] devised a global
context-weaving network to facilitate dense object detection
in remote-sensing images. In [46], two transformer-based
modules were designated to enhance the pixelwise represen-
tation capability and multiobject dependencies. Although two-
stage detectors achieve leading detection accuracy, they suffer
from slow inference speed, significantly hindering their real-
world applications. On the other hand, for the purpose of
real-time object detection, some researchers have explored
more efficient single-stage detectors [4], [14], [16], [48], [49],
[50]. Xia et al. [16] adopted YOLOV2 [51] to detect geospa-
tial objects in remote-sensing images. A refined single-stage
detector for rotated objects [S0] was proposed by utilizing an
advanced regression strategy. Recently, Liu et al. [48] intro-
duced scene-contextual information related to remote-sensing
objects of interest and a scene auxiliary detection head for
more accurate detection. Although single-stage methods have
achieved a certain degree of success, there is still a gap,
in terms of accuracy, for remote-sensing object detection,
compared with two-stage methods. The main reason is that
these models are usually built on coarse features and samples,
with limited semantic relation refinement and alignment as in
two-stage detectors. Distinct from previous methods, in this
work, we propose to adapt features to complicated cluttered
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backgrounds from a novel spatial-spectral perspective and
refine coarse features and samples following an efficient
coarse-to-fine paradigm.

B. Visual Attention Mechanism

Extensive research on visual attention mechanisms has
demonstrated its effectiveness in highlighting potential regions
of interest, which has been widely introduced to deep
learning-based vision tasks, including object detection [52].
The attention mechanism aims to reweight different image
areas in terms of their importance or influence for specific
visual tasks. In this way, the attention-based object detectors
can better model the spatial and semantic relationships of both
intraobjects and interobjects and, hence, boost the detection
performance [34], [53]. Moreover, attention mechanisms can
be applied to different dimensions of deep features, such as
the spatial dimension [54], [55], the channel dimension [56],
[57]1, [58], and both together [59].

Recently, some attention-based methods have also been
proposed in the field of remote-sensing object detection,
which achieved enhanced performance [35], [60], [61]. For
instance, SCRDet [60] introduced a jointly supervised pixel
and channel attention network for cluttered and small geospa-
tial object detection. A multisource region attention network
was constructed in [62] to simultaneously detect and recognize
fine-grained objects by leveraging the attention-driven feature
representation. Liu et al. [61] proposed the center-boundary
dual attention mechanism by extracting features in the center
and boundary regions of objects in remote-sensing images.
Nevertheless, these aforementioned methods developed sim-
ple and suboptimal attention modules, by only introducing
locally neighboring semantics, due to the limited receptive
field of convolutional kernels, resulting in limited improve-
ments. Considering the large-scale variations and complicated
scenes in remote-sensing images, it is necessary to capture
long-range dependencies and facilitate interactions between
both global and local positions [63], [64], [65], [66], which
are of vital importance for downstream vision tasks such as
object detection.

C. Anchor-Based and Anchor-Free Strategies

Developed in Faster R-CNN [29], anchors are a set of
predefined bounding boxes, treated as potential region can-
didates for classification and regression. They have played an
essential role in modern object detectors and have recently
attracted considerable interest. Previous Faster R-CNN-like
methods [67], [68] applied the region proposal mechanism to
filter out invalid anchors, and then, they concentrated only
on positive samples during training. Unlike these two-stage
detectors, single-stage methods usually suffer from the imbal-
ance issue of foreground—background or positive—negative
anchors. Thus, in [69], the focal loss was designed to alle-
viate this problem, especially for dense prediction based on
single-stage detectors. After that, some anchor generation and
selection mechanisms were explored successively [1], [21],
[701, [711, [72], [73], [74], [75]. FreeAnchor [71] formulated
object-anchor matching as the maximum likelihood estimation,
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which is conceptually complicated. Regarding remote-sensing
object detection, in [1], with two parallel branches corre-
sponding to classification and regression, an extra anchor
refinement network was proposed to generate high-quality
anchors. Ming et al. [21], [72] introduced a dynamic anchor
learning strategy to adaptively evaluate the quality of prede-
fined anchors and, then, select appropriate ones. In order to
get rid of the dilemma of manually predefined anchors and
mismatches, some anchor-free assignment strategies have been
studied recently. For example, FCOS [76] and FoveaBox [77]
predicted objects pixelwise and regressed the offset from the
point to the four sides of the bounding box of each object.
Regardless of anchor-based and anchor-free methods, most of
these existing algorithms neglect the geometrical characteris-
tics of specific objects, such as shape and scale, when assign-
ing training samples. The geometrical information, however,
will benefit object detection if it is taken as prior knowledge.

III. PROPOSED METHOD

Geospatial objects in remote-sensing images are character-
ized by large variations in scale and densely arranged distrib-
ution, leading to damaged or obscure boundaries, misaligned
features, and ambiguous bounding-box regression targets. Pre-
vious object detectors, especially single-stage frameworks, fail
to yield satisfactory detection performance in such cases.
In order to address this issue, some approaches have been
proposed toward highly complicated remote-sensing scenarios,
but they still only operate on coarsely defined features or
samples and directly force the deep networks to perform
learning and prediction. Consequently, the methods may suffer
from semantic feature degradation and result in target mis-
classification, further hindering the detection accuracy and
robustness. Therefore, in this article, we propose CoF-Net
to detect geospatial objects from remote-sensing images in
a novel coarse-to-fine manner, which can enhance discrimina-
tive features and dynamically determine high-quality training
samples. In this section, the proposed framework will be first
overviewed, and then, the two crucial components of CoF-Net,
i.e., CoF-FA and CoF-SA, will be presented in detail.

A. Framework Overview

The overall pipeline of the proposed CoF-Net is shown in
Fig. 2. Built on RetinaNet [69], CoF-Net is a single-stage
framework with fully convolutional layers [78], which can
achieve fast inference speed, with a small number of para-
meters, for multiscale geospatial object detection in real-
world scenarios. CoF-Net mainly consists of four components:
1) ResNet [79] as the CNN backbone for coarse feature
extraction; 2) CoF-FA based on the FPN structure [36],
for enhancing the coarse and misaligned features to adap-
tively generate fine-grained nonlocal features, containing both
spectral and spatial information; 3) CoF-SA for dynamically
generating and nominating finer, high-quality samples during
training, instead of simply using massive coarse anchors,
by introducing geometric prior and classification constraints
as selection criteria; and 4) the detection head, composed of
two compact and parallel subnetworks for classification and
regression to produce the final detection results.
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With the proposed coarse-to-fine strategy, both the deep
features and training samples are refined to become more
reliable and robust against complicated interference in remote-
sensing images, thereby boosting the detection performance
of the single-stage framework. Moreover, in order to adapt
CoF-Net to detect rotated objects in remote-sensing images,
following [1], [21], [32], and [50], we use five parameters
(x,y,w,h,d) for arbitrary-oriented rectangle representation,
where § € [—=r/2,0) denotes the acute angle between an
object and the x-axis. In addition, for those datasets that
only involve horizontal objects, such as the DIOR dataset
[17] and the NWPU VHR-10 dataset [6], the parameter 6 is
simply fixed to an arbitrary value without updating, to form
the typical four-parameter representation (x,y, w,h) [69],
which represents the center coordinates, width, and height,
respectively.

B. Coarse-to-Fine Spectral Feature Adaptation

Aimed at extracting more robust and discriminative features
with global semantic relations for foreground targets with
background interference, spectral nonlocal feature adaptation
is developed, based on the proposed coarse-to-fine approach.
Our method considers the spectral property in remote-sensing
imagery and adapts deep features to the spatial and frequency
domains. As shown in Fig. 2, CoF-FA consists of three
modules, spatial-spectral embedding (SSE), spectral nonlocal
modulation (SNM), and fine-grained feature alignment (FFA),
which will be explained in detail in this section.

1) Spatial-Spectral Embedding: As shown in Fig. 2, given
an input image 7 € RH*W>3 the feature extractor will
produce feature maps for the subsequent feature-level opera-
tions. Specifically, by feeding 7 to the ResNet backbone [79],
multiscale feature maps are extracted in the classic bottom-up
pathway [36], denoted as FO ¢ RMixNixCi where | = 3, 4,
and 5 for multiscale representations. However, limited by the
receptive fields of CNN, the extracted features are susceptible
to deformation and interference in remote-sensing images.
The coarse granularity can be caused by two reasons, using
the spatial domain representation only and global semantic
deficiency.

The former motivates the SSE module to introduce spectral
information to the spatial features, which can enhance fea-
ture discriminability and diversity. Discrete cosine transform
(DCT) [80] is applied to convert the coarse spatial features
into the frequency domain to form spectral features, which are
then compressed and embedded in the coarse spatial features.
Generally, given the input coarse spatial features F (i is
removed for brevity), the DCT of F can be written as follows:

M—-1N-1

- 1

Fle k) = oo > ) F(,0) © Grg, (u,0)
u=0 v=0

where Gg, k, (4, v)

and k, € {0,1,....,M—1}, kye€{0,1,....N—1}
(1)

5600617

n Different Frequency Components
A
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Fig. 3. Tllustration of the proposed SSE module, in which the original coarse
features are promoted to spatial-spectral features by embedding multiple
frequency components in a channelwise manner.

F(kx, ky) is the spectral representation of 7 and Gy, , (u, v) is
the basis function of 2-D DCT. M and N represent the height
and width of F, respectively, while © denotes the elemen-
twise multiplication along the channel dimension. To boost
object boundary response and discriminability, multispectral
information is embedded into the original coarse features by
using the basis function ka,ky(') with different values of k,
and ky. As shown in Fig. 3, n different frequency components,
from low to high frequencies, are generated and fused into
the original coarse features, based on channelwise embedding
[56]. Specifically, given n different DCT bases Gy, k,, n
different spectral representations F(kx,ky) are first derived
by (1), and then, the multispectral embedding vector can be
computed as follows:

Semb = Sigmoid (C ([Fkxy, kyo); - s Flkx, 1, ky,_)]))
st.(ke, ky) €S = { (kg kyo) s os (ky 1o ky )} ()

C([; ]) is a learnable reduction mapping function after chan-
nelwise feature concatenation, which is based on 1-D con-
volutions, while S represents the superset of the specific
combinations (k,, ky) with a cardinality of |S| = n.

To further clarify the operation of the SSE module and its
advantages over other methods, suppose that (kx, k,) = (0, 0)
and 1 is an all-ones vector. Then, Go o = 11’ represents the
lowest frequency basis, i.e., the zero frequency, and we have

M—-1N-1

F(0,0) = ﬁ S Fu,v) A3)

u=0 v=0

which can actually be regarded as the global average-pooling
operation for F, commonly utilized in [56], [57]. However,
only the zero frequency or dc component is used in (3).
This descriptor potentially eliminates or weakens the boundary
information and retains only the coarse global distribution.
To remedy this issue, as shown in Figs. 3 and 4(a), more
spectral components are utilized in our method for multiple
frequency embedding. Different spectra are generated based on
the corresponding basis frequency functions, as visualized in
Fig. 4(b), where the cosine bases are orthogonal to each other.
Consequently, with the channelwise multispectral embedding
vector Semp € RE, the output features of the SSE module can
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be formulated as follows:

Fs = 28emb @ F + (1 — 2)F 4)

where 1 € (0, 1) controls the relative importance of the two
terms and ® denotes the tensor product. In this way, with
negligible extra computation, all the details and key frequency
information about object boundaries are aggregated into the
spatial-spectral features.

2) Spectral Nonlocal Modulation: The SSE module con-
verts coarse features from the spatial domain to the
spatial-spectral domain. However, as mentioned above, there
is still another challenge, i.e., deficiency in nonlocal dependen-
cies. Previous methods [35], [60], [61] applied simple attention
mechanisms to enhance the discrimination of features, but
their performance is limited, due to the local receptive fields
of the convolutional kernels used. Local attention is usually
suboptimal, especially for detecting rotated and scale-varying
geospatial objects in remote-sensing images, as modeling long-
range dependencies in the feature space has been proven
to be critical for many computer vision tasks [63]. There-
fore, we introduce the SNM module to further refine the
spatial-spectral features by incorporating both short- and
long-range visual dependencies to flexibly construct nonlocal
semantic relations. Unlike previous spatial-nonlocal blocks,
which inevitably aggregate background noise [63], the pro-
posed SNM is developed and analyzed theoretically from the
spectral perspective. More importantly, following [66] and
[81], the affinity matrix is designed to be symmetric to enhance
its stability for suppressing background noise and boosting the
response of the foreground regions.

For clarity, the regular nonlocal operator can be unified into
matrix form, as in the following [65], [66]:

V=T (Xr; Wp, Wy, W) + F (5)

where Xz € RMNxC
matrix from F and Wy 4, €

is the spatially collapsed input feature
RE*C are defined as the

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

transformation weight matrices. Specifically, in Fig. 5, the pro-
posed SNM module takes the spatial-spectral features Fg €
RMXNxC 44 input, which is fed into three 1 x 1 convolution
blocks for channel reduction and feature transformation to
generate three collapsed outputs Xg.9.4 o € RMNXCs  Then,
Xs;0 and X, are exploited to generate the symmetric affinity
matrix A, while Xg,, maintains the spectral structure context
for subsequent modulation. In the proposed SNM module, (5)
can be realized and rewritten as follows:

Fn = Ts (Xg:0.A) + Fs
= Xs;gwa + AXS;gWﬁ + Fs
K+ K
2

stA=DIKD?, K=

K = Xs5.0Xs: ©)
where 7g represents the spectral nonlocal modulator and
W, Wy € RE*C are the transformation matrices used for
feature restoration. The symmetric and normalized affinity
matrix A is computed in (6), where K and K’ are the pairwise
pixel-similarity matrix and its transpose, respectively, and D
denotes the diagonal degree matrix of K. Therefore, with
the SNM module, spectral properties can be stably preserved
in the affinity matrix A, while the nonlocal semantics can
be effectively modulated in the output Fp to strengthen its
discrimination.

3) Fine-Grained Feature Alignment: Based on the proposed
SSE and SNM, the two aforementioned crucial problems
caused by coarse granularity, which adversely affect fea-
ture robustness and discrimination, are mitigated effectively.
With the proposed progressive feature adaptation strategy, the
coarse features from the backbone become finer, in terms
of both spatial-spectral details and semantics, suitable for
potentially pixelwise operations, such as alignment. In Fig. 6,
following the typical bottom-up top-down scheme to construct
a hierarchical feature pyramid [36], the high-level features
are upsampled for aggregation with the corresponding lower
level features in the top-down pathway. However, the feature
misalignment issue between the improved fine features and
the coarse upsampled features may occur if the vanilla FPN
is simply adopted as the neck [82]. Feature misalignment or
aliasing is mainly caused by the cumulatively coarse and non-
learned upsampling operations, such as bilinear interpolation,
without accurate correspondence, which in turn destroys the
refined features generated from the proposed SSE and SNM
modules. To tackle this problem, the FFA module is devised
to adaptively learn a fine-grained pixelwise transformation.
Conceptually, supposing that the hierarchical features, after
aggregation in the top-down pathway, are denoted as PO ¢
RMixNixCi " a5 shown in Fig. 6, which is generally produced
from its higher level features, PUtD e RMi/2)x(Ni/2)xCipi
by upsampling, i.e., PO = UPUTD) 4 FO where U(.)
denotes the regular upsampling operation. In contrast, in view
of its misalignment, before feature merging, the FFA module
adaptively adjusts and aligns PU*D with reference to the
accurate spatial distribution and semantics in the robust fine
features .7-'1(\;). The operations in FFA for feature alignment can
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Fig. 6. Illustration of the proposed FFA module. Part A shows the difference between the FFA-based and vanilla FPN architectures, while Part B depicts

the detailed procedure of aligning coarse features and fine features at the fine-grained pixel level.

be expressed as follows:

PO = yP{0 + (1= nFy )

where P(lH) represents the aligned upsampled features and
n € (0,1) is the normalization coefficient. Specifically,
as shown in Fig. 6, with the learnable pixelwise offsets QU+,
we have

75‘(li+1) = A(?S(i+1),g(i+1)) )
s.t. QD — 0 ([}‘2); 75(i+1)D . U = y(pi+D)
)

A(-) and O(-) denote the offset-based fine-grained aligning
function and the pixelwise difference learning function, respec-
tively, implemented by deformable convolution [83], [84],
and [; ] denotes the concatenatlon operation to yield spatial
differences between the fine F.) v and coarse PU+D,

Thus, with the three proposed modules, the original coarse
features F() are progressively refined and adapted to the
final finer features P) for a detection head. These features

become more discriminative and robust for remote-sensing
object detection with complex background interference and
scale variations.

C. Coarse-to-Fine Sample Assignment Strategy

Although the CoF-FA stage successfully constructs feature
adaptation in a coarse-to-fine manner, there is still an issue to
be solved for coarse training samples, parallel to the coarse
feature representations, as shown in Figs. 1 and 2. To this end,
this section explains the proposed CoF-SA strategy, referred to
as CoF-SA, which dynamically selects higher quality samples
during different training phases to improve the model’s learn-
ing capability in complicated scenarios. As shown in Fig. 7,
following the coarse—fine—finer scheme and the corresponding
matching metrics, the number of training samples changes
from dense to sparse, but with more precise supervision. This
process is detailed in Algorithm 1. CoF-SA can be divided
into three sequential training stages, namely, coarse anchor
proposal, fine sample selection via geometric constraints, and
finer class-aware sample refinement.
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Fig. 7. Concept of the proposed CoF-SA strategy, which progressively assigns
more precise samples for training in the coarse—fine—finer scheme. Mcoarse.
Mine, and M ey denote three progressive matching metrics.

Algorithm 1 Dynamic Coarse-to-Fine Sample Assignment
Input: The training image Z
Hierarchical features P, P& pG) p© p)
The set of ground-truth bounding boxes T*
Output: The set of positive samples A for training
Initialization: The set of candidate anchor boxes S, and three
iteration (or epoch) thresholds MVeoarse» Niine» and Niper for
the coarse-fine-finer training strategy
1: for i =1 to max_iteration do
2 Coarse Anchor Proposal:
3 if i < Neoarse then
4 Calculate the location distance Djgc
5 Obtain Mpyrse according to Eq. (10)
6: Calculate coarse positive samples A¢, by Eq. (11)
7
8
9

A < A
Fine Sample Selection:
. else if i < Negarse + None then
10: Initialize the category number C
11: Obtain the prior probability pgz

12: Calculate geometric constraints Dgeo by Eq. (12)
13: Calculate Mgy according to Eq. (13)

14: Calculate fine positive samples Age by Eq. (14)
15: A < Age

16:  Finer Class-aware Sample Refinement:

17:  else if i < Neoarse + Nine + Niiner then

18: Calculate classification distance D

19: Calculate M per according to Eq. (15)

20: Calculate finer positive samples Af by Eq. (16)
21: A <~ Ag

22 end if

23: end for

24: return A, T*

1) Coarse Anchor Proposal: For most anchor-based object
detectors, dense anchors are predefined and determined
as positive—negative training samples. CoF-SA generates
category-agnostic coarse anchors at the beginning of the
training stage, e.g., in the first Neoase €pochs, when the
framework usually cannot yield reliable classification results
and requires a large number of preset anchors as learning
candidates. Specifically, based on the coarse-to-fine hierar-
chical features P from CoF-FA, a number of anchors are
predefined with fixed initial areas and scales at each level.
Then, in the preliminary training stage, positive anchors are
coarsely collected from all the initial areas and assigned to
each target in a one-to-many manner, considering only the
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Fig. 8. Effect of selecting samples with different ARs for training. (a) Two
anchors with the same IoU but different ARs are shown. The green solid
box represents the ground truth, while the red and blue dashed boxes
are two anchors with different ARs. (b) Another sample with an AR of
1.0 is presented. It can be seen that the same IoU cannot indicate that
the two anchors are equally accurate, while AR can imply how well an
anchor spatially matches its ground truth. (c) Despite IoU; = IoU;, the
red anchor in (a) with an approximate AR to the ground truth can capture
more discriminative features, such as the hull and stern, which facilitate
classification and localization. (d) Procedure and difficulty of regressing two
anchors with different ARs to the ground truth.

location-matching distances. Given the bounding box of the
target t € T* and the candidate anchor a € S,, the matching
metric can be computed as follows:

Meoarse = Dioc(a, t). (10)

In practice, the location distance Djoc(-) is defined as the
intersection-over-union (IoU) between the target and all
anchors, which is only based on the spatial location and
bounding-box intersection, without considering the category
knowledge.

Furthermore, based on the whole anchor set S, and a
threshold &, positive samples can be determined as follows:

Y

where a., represents an anchor selected from S,. Conse-
quently, all positive samples, as in (10) and (11), are exploited
during training without any semantic constraints, such as
object categories. This is a coarse and unrobust sample assign-
ment strategy, considering only densely packed and small
geospatial objects in remote-sensing images. In this way,
a large number of anchors survive, particularly suitable for
the initial unsophisticated training phase.

2) Fine Sample Selection via Geometric Constraints: Most
existing remote-sensing object detectors [14], [30], [85] simply
adopt a similar coarse sample assignment strategy throughout

Aco = {aco| Mcoarse < €co» aco € Sa}
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the whole training process. However, such a static sample
assignment method is suboptimal. On the one hand, with
the progress of training, tiling numerous training samples
cannot contribute to detection accuracy but leads to ineffective
redundant computation. It is reasonable to dynamically reduce
the number of positive samples so that training is focused
on competitive sample candidates with critical discrimination.
On the other hand, empirically limiting the number of samples,
e.g., by increasing the threshold &.,, cannot enhance the
detection performance. This actually implies the bottleneck
and deficiency of the category-agnostic IoU-guided sample
assignment strategies introduced in Section III-C1. As shown
in Figs. 1 and 12, during the later phase of training, there
are still plenty of imprecise anchors treated as positives,
which may adversely affect the accuracy of detecting densely
arranged geospatial objects.

For common nonrigid objects in natural scenes, such as cats
and dogs, the geometric characteristics of instances in the same
category are often different, due to diverse shooting angles,
postures, and object deformation. This leads to the domination
of the IoU-based metrics over sample assignment for generic
object detection, which is simply adopted in remote-sensing
object detection. Different from generic visual objects in
heads-up views, geospatial targets are always rigid objects
captured by the top-down perspective, whose geometric prop-
erties can be explored as strong prior knowledge yet ignored in
previous detectors. Relatively insensitive to rotation and scale
variations, AR is the most representative and robust geometric
attribute for geospatial objects, which usually conforms to a
specific statistical distribution. Fig. 8 presents two selected
anchors with the same IoU but different ARs, where AR
is defined as the ratio of the long side to the short side.
Compared to the blue anchor, the red anchor is more similar
to the inherent AR of the target under consideration, thereby
capturing more discriminative feature regions. Leveraging AR
as a geometric constraint can effectively reduce the number
of positives and make them more precise. More importantly,
due to the rigidity of geospatial objects, ARs normally vary
with their categories instead of orientations, which explicitly
indicates the statistical prior knowledge. Therefore, we nat-
urally introduce this geometric constraint for fine sample
selection in the middle of the training phase to select more
accurate samples. Specifically, considering the similar ARs of
different object categories in remote sensing and the limited
classification performance during intermediate training, it is
unnecessary to clarify the specific category of each sample.
Alternatively, the positives can be grouped into several clusters
according to their different prior AR distributions. As shown
in Fig. 9, there are five different clusters whose ARs are
subject to their respective statistical distributions. In Fig. 9,
the possible ARs are sliced into discrete intervals to form
histograms, which are then normalized to form the distribution
of each cluster. Given the anchor-target pair (a,t) and the
discretized AR AR, ¢ ~ N, for cluster ¢, the prior probability
p;fz can be simply derived from Fig. 9(b). Then, the geometric
constraint is defined as the cross-entropy-like cost as follows:

Deeo@, ) = Deeo (p11) = — (1= pi3) log pi1. (12)
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Fig. 9. AR-based prior probability distributions utilized for geometric
constraints. (a) Clusterwise histograms of the number of instances against
ARs. (b) Normalized prior probability functions. (c) Illustration of five
different clusters in the DOTA dataset [16].

Thus, after training with coarse samples for a certain period,
the sample selection criteria in (10) and (11) will be updated
to

Méine = Dioc(a, t) + Dgeo(a, t)
Age = {age|Mfine < &ge, age € Sy}

13)
(14)

where My and age denote the updated matching metric and
the fine samples constrained by both IoU and the geometric
prior knowledge, respectively. Theoretically, in (13), such
geometric constraints are added to the sample assignment
metric as a prior regularizer, effectively refining the training
samples and avoiding the struggle of the ongoing training on
spatially and semantically inaccurate samples.

3) Finer Class-Aware Sample Refinement: As introduced
above, sample assignment is dynamically divided into three
stages in a progressive coarse—fine—finer manner throughout
the training. To bridge the gap from coarse to fine granular-
ity, the second stage exploits geometric prior constraints to
refine coarse samples. However, there are still two significant
problems to be alleviated. First, the cluster-based probabilities
in (12) merely provide coarse-grained category instruction for
sample selection, while category distances between samples
and targets remain undiscovered. Second, in both the first
and second stages, redundant and dense foreground samples
should be calculated for each target, but it is ineffective to tile
these duplicate candidates as one-to-many assignments in the
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latter training phase [75]. To address these two issues, a finer
class-aware one-to-one assignment rule is proposed to select
the most appropriate sample for each potential candidate.
Specifically, the matching metric in (13) is updated to

Méiner = Dioc(a, t) + Deis(a, t) (15)

where Dgs(-) represents the class-aware distance for finer
sample assignment. In this work, it is naturally defined as
the classification cost between the predicted category of the
sample a and the ground-truth category of t. In the latter
training stage, the network discriminability is dramatically
improved compared to the earlier training stages, making the
classification more robust and reliable. This reveals why we
adopt the “clusters” in (12), but finer “classes” here. More
importantly, once the class-aware matching metric M ey 1S
computed, a finer one-to-one assignment rule can be applied
by searching for the minimum distance positive samples as
follows:

As = {ag}
s.t.ag = argmin Meper(a, t). (16)
aeS,

In this way, only sparse and finer samples are assigned,
while their neighboring candidates are eliminated. Since CoF-
SA dynamically and progressively introduces both spatial
location and semantic category distances in a coarse-to-fine
manner, it alleviates the inconsistency between the matching
metric and loss function, thereby facilitating optimization.
Moreover, it focuses on the most discriminative regions during
training, primarily benefiting densely arranged and cluttered
object detection in remote-sensing images.

IV. EXPERIMENTS AND ANALYSIS

In this section, comprehensive experiments on both horizon-
tal and oriented geospatial object detection were conducted to
demonstrate the effectiveness and superiority of the proposed
CoF-Net. We first introduce the datasets and evaluation met-
rics, and then, the components of CoF-Net, including CoF-FA
and CoF-SA, are evaluated in ablation studies. Finally, the
quantitative and qualitative results of our method on three
public datasets are shown and analyzed, and compared to other
state-of-the-art methods.

A. Dataset Description

To extensively evaluate the proposed framework, three rep-
resentative and public datasets, namely, DIOR [17], NWPU
VHR-10 [6], [18], and DOTA [16], are employed in our
experiments.

1) DIOR Dataset: DIOR [17] is currently the largest public
dataset for horizontal object detection in optical remote-
sensing imagery, which contains 23 463 images. We divide it
into three subsets, training set, validation set, and test set, with
a ratio of 1:1:2, respectively. This dataset covers 20 different
categories of geospatial objects, denoted as cl1-c20 in the
experiments: airplane (cl), airport (c2), baseball field (c3),
basketball court (c4), bridge (c5), chimney (c6), dam (c7),
expressway service area (c8), expressway toll station (c9),
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golf course (c10), ground track field (cl1), harbor (cl2),
overpass (c13), ship (c14), stadium (c15), storage tank (c16),
tennis court (c17), train station (c18), vehicle (c19), and
windmill (c20).

2) NWPU VHR-10 Dataset: NWPU VHR-10 is another
publicly available dataset for horizontal remote-sensing object
detection, which was released by Cheng et al. [18]. This
dataset consists of 800 very-high-resolution (VHR) remote-
sensing images involving ten categories, including airplanes,
ships, storage tanks, baseball diamonds, tennis courts, basket-
ball courts, ground track fields, harbors, bridges, and vehicles.
For a fair comparison in the experiments, following [6] and
[18], 75% of the images are randomly selected as the training
set, and the rest are used for testing.

3) DOTA Dataset: DOTA [16] is a large-scale dataset
mainly for oriented object detection, which consists of
2806 aerial images, categorized into 15 geospatial classes. 1/2,
1/6, and 1/3 of the original images are randomly selected for
training, validation, and testing, respectively. The categories
in the DOTA dataset are defined as plane (PL), baseball
diamond (BD), bridge (BR), ground field track (GFT), small
vehicle (SV), large vehicle (LV), ship (SH), tennis court
(TC), basketball court (BC), storage tank (ST), soccer ball
field (SBF), roundabout (RA), harbor (HA), swimming pool
(SP), and helicopter (HC). Moreover, with a wide range of
object scale and shape variation, spatial resolution, random
arrangement, arbitrary orientations, and imaging conditions,
this dataset is considerably challenging, which properly meets
the goal to validate the effectiveness of our proposed coarse-
to-fine strategy in CoF-Net.

B. Evaluation Metrics and Implementation Setup

To quantitatively evaluate the performance of different
detectors, we adopt the widely used average precision (AP)
as the evaluation metric. Specifically, all detection results
can be categorized into four cases, true positive (TP), false
positive (FP), true negative (TN), and false negative (FN).
By calculating the number of samples for each case, the
precision rate and recall rate can be expressed as follows:

.. TP
Precision = ——— (17)
TP 4 FP
TP
Recall = ———. (18)
TP 4+ FN

Precision represents the proportion of correctly predicted
positives in all predicted positives, while recall measures
the proportion of TPs to the total positives. Then, AP can
be defined as the integral area of precision values over all
recall values from O to 1. For multiclass object detection, the
mAP represents the mean of APs of all categories, which is
calculated as follows:
1 C
mAP = - > AP,

c=1

19)

where C represents the number of object categories. A higher
mAP generally indicates better detection performance.

In the experiments, unless otherwise specified, ResNet50 is
utilized as the backbone of the proposed framework, whose
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TABLE 1
PERFORMANCE EVALUATION AND COMPARISON OF THE PROPOSED COF-FA AND COF-SA
Method PL | BD | BR | GIF | SV | Lv | SH | TC | BC ST | SBF | RA | HA | SP | HC mAP (a) | Param | Speed
CoF-FA | CoF-SA ™M) | (FPS)
x x 89.26 | 69.66 | 34.20 | 66.34 | 6595 | 70.84 | 79.45 | 87.99 | 55.65 | 81.26 | 62.76 | 65.32 | 37.65 | 59.80 | 56.54 65.51 3756 | 21
v x 89.15 | 7029 | 46.13 | 7446 | 66.52 | 75.80 | 83.75 | 88.87 | 7191 | 8738 | 75.85 | 70.52 | 43.81 | 6501 | 6583 | 71.69 (+6.18) | 3943 | 18
x v 89.69 | 72.94 | 41.60 | 69.35 | 65.17 | 77.28 | 82.18 | 89.69 | 55.47 | 83.90 | 72.80 | 66.05 | 54.53 | 58.83 | 58.95 | 69.23 (+3.72) | 37.56 | 21
v v 89.77 | 73.87 | 53.55 | 76.92 | 6522 | 81.25 | 85.43 | 89.67 | 72.69 | 89.26 | 81.07 | 69.92 | 56.59 | 67.73 | 67.28 | 74.68 (+9.17) | 3943 | 18
TABLE I1

initial weights have been pretrained on the ImageNet dataset
[86]. We train the models for a total of 24 epochs. The
momentum stochastic gradient descent (SGD) optimizer is
adopted during training, with an initial learning rate of 0.0001,
which is decreased by 0.1 on the 12th and 18th epochs, and
the warm-up strategy is also implemented for all models.
The momentum is 0.9 and the weight decay is 0.0001. The
confidence score threshold is set to 0.05, and the nonmaximum
suppression (NMS) threshold is 0.3. We train the models on
four NVIDIA Tesla V100 GPUs with a batch size of 8.

C. Ablation Studies

To verify the effectiveness of the proposed method, com-
prehensive ablation studies are carried out on the oriented
object detection-specific DOTA validation set, and the details
are shown in this section.

1) Effect of CoF-FA and CoF-SA: As CoF-FA and CoF-SA
are parallel branches against coarse features and coarse train-
ing samples, respectively, their performances are evaluated
separately in ablation experiments. As shown in Table I, with-
out CoF-FA and CoF-SA, the baseline model achieves only
65.51% mAP. Only using CoF-FA to refine coarse features
into fine features, it achieves 71.69% mAP, leading to an
improvement of 6.18%. This demonstrates that CoF-FA can
alleviate the negative effects of background noise and enrich
semantic knowledge in the generated fine features. When
only CoF-SA is employed without CoF-FA, the detection
result is 69.23%, representing an improvement of 3.72%,
compared to the baseline. This gain validates the contribution
of coarse-to-fine samples to the overall model performance
during training. Moreover, CoF-FA and CoF-SA can work
well cooperatively (i.e., CoF-Net) to achieve the best result in
detecting oriented objects, i.e., 74.68% mAP, which is about
9.17% higher than the baseline model. As reported in the last
row of Table I, CoF-Net consistently improves the accuracy
in almost all categories.

2) Component Analysis for CoF-FA: As described above,
the three key components, SSE, SNM, and FFA, constitute
CoF-FA, and their effectiveness is quantitatively and individ-
ually evaluated in Tables II-IV and Fig. 10.

a) Effect of each component of CoF-FA: Table II first
reports the results of four experiments by ablating the three
components. It can be seen that simply adding SSE can facili-
tate the baseline model to achieve a gain of about 4.10% mAP.
When further utilizing “SSE + SNM” and “SSE + FFA,”
the improvement increases to 5.75% and 5.23%, respectively.
If all three proposed modules are activated in CoF-FA, the best

ABLATION STUDIES FOR EACH PROPOSED COMPONENT IN COF-FA

Param Speed

Model | SSE SNM  FFA mAP (A) ) (FPS)
Baseline | - - - 65.51 | 37.56 | 21
v X X 69.61 (+4.10) | 38.25 (+0.69) 20
CoF-FA v v X 71.26 (+5.75) | 38.90 (+1.34) 19
v X v 70.74 (+5.23) | 38.77 (+1.21) 19
v v v 71.69 (+6.18) | 39.43 (+1.87) 18

TABLE III

ABLATION STUDIES WITH DIFFERENT SETTINGS OF THE PROPOSED SNM

Param Speed
Model | Stage I  Stage 2 Stage 3 mAP (A) ™M) (IE)PS)
X X X 69.61 38.25 20
v X X 71.26 (+1.65) 38.90 (+0.65) 19
SNM X v X 70.63 (+1.02) 40.87 (+2.62) 17
X X v 69.89 (+0.28) | 48.73 (+10.48) 15
v v v 71.88 (+2.27) | 52.01 (+13.76) 14
TABLE IV

COMPARISON OF THE PROPOSED FFA AND VANILLA FPN

Vanilla FPN  FFA | mAP (A) | Param (M)
v X 65.51 37.56
X X 61.47 (-4.04) 33.69 (-3.77)
X v 66.58 (+1.07) | 38.08 (+0.52)

70.0
69.5
69.0
68.5
68.0 -
~ 675
NS
< 6704 Number of Frequency mAP (4)
Iy . Components
é 66.5 1 n=0 65.51
66.0 - f g n=1 67.27 (+1.76)
n=
65.5 4 n=4 67.40 (+1.89)
t
65.0 n=8 69.15 (+3.64)
a5 fn=8 66.16 (+0.65)
' n=16 69.61 (+4.10)
64.0

0123456 7 8 910111213141516171819202122232425
Number of Frequency Components

Fig. 10.  Ablation experiments of the number of frequency components in

SSE. " means that the first eight spectra are utilized, while ¥ means that the
last eight spectra are employed.

detection performance of 71.69% mAP can be obtained, with
a total of improvement of 6.18%, as shown in the last row of
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(a) (®) (©) (C)] (e) ®
Fig. 11. Visualization of coarse-to-fine features enhanced progressively by the proposed components in CoF-FA. (a) Input images. (b) Coarse features without

CoF-FA. (c) Features refined by SSE only. (d) Fine features refined by SSE and SNM. (e) Features refined by SSE, SNM, and FFA (the whole CoF-FA).

(f) Features refined by vanilla FPN instead of the proposed FFA.

Table II. Some coarse-to-fine features are visualized in Fig. 11.
In order to interpret how these modules can work effectively,
more detailed ablation experiments were carried out and the
results are tabulated in Tables III and IV and Fig. 10.

b) Effect of the number of frequency components in SSE:
In Fig. 10, n represents the number of frequency components
used in SSE. As the smallest dimension of the coarse features
is 5 x 5, the number of frequency components is 25. When
n = 0, it means the baseline model without using any
frequency components. While n = 1, the lowest component,
i.e., the zero frequency, is fused with the coarse features
(the first component in Fig. 4(b) and n 1 in Fig. 10),
an improvement of around 1.76% mAP can be obtained.
When the number of frequency components n increases, the
performance in terms of mAP increases steadily to 69.61%,
until »n 16. When n is more than 16, the performance
will drop. This is due to the fact that the high-frequency
components represent noise in the shape and appearance of
objects. In our experiments, we set the number of frequency
components to 16.

c) Effect of SNM and its position: The goal of SNM is
to further refine the spatial-spectral features by incorporat-
ing global long-range dependencies. Actually, SNM can be
inserted into different stages of the backbone with minor modi-
fications. To evaluate its effectiveness at different positions of
the backbone, several ablation experiments were conducted,
and the results are tabulated in Table III. Adding SNM to
the early stage (i.e., Stage 1) achieves a better performance
of 71.26% mAP with a small increase in model parameters,
compared to the latter two stages (Stages 2 and 3). The
best detection accuracy can be achieved if SNM is inserted
into all three stages, achieving 71.88% mAP, but causing a
much larger increase in model parameters. Considering the
speed—accuracy tradeoff, we only insert SNM into Stage 1 by
default.

d) Effect of FFA: FFA operates on pixelwise features to
mitigate misalignment and serves as an FPN-like structure to
generate the final hierarchical fine features for the detection
head. Table IV compares the performance of the proposed

TABLE V

ABLATION STUDIES ON THE PROPOSED DIFFERENT MATCHING METRICS
FOR COF-SA. ALL MODELS FOLLOW THE SAME TOTAL
NUMBER OF TRAINING EPOCHS

P
Model | Meoarse Myine Myiner | mAPs0 (A) ‘mAPw‘ o
v x x 65.51 2760 | 37.56
v v x 66.84 (+133) | 3124 | 37.56
CoF-SA v x v 6727 (+1.76) | 33.53 | 37.56
v v v 67.87 (+2.36) | 3522 | 37.56
TABLE VI

COMPARISON OF DIFFERENT RATIOS OF THREE SAMPLE ASSIGNMENT
STRATEGIES DURING TRAINING. Neoarse» Nfine> AND Nfiner
REPRESENT THE NUMBER OF TRAINING EPOCHS USING
THE CORRESPONDING MATCHING METRICS

Neoarse Nfine : Nfiner ‘ mAP (A)
1:1:1 67.87
2:1:1 67.45 (-0.42)
1:2:1 68.56 (+0.69)
1:1:2 69.23 (+1.36)

FFA and the vanilla FPN [36]. As shown in the second row,
removing the FPN structure from the baseline model causes
a dramatic performance drop of 4.04%, which demonstrates
the importance of the multiscale hierarchical features for
remote-sensing object detection, whereas replacing the vanilla
FPN with FFA can obtain a 1.07% mAP improvement. Some
visualized examples are shown in Fig. 11. This ablation result
validates that FFA can inherit the feature pyramid structure
and smooth the fine features simultaneously.

3) Component Analysis for CoF-SA: In parallel to CoF-FA,
several ablation experiments were also carried out for CoF-SA,
to verify its effectiveness in producing finer training samples
and benefit to the overall model performance.

a) Effect of coarse-to-fine matching metrics: Table V
shows the effect of the three proposed coarse-to-fine match-
ing distance metrics on the model performance. It can be
observed that, if only coarse samples are selected throughout
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TABLE VII
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE DIOR DATASET

Method | Backbone | ¢l | ¢2 | ¢3 | ¢4 | ¢5 | ¢6 | 7 | c8 | 9 | clO | cll | cl2 | cI3 | cl4 | cI5 | cl6 | 17 | cI8 | c19 | 20 | mAP

Two-Stage

Faster RCNN [29] |  VGGI6 | 53.6 | 49.3 | 788 | 662 | 280 | 70.9 | 623 | 69.0 | 552 | 680 | 569 | 502 | 50.1 | 27.7 | 730 | 39.8 | 752 | 386 | 23.6 | 454 | 54.1

CornerNet [87] Hourglass104 | 58.8 | 84.2 | 72.0 | 80.8 | 46.4 | 753 | 643 | 81.6 | 763 | 79.5 | 79.5 | 26.1 | 60.6 | 37.6 | 70.7 | 452 | 84.0 | 57.1 | 43.0 | 759 | 649

Mask R-CNN [88] ResNet101 539 | 76.6 | 632 | 809 | 402 | 725 | 604 | 763 | 62.5 | 76.0 | 759 | 465 | 57.4 | 71.8 | 683 | 53.7 | 81.0 | 623 | 43.0 | 81.0 | 65.2

PANet [89] ResNet101 602 | 72.0 | 70.6 | 80.5 | 43.6 | 723 | 614 | 72.1 | 66.7 | 72.0 | 734 | 453 | 569 | 71.7 | 704 | 62.0 | 80.9 | 57.0 | 47.2 | 845 | 66.1

CSFF [90] ResNet101 572 | 79.6 | 70.1 | 87.4 | 46.1 | 76.6 | 62.7 | 82.6 | 732 | 782 | 81.6 | 50.7 | 59.5 | 733 | 63.4 | 585 | 859 | 619 | 429 | 869 | 68.0

GLNet [91] ResNet101 629 | 832 | 720 | 81.1 | 50.5 | 79.3 | 674 | 86.2 | 709 | 81.8 | 83.0 | 51.8 | 62.6 | 72.0 | 75.3 | 53.7 | 81.3 | 655 | 434 | 89.2 | 70.7

Single-Stage

YOLOV3 [92] DarkNet53 722 | 292 | 740 | 786 | 31.2 | 69.7 | 269 | 48.6 | 544 | 31.1 | 61.1 | 449 | 49.7 | 874 | 70.6 | 68.7 | 873 | 294 | 483 | 78.7 | 57.1

RetinaNet [69] ResNet101 533 | 77.0 | 693 | 85.0 | 44.1 | 732 | 624 | 78.6 | 62.8 | 78.6 | 76.6 | 499 | 59.6 | 71.1 | 684 | 458 | 813 | 552 | 444 | 855 | 66.1

MSFC-Net [4] ResNeSt101 858 | 762 | 744 | 90.1 | 442 | 78.1 | 555 | 609 | 59.5 | 76.9 | 73.7 | 49.6 | 572 | 89.6 | 69.2 | 76.5 | 86.7 | 51.8 | 55.2 | 84.3 | 70.1

ASSD [93] VGG16 85.6 | 824 | 758 | 89.5 | 40.7 | 77.6 | 647 | 67.1 | 61.7 | 80.8 | 78.6 | 62.0 | 58.0 | 84.9 | 76.7 | 653 | 879 | 62.4 | 445 | 763 | 7TI.1

CoF-Net (Ours) ResNet50 84.0 | 853 | 82.6 | 90.0 | 47.1 | 80.7 | 73.3 | 89.3 | 74.0 | 84.5 | 832 | 574 | 62.2 | 829 | 77.6 | 682 | 899 | 68.7 | 493 | 852 | 75.8
improvement, about 1.36%. Only the finest sample surviving
as supervision for each potential instance marginally requires
more training epochs or iterations. This phenomenon also
consistently demonstrates the effectiveness of the proposed
CoF-SA.

4) Analysis of Model Parameters and Speed: In addition
to detection accuracy, the number of parameters of the mod-
els and the speed are evaluated and reported in detail in
Tables I-V. As shown in Tables I and II, CoF-FA only brings

@ ®) © @ an increase in the number of parameters by about 1.87 M and

Fig. 12. Illustration of the proposed CoF-SA. (a) Predictions. (b) Coarse
one-to-many samples. (c) Fine one-to-many samples. (d) Finer one-to-one
samples.

the training phase, the baseline model achieves 65.51% mAP5
(IoU threshold is 0.50) and 27.60% mAP75 (IoU threshold
is 0.75). Replacing Moarse With a combination of “Moarse
and Mpe” or “Mecoarse and Miper” can improve the per-
formance by 1.33% or 1.76% mAPs5, respectively. In terms
of mAP7s, the corresponding gains further increase to about
3.64% and 5.93%. If the proposed progressive combination
“Mcoarse and Mpe and Miper” is employed, the final detec-
tion accuracy can reach 67.87% mAPs(, surpassing the other
models in Table V. Some visualized results are presented
in Fig. 12. The above ablation results notably validate the
positive impact of the proposed CoF-SA strategy on object
detection.

b) Effect of different ratios of the coarse—fine—finer
assignment: In Table V, the coarse—fine—finer training strategy
achieves the best performance, but the number of epochs
is the same for the three training stages, i.e., the ratio
Neoarse:Niine:Niiner = 1:1:1. To further explore the optimal
ratio Neoarse:Nfine :Nfner, the training scheme is evaluated with
different ratios, while the total number of epochs is still
fixed at 24. The results are shown in Table VI. We observe
that increasing the number of training epochs for coarse-
sample assignment, i.e. Mcoarse, marginally reduces the per-
formance by 0.42% mAP. Conversely, increasing the ratio for
fine-sample training and finer-sample training yields better
results of 68.56% and 69.23% mAP, respectively, as shown
in the last two rows of Table VI. Furthermore, the setting of
Neoarse:Niine:Niiner = 1:1:2 results in the most significant mAP

can achieve competitive inference speed. In Tables I and V,
CoF-SA introduces no additional parameters and focuses
on efficiently nominating fine samples from coarse samples,
instead of using any heavy computational modules.

D. Comparative Experiments With State-of-the-Art Methods

In this section, we compare the proposed CoF-Net with
other state-of-the-art methods on three popular aerial object
detection datasets: DIOR, NWPU VHR-10, and DOTA.

1) Results on DIOR: The proposed CoF-Net is evaluated
on DIOR and compared to other representative methods in
Table VII, all of which are CNN-based horizontal detectors,
including two- and single-stage methods. Recently, many
studies have been devoted to promoting the performance of
single-stage detectors to make them competitive with two-
stage detectors, while our method successfully fills this gap
by refining coarse features and coarse samples into fine
features and samples, respectively. Specifically, our model
obtains 75.8% mAP across all categories and achieves the best
performance in 13 out of 20 categories. Compared to all the
advanced object detectors in Table VII, the proposed CoF-Net
shows the state-of-the-art performance with competitive model
size and speed. The latest single-stage algorithms, MSFC-Net
[4] and ASSD [93], also achieve promising overall accuracy,
comparable to two-stage detectors, but our CoF-Net dramati-
cally outperforms them by 5.7% and 4.7% mAP, respectively.
Some detection results are visualized in Fig. 13.

2) Results on NWPU VHR-10: Table VIII compares the
performance of the proposed method with other state-of-
the-art horizontal detectors on the NWPU VHR-10 dataset.
It can be seen that CoF-Net attains 94.5% mAP, achieving
the best accuracy. Most two-stage methods rely on large
backbones for higher mAP, which limits their model efficiency
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TABLE VIII
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE NWPU VHR-10 DATASET

. . Storage | Baseball | Tennis | Basketball Ground . .
Method Backbone ‘ Airplane | Ship ‘ Tank Diamond ‘ Court Court ‘ Track Field ‘ Harbor | Bridge | Vehicle | mAP
Two-Stage
RICNN [6] AlexNet 88.4 77.3 85.3 88.1 40.8 58.5 86.7 68.6 61.5 71.1 72.6
Faster R-CNN [29] ResNet50 94.6 82.3 65.3 95.5 81.9 89.7 92.4 72.4 57.5 77.8 80.9
CAD-Net [35] ResNet101 97.0 77.9 95.6 93.6 87.6 87.1 99.6 100.0 86.2 89.9 91.5
MEDNet [30] ResNet101 99.2 94.4 82.2 98.5 95.4 95.2 98.3 88.1 75.1 89.3 91.6
GLNet [91] ResNet101 100 88.7 84.4 98.5 81.6 838.2 100 97.2 88.4 90.9 91.8
EGAT-LSTM [34] GCN+LSTM 97.3 96.7 97.2 96.5 86.6 94.5 94.2 86.2 80.1 90.8 92.0
NL-LFPN-MRI101 [9] ResNet101 100 89.5 90.9 96.8 96.7 99.2 100 90.1 79.1 90.2 93.2
Single-Stage
YOLOV2 [51] DarkNet19 83.0 84.4 81.9 84.3 85.0 53.5 62.8 78.7 85.0 70.0 76.8
SCRDet [60] ResNet101 100 89.4 97.2 97.0 83.2 87.5 99.2 994 74.5 90.1 91.8
FMSSD [94] VGG16 99.7 89.9 90.3 98.2 86.0 96.8 99.6 75.6 80.1 838.2 90.4
CANet [58] ResNet101 99.9 85.9 99.3 97.3 97.8 84.8 98.4 90.4 89.2 90.3 933
CoF-Net (Ours) ResNet50 100 90.9 96.1 98.8 91.1 95.8 100 91.4 89.7 90.8 94.5
TABLE IX
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE DOTA DATASET
Method | Backbone | PL | BD | BR | GTF | SV | LV | SH | TC | BC | ST | SBF | RA | HA | SP | HC | mAP
Two-Stage
FR-O [16] ResNet101 794 | 77.1 | 17.7 | 64.1 | 353 | 38.0 | 37.2 | 89.4 | 69.6 | 59.3 | 50.3 | 52.9 | 479 | 474 | 463 | 54.1
Rol Trans. [67] ResNet101 88.6 | 785 | 434 | 759 | 688 | 73.7 | 83.6 | 90.7 | 77.3 | 81.5 | 584 | 53.5 | 62.8 | 589 | 47.7 | 69.6
CAD-Net [35] ResNet101 878 | 824 | 494 | 735 | 71.1 | 63.5 | 76.6 | 909 | 79.2 | 733 | 484 | 609 | 62.0 | 67.0 | 622 | 699
SCRDet [60] ResNet101 90.0 | 80.7 | 52.1 | 684 | 684 | 60.3 | 72.4 | 909 | 87.9 | 86.9 | 65.0 | 66.7 | 663 | 682 | 652 | 72.6
APE [95] ResNeXt101 90.0 | 83.6 | 534 | 76.0 | 74.0 | 77.2 | 79.5 | 90.8 | 872 | 845 | 67.7 | 60.3 | 74.6 | 71.8 | 65.6 | 75.8
CSL [22] ResNet152 90.3 | 855 | 54.6 | 753 | 704 | 73.5 | 77.6 | 90.8 | 862 | 86.7 | 69.6 | 68.0 | 73.8 | 71.1 | 68.9 | 76.2
Single-Stage
02DNet [96] Hourglass104 | 89.3 | 82.1 | 473 | 61.2 | 71.3 | 74.0 | 78.6 | 90.8 | 822 | 814 | 609 | 602 | 582 | 67.0 | 61.0 | 71.0
CFC-Net [21] ResNet50 89.1 | 804 | 524 | 70.0 | 763 | 78.1 | 87.2 | 90.9 | 84.5 | 856 | 60.5 | 61.5 | 67.8 | 68.0 | 50.1 73.5
R3Det [50] ResNet152 89.5 | 81.2 | 505 | 66.1 | 709 | 78.7 | 782 | 90.8 | 853 | 842 | 61.8 | 63.8 | 682 | 69.8 | 67.2 | 73.7
CBDA-Net [61] DLANet34 89.2 | 859 | 503 | 650 | 77.7 | 823 | 879 | 90.5 | 86.5 | 859 | 669 | 66.5 | 674 | 71.3 | 629 | 757
CoF-Net (Ours) ResNet50 89.6 | 83.1 | 483 | 73.6 | 78.2 | 83.0 | 86.7 | 90.2 | 823 | 86.6 | 67.6 | 64.6 | 747 | 71.3 | 784 | 77.2

Fig. 13. Some qualitative detection results of the proposed CoF-Net on the DIOR dataset (the first row) and the NWPU VHR-10 dataset (the second row).

and flexibility, while CoF-Net can substantially outperform
them with a more lightweight backbone. In terms of cate-
gorywise performance, our method achieves the best results
on six categories and is also competitive in the remain-
ing four categories. Some qualitative results are visualized
in Fig. 13.

3) Results on DOTA: Different from the DIOR and NWPU
VHR-10 datasets for horizontal bounding-box object detec-
tion, the DOTA dataset is widely used for oriented object
detection. In Table IX, it can be observed that CoF-Net still
outperforms other state-of-the-art methods, achieving 77.2%
mAP. Furthermore, in all categories, the proposed framework
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Fig. 14.

achieves the best or favorable detection results, beating most
single-stage detectors and being comparable to two-stage
methods. Some qualitative detection results of the proposed
CoF-Net are presented in Fig. 14. It can also be seen that,
benefiting from the coarse-to-fine features and samples, our
method accurately localizes densely packed and cluttered
instances with various scale and orientation variations, against
complicated background interference.

V. CONCLUSION

This article proposes a novel single-stage framework, named
CoF-Net, for object detection in remote-sensing imagery,
which achieves high accuracy and low complexity. The defi-
ciencies of previous geospatial object detectors, especially
single-stage methods, which cause performance degradation,
are elucidated as coarse features and coarse training samples.
To pave the way, CoF-Net presents a friendly progressive
coarse-to-fine architecture, in which CoF-FA and CoF-SA are
placed in parallel. The former aims to progressively enrich
spectral details, semantic dependencies, and alignment at the
feature level, while the latter dynamically assigns fine and
finer samples during training for accurate regression. Extensive
experiments were conducted on three datasets, DIOR, NWPU
VHR-10, and DOTA. The results have demonstrated the effec-
tiveness and efficiency of the proposed method, as well as its
superiority over other state-of-the-art methods.
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