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Abstract—In the past few decades, license plate detection and recognition (LPDR) systems have made great strides relying on
Convolutional Neural Networks (CNN). However, these methods are evaluated on small and non-representative datasets that perform
poorly in complex natural scenes. Besides, most of existing license plate datasets are based on a single image, while the information
source in the actual application of license plates is frequently based on video. The mainstream algorithms also ignore the dynamic clue
between consecutive frames in the video, which makes the LPDR system have a lot of room for improvement. In order to solve these
problems, this paper constructs a large-scale video-based license plate dataset named LSV-LP, which consists of 1,402 videos,
401,347 frames and 364,607 annotated license plates. Compared with other data sets, LSV-LP has stronger diversity, and at the same
time, it has multiple sources due to different collection methods. There may be multiple license plates in a frame, which is more in line
with complex natural scenes. Based on the proposed dataset, we further design a new framework that explores the information
between adjacent frames, called MFLPR-Net. In addition to these, we release the annotation tools for license plates or vehicles in
videos. By evaluating the performance of MFLPR-Net and some mainstream methods, it is proved that the proposed model is superior
to other LPDR systems. In order to be more intuitive, we put some samples on Google Drive. The whole dataset is available at
https://github.com/Forest-art/LSV-LP.

Index Terms—Artificial intelligence, computer vision, license plate detection, license plate recognition, convolutional neural network,
dataset
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1 INTRODUCTION

L ICENSE Plate Detection and Recognition (LPDR) is a
topic of great research significance. It is an essential

branch of Intelligent Transportation Systems (ITS) and com-
puter vision. The accurate and efficient LPDR system can
be widely used in various monitoring scenarios, such as
traffic flow regulation, parking fee management and private
spaces access. Due to the importance of LPDR in ITS, many
researchers have made great improvements in this field [1],
[2], [3], [4], [5], [6], [7], [8].

Benefiting from the rapid development and wide ap-
plication of deep learning, current LPDR systems [9], [10],
[11] are mostly based on Convolutional Neural Networks
(CNN). The CNN-based system is generally divided into
several sub-modules, such as vehicle detection, license plate
(LP) detection, LP character segmentation and LP character
recognition. These sub-modules perform their respective
functions and constitute an integrated system to complete
the task of LP recognition on images. Most of these stud-
ies are for LP recognition under specific tasks, and the
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scenes are relatively simple. For example, the AOLP [12]
dataset contains only images captured from different angles
or heights. It is worth noting that the real-world scenes
for LPDR are complex and changeable, such as distortion,
occlusion, and fog weather blur. In order to alleviate the
problem of insufficient data, Xu et al. [2] provide a large-
scale dataset containing a variety of scenarios with more
than 250,000 unique images. However, in practical applica-
tions such as video surveillance and traffic management,
the LPDR system relies not on a single image but on
multiple frames. In [9], [13], two multi-frame datasets called
UFPR-ALPR and SSIG-SegPlate are proposed which can
be exploited for LPDR in videos. Nevertheless, both of
these datasets contain 150 videos, each of which averages
less than 30 frames, and the background in the videos is
relatively monotonous. If the training processing is carried
out on such datasets, it is difficult to generalize this model,
and the number of different LPs is small, leading to that
the system should be based on character segmentation or
fine-tuning.

Considering the problems mentioned above, we propose
a large-scale LP dataset named LSV-LP, which covers LPs
captured from videos in various provinces of China. The
background includes complex weather environments, a va-
riety of time periods and different shooting scenes such as
parking lots and freeways. In addition to the differences in
the image background, there are also great differences in
the way they are shot. The dataset contains video footage
taken by phone or camera, which leads to differences in
the resolution of each frame. The LP in each video sample
has different inclinations, degrees of ambiguity and light
environment conditions, which is more in line with the com-
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TABLE 1
A comparison of publicly available datasets for LPDR and our proposed dataset LSV-LP. Var denotes varations. From this table, the advantages of

LSV-LP in complex scenarios can be demonstrated.

EnglishLP CLPD AOLP ReID SSIG-ALPR SSIG-SegPlate UFPR-ALPR CCPD LSV-LP
Year 2003 2020 2012 2017 2018 2015 2018 2018 2020

Number of images 509 1200 2049 76k 6660 2000 4500 301k 400k
Var in distance % ! % % ! ! ! ! !

Var in tilt degrees % ! ! % % % % ! !

Var in blur % ! ! ! % % % ! !

Var in illumination % % ! % % % % ! !

Var in weather % % ! % % % % ! !

Var in time % % % % % % % ! !

Var in resolution % % % % % % % % !

Video based % % % ! % ! ! % !

Car Annotations % % % % % % % % !

Vertices Annotations % % % % % % % ! !

plex background of LPDR systems in practical applications.
Not only is it diverse, but it is also massive, with over 400k
video frames in total. Diversity and large volume make LSV-
LP a better dataset for LPDR systems because it contains
complex backgrounds and video features that can be used
in combination. It is also important to note that the tags in
the dataset, including the location box of the vehicle, the
four vertices of the LP and the LP number are all available.
Based on this, the dataset can also be applied to vehicle or
LP tracking, ReID and other related tasks. Due to the large
volume, we put some sample data on Google Drive1, which
makes it easier to view the data composition.

Based on the dataset we proposed, a multiple frames
license plate recognition network called MFLPR-Net is de-
signed in this paper, which utilizes the features between
adjacent frames in the video to assist detection. On the
proposed LSV-LP dataset, our algorithm achieves superior
results compared with other state-of-the-art (SOTA) algo-
rithms. Exploring the information between the frames in the
video can improve the detection results and accelerate the
performance of the LPDR system.

The contributions of this paper are summarized as fol-
lows:

• A large-scale and multi-source video based LPDR
dataset, namely LSV-LP, is proposed, which contains
more than 400k video frames with various complex
scenes and diverse data sources. LSV-LP is closer to
the actual scene and larger in volume, which brings
more robust benefits.

• A tool for labeling vehicle information in videos
is released, and multiple people can collaborate to
develop labeling. The labeling information includes
vehicle positioning frame, LP vertex and LP number,
which brings more information that can be mined for
LPDR systems.

• A novel framework based on video datasets is pro-
posed, which can use inter-frame features to im-
prove the recognition effect of each frame under
the premise of satisfying speed. Multi-scale feature

1. https://drive.google.com/file/d/1udqRddpJZMpTdHHQdwZ
Rll6vaYALUiql/view?usp=sharing. The complete dataset is available
at https://github.com/Forest-art/LSV-LP.

fusion is applied in the detection and recognition
stages. At the same time, this pipeline combines the
optical flow network to propagate features, which
reduces the pressure of feature extraction in each
frame.

• The experiments of various SOTA algorithms on
LSV-LP verify the necessity of this dataset and the
effectiveness of the proposed algorithm.

The rest of the paper consists of the following parts. In
Section 2, we summarize the existing LPDR datasets and
algorithms. Section 3 specifically describes the proposed
dataset. Our algorithm is introduced in Section 4 and the
experimental results are shown in Section 5. In the end, we
discuss the conclusion and outlook.

2 RELATED WORKS

In this section, two aspects are mainly concerned: the pub-
licly available LP datasets and the existing LPDR systems or
algorithms.

2.1 Datasets for LPDR
Table 1 compares the existing datasets in detail from mul-
tiple aspects, and we specifically describe the relevant
datasets and off-the-shelf algorithms in the following sec-
tions. Most of the current datasets are developed for LP
identification tasks in their own countries, collected respec-
tively from parking lots, expressway tollbooths and traffic
monitoring systems. The background of these images is
usually well-lit and the LPs are tilted at no more than
20◦ within the image. Moreover, since each country has its
own LP rules [14], [15], [16], if dividing them according to
national rules, there will be many kinds. In this section, we
divide the existing mainstream datasets into two categories
by images or multi-frame videos: image-based datasets and
video-based datasets.

2.1.1 Image-based Datasets
AOLP [12]: Gee-Sern Hsu et al. proposed a Taiwanese LP
dataset that was divided into three subsets: Access Control
(AC), Law Enforcement (RP) and Road Patrol (LE). AC
referred to the situation where a vehicle passed through a

https://drive.google.com/file/d/1udqRddpJZMpTdHHQdwZRll6vaYALUiql/view?usp=sharing
https://drive.google.com/file/d/1udqRddpJZMpTdHHQdwZRll6vaYALUiql/view?usp=sharing
https://github.com/Forest-art/LSV-LP
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fixed passage by slowing down or stopping completely. LE
referred to violations of traffic laws captured by roadside
cameras, while RP referred to images of vehicles taken from
arbitrary viewpoints and distances with cameras installed or
held on patrol vehicles. The three subsets of AC, LE, and RP
contained 681, 757, and 611 images, respectively, for a total
of 2049 images. This dataset was diversified in four aspects:
horizontal, vertical, shooting roll, and shooting distance,
which lacked more complex backgrounds such as dark
light, blurring, and terrible weather. In 2017, an additional
version of the dataset called AOLPE was proposed in [17],
which contained 4,200 images, but still lacked such harsh
conditions as blurriness.
CCPD [2]: Xu and Yang et al. constructed a huge LP dataset
for China Mainland, containing more than 290k images
under a variety of conditions. This dataset consisted of nine
subsets, Base, FN, DB, Rotate, Tilt, Weather, Challenge, Blur,
and NP, and the backgrounds covered various complicated
situations such as blur, occlusion, bad weather, distance,
and tilt. Although there are many types of LPs in CCPD,
with the development of new energy technology, green and
energy-saving vehicle LPs are gradually integrated into our
life. In 2020, the authors extended CCPD and proposed
a CCPD-green subset for new energy green LPs, which
contains more than 11k samples. Together with the pre-
viously proposed CCPD which contains more than 290k
images, this dataset totals 301k images. The data scale of
CCPD was large enough to achieve better LP recognition
effect in static scenes. However, some problems such as
motion blur required multi-frame information for fusion
recognition, which could not be well utilized in the dynamic
and complex background in the real world.
EnglishLP [18]: SrebrŠ proposed an European LP dataset
named EnglishLP, which contained 509 images. This dataset
was all taken from the rear of the car and didn’t have the
universality of the LP in complex scenes. At the same time,
it had no uniform markings of LP location box and LP
number. Therefore, it is rarely used.
SSIG-ALPR [10]: Gonçalves et al. annotated and published
a Brazilian LP dataset for the ALPR system, called SSIG-
ALPR. This dataset contains 6,660 images with 8,683 LPs
from 815 different on-track vehicles. However, 3,368 LPs
have no text annotations because their resolution is very
low and their characters cannot be determined intuitively.
CLPD [19]: Zhang et al. proposed a real LP dateset, which
contains 1200 images of all provinces in mainland China, in-
cluding different vehicle types. The images in CLPD dataset
are all based on the real environment, which covers a variety
of shooting conditions and area codes. The authors trained
their own model on CCPD dataset and validated it on this
dataset.

2.1.2 Video-based Datasets

ReID [20]: Špaňhel et al. developed a large video-based
dataset that contained 14,360 tracks and more than 170k
images. This dataset was able to extract more than 76k
LPs and annotations, all collected from surveillance cameras
on highway. The images in ReID lacked tilt angle samples,
occlusion samples, and could not be used in more complex
LPDR systems.
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Fig. 1. The display of the proposed LSV-LP dataset with annotations.
The first column of the video sequence is move vs. static, the second
column is move vs. move, and the last column is the type of static vs.
move.

SSIG-SegPlate [13]: In addition to the image-based dataset
SSIG-ALPR [10], Gonçalves et al. also proposed a public
dataset of Brazilian LPs, which contained less than 800 train-
ing examples. This dataset had 40 videos for training, 21 for
validation and 40 for testing, with each video no more than
30 frames. However, this dataset had several constraints,
including the use of a fixed camera, the absence of a double-
character motorcycle LPs, and a single background.
UFPR-ALPR [9]: In order to effectively remedy the defi-
ciency of SSIG-SegPlate, Laroca et al. proposed the UFPR-
ALPR dataset. Compared with [13], it had a larger scale,
specifically including 60 training videos, 30 validation
videos and 60 testing videos, while each video regularly
contained 30 frames. Moreover, it complemented many mo-
torcycle LP samples, which were even more challenging.
Still, each video in this dataset contained only one car and
the background is simple. Meanwhile, there were only 150
different LP samples, which highly depended on character
segmentation to effectively complete LP recognition task.

2.2 Methods for LPDR

A complete LPDR system aims to input an image, locate
the LP position from the image, and fully recognize the LP
characters within the positioning area. Therefore, an LPDR
system can be divided into at least two stages, LP detection
and LP recognition, even for the model of end-to-end train-
ing. In the following, we will introduce the mainstream LP
detection and LP recognition algorithm respectively.

2.2.1 LP Detection Algorithms

Existing LP detection algorithms can be coarsely divided
into traditional methods and deep learning based methods.

Most of the traditional LP detection methods use the
edge, color or texture features of the LP region. Yu et al.
[21] utilized wavelet transformation and EMD analysis to
locate LPs in images. Saha et al. [22] proposed a multi-stage
method that analyzed vertical edge gradients to select the
right area. In [23], a classifier based on cascade AdaBoost
and a voting module are designed to vote for the candidate
regions of LPs. Lee et al. [24] proposed a method using local
structure patterns to locate the LPs in images. Some other
researchers [25], [26] applied HSI color model and a color
checking module to detect the candidate regions containing
LPs.
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At present, the LP detection algorithms based on deep
learning take the LP as an object and use some mainstream
object detection models such as YOLO series [27], [28] and
SSD [29] to locate the regions of LPs. Hse et al. [17] combined
YOLO and YOLOv2 [30] to design a larger network that
computes possibilities for both LP and background. Since
the series of models based on YOLO is not suitable for
the detection of small objects, this algorithm needs to be
improved for images taken from a longer distance. In [3],
two YOLO based networks were constructed, and one was
the attention module focusing on the region where LPs were
located, while the other was used to locate the LPs with
rotation. Since this algorithm was also based on YOLO,
it had the same problem as [3]. Besides, it was proposed
for the presence of rotating LPs, while it was difficult to
demonstrate its performance for more complex deforma-
tions. [31] and [32] utilized synthetic datasets for training,
and migrated models to real data for text localization.
However, as it was a composite data, there were still many
limitations in practical application scenarios. The system
proposed in [33] is based on Mask-RCNN [34] architecture
and classifies the extracted regions into ”LP found” and ”LP
not found”. They merged several datasets as positive and
negative samples during the training process. Chen et al. [35]
utilized a full convolutional network as a pixel-level binary
classification method, which performed random target de-
tection by fusing multi-scale and hierarchical features. Wang
et al. [36] proposed VertexNet in the LP detection stage,
which was an effective integrated block to extract the spatial
characteristics of LPs. With vertex supervision information,
they proposed a vertex estimation branch in VertexNet, so
that the LP can be used as the input image for LP recognition
for correction.

2.2.2 LP Recognition Algorithms
Different from LP detection algorithms, LP recognition algo-
rithms could be classified into two categories, segmentation-
based methods and segmentation-free methods.

Segmentation-based approaches usually split the charac-
ters first and then recognize the segmented regions. As for
the segmentation stage, Zhuang et al. [37] introduced the
Connected Components Analysis (CCA). Then, Inception-
V3 and AlexNet were adopted as the character classification
and character counting models. Montazzolli and Jung [38]
proposed a CNN-based algorithm for character segmenta-
tion and recognition. After segmentation, the recognized
LP characters were cropped out and fed into the character
classification model. Laroca et al. [9] utilized two different
depth of networks for the character recognition.

For segmentation-free LP recognition, CNN was gen-
erally used for feature extraction while LSTM and other
networks were applied to output the complete LP numbers.
In order to relieve the pressure of the recognition network,
Dong et al. [39] added a spatial-temporal sampling network
for deformation correction of LP area before recognition.
Besides, Svoboda et al. [40] utilized a CNN based approach
for LP deblurring to effectively alleviate the problem of
motion blur. The authors in [41] proposed a simple yet
effective intensity- and gradient-based L0 regularization
prior for text image deblurring. The proposed image prior
was based on the unique properties of text images, and they

developed an efficient optimization algorithm to generate
reliable intermediate results for kernel estimation. The pro-
posed algorithm did not require any heuristic edge selection
methods that were crucial to state-of-the-art edge-based
deblurring methods. In addition to the methods described
above, there are some text recognition methods that can be
applied to this. Shi et al. [42] introduced the Connectionist
Temporal Classification (CTC) loss to the text recognition.
Besides, Wojna et al. [43] and Luo et al. [44] utilized the
attention mechanism to the model to enhance the result
of the recognition. In addition to these, Wang et al. [45]
also designed a decoupled encoder to process text recog-
nition to improve robustness. Zhang et al. [19] proposed
a powerful LP recognition framework. which consisted of
a customized CycleGAN model for generating LP images
and a carefully designed image-to-sequence network for LP
recognition. In [35], an extensive learning system of stacked
autoencoders with mapped feature nodes was proposed,
and two structures were explored to recognize letters and
numbers respectively. Wang et al. [36] introduced a hori-
zontal encoding technique for feature extraction from left to
right, and proposed a weight sharing classifier for character
recognition.

3 LSV-LP DATASET

This section describes the established LSV-LP dataset from
three aspects, namely: data collection and specification,
annotation tool and dataset characteristics. Data collection
sources, classification methods, and data specifications are
introduced in the data collection and specifications section.
The annotation tool specifies the design of the tool and the
process of information annotation. Finally, specific analysis
and feature summary are made in the data feature part.
Annotation tool and dataset samples have been released,
while the complete dataset and annotations will be open
soon after the paper is accepted.

3.1 Data Collection and Specification

Data Collection. Our data collection mainly comes from
driving recorders, street camera shooting and mobile phone
shooting, which are all taken and organized by ourselves.
Benefiting from different capturing methods, the sizes of the
videos in LSV-LP are various, and the frame number in each
video is consistent. The smallest resolution is 368×640 while
the largest is 1920 × 1080. The shooting locations include
highways, streets, parking lots and other scenes, covering 27
provinces of China mainland. In addition, the shooting time
and background are also diversified, including complex sit-
uations under various conditions from morning to evening,
from sunny to snowy. In the proposed dataset, each long
video is carefully divided into video clips, which ensures
that the total frames in each video clip is limited to 300
for the convenience of algorithm training and evaluation. It
is worth noting that not every frame in the video contains
LP, and these unlabeled frames will be regarded as negative
samples in the dataset.
Data Specification. There is a big difference between the
resolution of the video taken by the mobile phone and the
video taken by the driving recorder, but there is not much
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Fig. 2. Typical examples of the proposed LSV-LP dataset. The first line of the video sequence is move vs. static, the second line is static vs. move,
and the third line is move vs. move. The actual frame interval between two adjacent frames in the figure is 50.

difference in other aspects. Considering that different shoot-
ing methods only bring about differences in resolution, we
do not classify the videos in the dataset strictly according to
the shooting method but classify them according to whether
the photographer and the captured vehicles are stationary or
moving. It is divided into three categories, namely: static vs.
move, move vs. static, and move vs. move. Taking static vs. move
as an example, it shows that the photographer is still while
the vehicle is moving. Fig. 2 shows typical examples of the
three types in LSV-LP.

In this way, the design of the algorithm would be more
targeted for practical applications. Next, we specifically
discuss the data characteristics of each category. Relative to
the background, the vehicles in static vs. move are moving,
and it is easier to locate the vehicles by using the contextual
information in the video. Since this type of videos are
usually shot at a road intersection, each frame contains a
lot of vehicles, and there are complicated situations such
as LP occlusion and high LP density. In contrast, move vs.
static mostly comes from holding a mobile phone to take
pictures of parked cars on the roadside or parking lot. Due
to the instability of the shooting phone, there are large
differences between adjacent frames. The move vs. move is
generally collected in the driving recorder, which covers the
various characteristics of move vs. static and static vs. move.
The details can be seen in Table 2.

3.2 Data Annotation

Annotation Tool. In order to facilitate the labeling of LPs in
videos, we develop and release an efficient online labeling
tool2 based on HTML5 + Javascript + Python. This tool
supports marking the vehicle location, LP location and LP
number in the video. It is necessary to explain that the
vehicle is marked as a rectangular box, and the LP is marked
as an arbitrary quadrilateral, so that the tilt or distortion
of the LP can be used in the algorithm. In order to make
labeling more efficient, this tool can label non-continuous
frames and perform linear interpolation on the intermediate
frames. The marked video demo can be seen in the tool
website.
Vehicle Annotation. There are multiple vehicles in a video
and the LPs have multiple resolutions. A unified standard

2. https://github.com/Elin24/license labeler

under which the LP needs to be marked should be designed.
In LSV-LP, we label vehicles with a LP resolution of more
than 20 × 8 pixels in the video. Even if the vehicle can be
seen clearly, its LP resolution is too low and will not be
marked. Since the LP is already invisible at this resolution,
the following annotations have no practical value.
LP Annotation. Different from the rectangular frame la-
beling of vehicles, the LPs have rotation and distortion in
videos, and inaccurate labeling will have greater impact on
the recognition of the LPs. In order to enhance the accuracy
of labeling, we label the four vertices of LPs. As mentioned
above, when the resolution of the LP is lower than 20 × 8,
the label is abandoned.

However, there is a situation where the resolution is
higher than 20× 8 and the LPs cannot be seen clearly in all
frames in the video. For this case, we use # to replace these
unclear LP characters. In addition, when the characters of
the LP are individually occluded and affect the recognition,
the labels of the vehicle and the LP are discarded.

3.3 Data Characteristic
LSV-LP dataset consists of 1, 402 videos totally, with
401, 347 frames and 364, 607 annotated LP instances. As
mentioned above, compared with other existing LP datasets,
it is the largest from the perspective of three different levels,
i.e. videos, images, and instances. It is worth noting that
some Chinese LP datasets are introduced publicly or pri-
vately, but most of them are collected from one province or
region. For example, CCPD [2] only contains LPs from An-
hui Province, which means that the first Chinese character
of all LPs is ”WAN”. However, compared to other English
letters and numbers, Chinese character recognition is a more
challenging task, and its accuracy limits the end-to-end per-
formance of LPDR systems, which deserves more research

TABLE 2
The number of videos, frames, LPs and the average resolution of the

subsets in the LSV-LP.

Subset Number
of videos

Number
of frames

Number
of LPs

Avg. Resolution
(W×H)

move vs. move 504 145,706 157,226 1896×1066
move vs. static 600 167,012 69,353 722×1220
static vs. move 298 88,629 13,8028 1870×1052

Total 1402 401,347 364,607 1402×1127

https://github.com/Elin24/license_labeler
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Fig. 3. Differences in the position distribution of LP in the three subsets of images. (a)-(d) for the move vs. move subset, (e)-(h) for the move vs.
static subset, and (i)-(l) for the static vs. move subset. (a), (e), and (i) represent the statistical maps of the LP distribution. (b), (f), and (j) mean
the probability density maps obtained by 2-dimensional Parzen-window estimation with Gaussian kernel. (c), (g), and (k) are the density maps on
X-aixs. (d), (h), and (l) are the density maps on Y-aixs.

attention. To address this issue in other Chinese LP datasets,
the proposed LSV-LP dataset includes LPs collected from
multiple provinces, making Chinese characters diverse. As
illustrated in Fig. 4, it covers almost all the Chinese LP char-
acters for different provinces, which enriches the character
diversity especially for real-world applications. In addition
to data volume and character diversity, LSV-LP has five
more advantages compared to previous LP datasets:

1) Distributional Diversity. LSV-LP dataset has the
complicated spatial distribution of LPs. Most previ-
ous datasets only contain simple data distributions
since LPs always appear at specific positions in
the images, such as the center caused by manual
capture. However, in some complex scenarios like
ITS, LPs may show at any random position without
prior knowledge. Considering practical application
requirements, the proposed LSV-LP dataset includes
videos with extensive and complex data distribution.
As shown in Fig. 3, there are some distributional
differences in the three subsets. The first column is
a scatter plot of the LP location distribution. It can
be seen that the vehicle trajectories are chaotic due
to unpredictable traffic conditions in the real world,
which guarantees distributional diversity against re-
stricted arrangement. The second column is the LP
distribution density map at each location. It can be
seen that although the overall spatial distribution

of LP is chaotic, its distribution density also has a
certain concentration some locations. The third and
fourth columns are the LP position distribution from
the x-axis and y-axis, which mainly subdivide the
density map.

2) Negative Samples. Different from existing LP
datasets which only involve positive samples, LSV-
LP proposes considerable negative samples without
LPs. It has been proven that unbalanced positive and
negative training samples can affect model perfor-
mance. For LP detection, there are many interfering
objects similar to LPs in terms of texture features in
real-world driving scenarios. These negative samples
contain traffic signs, street view texts, and other
scenes, which significantly reduce detection preci-
sion. Most previous algorithms solve this problem
by data augmentation. For example, in the previous
object detection datasets, the regions without objects
can be cropped and taken as the negative samples.
Nevertheless, this strategy is resource-consuming
and limited by the background similarity. LSV-LP
dataset introduces redundant temporal frames that
present no LP features as negative samples, which
breaks through some limitations. In this way, LSV-LP
can be exploited directly for training and evaluation
due to balanced sample distribution and sufficient
data. Moreover, these samples effectively improve
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the generalization of LPDR models for real-world
applications.

3) Temporal Complexity. Many previous datasets focus
on simple and specific scenarios. For instance, in
the widely used AOLP dataset [12], there are only
vehicle bodies and LPs in each image while CCPD [2]
introduces LP images in relatively complex scenarios
involving uneven illuminations, rotation, and blur.
However, their complex patterns are still limited.
More importantly, as image-based LP datasets, they
lack temporal complexity. For spatial complexity at
the image level, there are complicated background
objects, extreme illuminations, and perspective dis-
tortions in the proposed LSV-LP dataset. Meanwhile,
thanks to the collected videos in real-world driv-
ing or traffic scenarios, it also involves temporal
complexity. The vehicles and LPs may move with
fast speed and significantly changeable trajectory,
leading to complex temporal distribution and motion
blur. As depicted in Table 1, all crucial types of
variance are included in LSV-LP dataset.

4) Various Resolutions. Different from most existing
datasets that usually contain images of specific res-
olutions like 1920 × 1080, LSV-LP dataset involves
various video/image resolutions. It collects both
high- and low-resolution scenes, which is entailed
for LPDR in extremely complex scenarios. As illus-
trated in Table 2, the average resolution of LSV-LP
is 1402 × 1127. Three different subsets have diverse
resolutions while the resolution varies in each sub-
set. This characteristic makes the proposed dataset
more suitable for real-world LPDR applications in
complex and unconstrained scenarios since it retains
the diversity of video capture devices, which further
implies new challenges and requirements for future
LPDR algorithms.

Proportional distribution of license plates by province
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Fig. 4. The display of the proportional distribution curve of LP areas
to the examined frames. The abscissa represents the proportion, and
the ordinate represents the total number of LPs under the current
proportion.

5) Large Appearance Variation. The LP appearance
changes significantly due to various shooting angles
and camera-LP distances. As shown in Fig. 5, the
pixel spans of the intances vary from 0 to 17.3%,
which means the large variation in the ratio of LP
regions to the whole images. The smallest LP only
occupies 18 pixels while the largest one covers more
than 357934 pixels. Since the data is concentrated
in the previous section, for better visulization, we
separately display the number of LPs with an area
of 0-250k pixels, as shown in Fig. 6. It shows the
distribution of the number of pixels occupied by
LPs. Since the proportion of LPs in Fig. 5 is mainly
concentrated in the part before 0.025, we only zoom
in and observe the distribution of the number of
pixels in the first 250k. As a whole, it can be seen
that the LPs with the most pixels are concentrated
around 10k, which is directly related to the way the
data is captured. Static vs. move and move vs. move
LPs are generally smaller, while LPs with larger pixel
counts are mainly concentrated in move vs. static.
In addition to the difference in pixel distribution,
we also count the difference in the horizontal and
vertical inclination of LPs. Table 3 compares the
horizontal and vertical tilt degrees of AOLP, CCPD,
CLPD, and LSV-LP. Our data achieves 70 degrees
of horizontal and vertical inclination, outperforming
the other three datasets in both dimensions. It can be
seen that the LP situation in LSV-LP is more com-
plicated and challenging. This variation may bring
more challenges and inspirations to LP detection and
recognition tasks. For instance, the detection perfor-
mance of small-size LPs can be specifically studied
on LSV-LP dataset.

In summary, LSV-LP is one of the largest and most
challenging LP datasets at present.

4 METHODS

In this section, we design a network called MFLPR-Net
(Multiple Frames License Plate Recognition Network) that
explores the features of the neighboring frames for video
based scenes.

Fig. 5. The display of the proportional distribution curve of LP areas
to the examined frames. The abscissa represents the proportion, and
the ordinate represents the total number of LPs under the current
proportion.
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TABLE 3
Comparison results of tilt angles of AOLP, CCPD, CLPD and LSV-LP.

AOLP CCPD CLPD LSV-LP
Horizontal Tilt Degree 0◦∼70◦ 0◦∼50◦ 0◦∼45◦ 0◦∼70◦

Vertical Tilt Degree 0◦∼60◦ 0◦∼45◦ 0◦∼60◦ 0◦∼70◦

4.1 Model Preview

Our proposed dataset LSV-LP has more inter-frame infor-
mation available than other LP datasets. At present, most
LPDR systems detect and recognize LPs in images instead
of videos, and in-video detection algorithms such as FGFA
detect large objects, which cannot be well applied to our
dataset. The optical flow module in FGFA [46] will bring
a lot of time consumption to the LPDR system. Besides,
the optical flow module in DFF [47] increases the time
consumption of the entire model but reduces the accuracy.
Based on this, it is necessary to propose a novel LPDR
system for video scenes.

According to the investigation of the existing LPDR
system in related work, most of the algorithms add super-
resolution, deformation correction and vehicle detection
modules to the basic module of LPDR to improve the
performance. This may enhance the system in some aspects,
but it will greatly increase the complexity of the system,
resulting in low real-time performance. We hope that our
model is as concise as possible, and can use the temporal
information under the premise of ensuring accuracy without
increasing time cost.

Compared with the traditional object, LP has a very
small area in each frame. This is a big challenge for detection
and recognition, and feature fusion between frames will
have a great impact on detection. Considering these issues
comprehensively, we design a multi-scale feature fusion
structure in the detection stage, introduce affine transfor-
mation in the recognition stage, and concate the features
of adjacent frames with the examined frame features in
the feature propagation stage instead of fusing them.The
optical flow algorithm is used to combine the features of
adjacent frames. Of course, there are many other video
feature propagation methods such as LSTM and tracking
algorithms. The optical flow algorithm has two advantages:

Fig. 6. The display of the distribution curve of LP areas. The abscissa
represents the area, and the ordinate represents the total number of
LPs. The abscissa is the result of dividing the number of pixels by 1000.

1) It does not need to rely on the previous multi-frame
information like LSTM and other networks; 2) It does not
need to separate detection and tracking like tracking-based
algorithms.

4.2 Model Design

The original intention of our model design is to make the
recognition effect as good as possible when the detection
and recognition module is lightweight and the reference
frame information can be used well. In the detection and
recognition stage, a multi-scale U-shaped network is used
to adapt to changes in image resolution and LP size. At the
same time, the optical flow network can quickly calculate
the feature difference between frames and propagate it to
the examined frame. Based on these, we design MFLPR-
Net which can be simply divided into three modules in
Fig. 7. For the first part, it is a module that combines the
U-shaped network of different scale feature maps for LP
detection, named as ’Detection Module’. It takes advantage
of networks such as VGG16 or Resnet as the backbone to
extract four features of different sizes at different stages for
subsequent upsampling. For the second part, it uses video
context information, exploiting the optical flow module to
propagate features of adjacent frames to enhance the detec-
tion results of the examined frame. We name this module
’Optical Flow Module’. The final module is the ’Recognition
Module’, which uses affine transformation operation to crop
and correct the area where the LP is located and uses the
LSTM and decoupled text decoder to directly identify it.

Detection Module In our model, we utilize the VGG16
network as backbone to extract features from the input
image. After pooling-2 to pooling-5, four feature maps with
different sizes of 1/32, 1/16, 1/8 and 1/4 of the input image
are extracted for subsequent up-sampling operation and
feature fusion. The detection and recognition of each image
are based on the feature extracted by the feature extraction
module.

Over the backbone we get four features of different
sizes, each of which is then amplified by the upsampling
operation and the concatenation operation to create new
feature maps. The manipulation of these features is shown
in Fig. 8.

In the feature concatenation stage, we gradually merge
them by:

gi =

{
U (hi)
C3 (hi)

if i ≤ 3
if i = 4,

(1)

hi =

{
fi

C3 (C1 ([gi−1; fi]))
if i = 1
otherwise,

(2)

where fi is the feature extracted by the backbone, hi is
the merged feature map and gi is the intermediate feature.
In addition to these, U (hi) means bilinear upsampling of
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Fig. 7. The overall structure of the proposed MFLPR-Net. It consists of Detection Module, Optical Flow Module and Recognition Module. The input
of the entire network is the continuous multi-frame images. These frames generate continuous feature fi through backbone and four convolution
layers. The optical flow module is responsible for assigning weights to these features and aggregating them. fi is updated as new features and sent
to the latter part of the detection module and the LP position is output. The recognition module corrects the rotating region of the LP according to
the detected coordinates, then extracts the features, and finally outputs the LP characters in frame i.
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Fig. 8. The overall structure of the detection module without optical flow
module is a U-shaped network structure. First, the size is reduced by
pooling and then the size is expanded by upsampling.

hi, C1 and C3 represent the convolution of 1 × 1 and
3 × 3 respectively, and the operator [gi−1; fi] represents
the concatenation along gi−1 and fi. In each concatenation
stage, the feature map extracted from backbone is first fed
into an upsampling layer to double its size and then con-
catenated with the examined frame feature map. The new
features obtained after the concatenation go through two
convolutional layers for the next stage of the concatenation.
Following the final concatenation stage, a convolution layer
of 3× 3 produces the feature map for the output layer.

The last output convolution layer contains three conv1×1

operations to output 1 channel of score map Fs and the
5 channels of geometry map Fg . The 5 channels of Fg are
composed of four positioning channels and one rotation
angle channel. Based on this, for each pixel which has
positive score, we calculate its distances to 4 boundaries of
the quadrangle. The loss function for classification can be

expressed as follows:

Lcls =
1

|Fs|
∑
x∈Fs

CE
(
px,

⌣
px

)
(3)

=
1

|Fs|
∑
x∈Fs

(
−⌣
px log px −

(
1− ⌣

px

)
log (1− px)

)
,

(4)

where CE
(
px,

⌣
px

)
represents the cross entropy loss be-

tween the prediction of the score map and the binary label.
For the loss of regression stage, we utilize the IoU loss,
which is formulated as follows:

Lreg =
1

|Fg|
∑
x∈Fg

IoU
(
px,

⌣
px

)
(5)

=
1

|Fg|
∑
x∈Fg

− ln
Inter sec tion

(
px,

⌣
px

)
Union

(
px,

⌣
px

) , (6)

where IoU
(
px,

⌣
px

)
denotes the loss of the intersection

over union between the predicted boxes and the ground-
truth. Finally, the loss of the rotation angle is formulated as
follows:

Lθ

(
⌣

θ , θ∗
)
= 1− cos

(
⌣

θ − θ∗
)
. (7)

where
⌣

θ is the prediction to the rotation angle and θ∗ de-
notes the ground truth. Consequently, the whole detection
loss can be written as:

L detect = Lcls + λregLreg + λθLθ. (8)

The parameter λreg is set to 1 and λθ is set to 10 in
our experiments to balance the classification loss and the
regression loss. The entire detection module is based on the
EAST [48] model, which is efficient enough to handle the LP
detection task in a single image.
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Optical Flow Module The detection module is a hori-
zontal processing process, while the optical flow module is
a vertical process interspersed with it. The feature ft in the
detection module, that is, the feature with the size of 1/4 of
the original image, is processed in the optical flow module.

We define the examined frame of the LP to be detected
as Fcur , and its adjacent frames as Frefi. These frames
will be extracted as features fcur , frefi when they pass
through the size reduction stage of Detection Module. The
features of adjacent frames frefi are added through a weight
assignment module, which can be expressed as follows:

wref = Sigmoid(C1(C1(frefi + fref−i))) (i ≤ K),
(9)

fref = wref × frefi + (1− wref )× fref−i, (10)

where C1 denotes the 1 × 1 convolutional layer and wref

represents the weight of the features frefi, fref−i that are
symmetric with respect to the examined frame fcur . The
features of adjacent frames generate new feature map fref
through weight allocation, which integrates the information
of adjacent frames and plays an auxiliary role in the exam-
ined frame. In addition, K represents the range of adjacent
frames selected, and in our experiment, K is set to 1.

The feature extraction is a cascading process, that is, the
previous features will have a chain effect on the subsequent
features. Based on this, we do not aggregate fref directly
to the feature fcur of the current stage, but concatenate
it with the feature map after the upsampling. After the
connected features are dimensionalized by 1×1 convolution,
32-channel feature maps are obtained for subsequent recog-
nition tasks.

Recognition Module After predicting the bounding
boxes of the LPs, we crop the area of the boxes and utilize
the recognition module to output the characters of them. It
is expected that the convolution parameters of the detection
stage and recognition stage will not be shared during fea-
ture extraction, which can improve the flexibility of model
learning. For the cropping stage, the affine transformation
is utilized to cut out the position of the plate and correct
the shape of the plate. Compared to RoIPooling [49] and
RoIAlign [34], the affine transformation operation utilizes
bilinear interpolation to compute the cropping of the area,
which is a more general operation for extracting regions of
text recognition. As for this process, we compute the affine
parameters via the predicted bounding boxes first. Then,
the affine transformation is applied to crop the detected
area and correct it to a regular shape. The first step can be
formulated as:  xs

i

ysi
1

 = M−1

 xt
i

yti
1

 , (11)

M =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 , (12)

where M is the affine transformation matrix. xs
i and ysi

are the coordinates of the input area, while xt
i and yti are

the coordinates of the transformed region. According to

the four point coordinates of the input area and the four
point coordinates of the output area, the M matrix can be
calculated, and the entire clipped area can be multiplied by
the M matrix to obtain the corrected LP area.

The insertion of deformation correction module can ef-
fectively improve the recognition of plate with irregular
shape, but the accurate recognition of plate still needs to be
improved. Attention in text recognition is generally used for
feature alignment and text recognition. It mainly uses two
parts of information: visual encoding features output by en-
coder and historical decoding information. The traditional
attention mechanism often encounters serious alignment
problems, and the coupling relationship in the decoding
process inevitably leads to the accumulation and propaga-
tion of errors. Inspired by [45], we utilize the decoupled text
decoder to recognize the charactes of LPs.

The whole recognition module consists of three parts:
feature encoder, feature alignment and decouled text de-
coder. We define E as the feature encoder, which has the
following form:

F = E (x) , F ∈ RC×H/rh×W/rw , (13)

where H ,W denote the input image x of size H × W ,
rh and rw denote the height and width downsampling
ratio respectively. In the experiment, we utilize a series of
res-blocks to carry out feature downsampling, while the
feature alignment module uses several deconvolution layers
to carry out upsampling and output multiple attention maps
A = {α1, α2, · · · , αmaxT }. maxT represents the maximum
number of channels, and the size of each feature map is
H/rh × W/rw. From Fig. 9, it can be seen that the whole
feature coding, feature alignment module and feature ex-
traction stage of Detection Module are similar, and they are
all U-shaped. The structure of the decouled text decoder
is shown in Figure 6. The method of context vector ct
calculation is as follows:

ct =

W/rw∑
x=1

H/rh∑
y=1

αt,x,yFx,y. (14)

These vectors get the output yt of the classifier through the
GRU. The formula is as follows:{

yt = wht + b
ht = GRU((et−1, ct), ht−1)

, (15)

where ht is the hidden state of the GRU in time step t, and
et is an embedding vector of the last decoding result yt.

The loss function of Recognition Module is as follows:

Lrecog = −
T∑

t=1

logP (gt|I, φ), (16)

where φ and gt represent all trainable parameters and
ground-truths at step t. The whole system can be trained
jointly, and the full loss can be formulated as:

L = Ldetect + λrecogLrecog, (17)

where the parameter λrecog is set to 1 in the method.
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Fig. 9. The display of the overall structure of the Recognition Module in
MFLPR-Net. The feature extraction module is used to obtain the feature
map, and the feature alignment module is used to generate the attention
diagram and redistribute the weight and then produce the output of the
network.

5 EVALUATIONS

In this section, we conduct the experiments on both LP de-
tection and recognition performance to compare the method
with other state-of-the-art approaches. And the analysis of
the experimental results is also presented in this section.

5.1 Mainstream Methods for LP Detection and Recog-
nition Comparison

5.1.1 LP Detection Methods
EfficientDet [50]: The authors propose a simple and efficient
weighted bidirectional feature pyramid network BiFPN,
which introduces learnable weights for learning the im-
portance of different input features while repeatedly using
bottom-up, top-up, and top-down multi-scale feature fu-
sion. At the same time, for the problem of object detection,
a hybrid scaling method is proposed, which can uniformly
scale the resolution, depth and width of the network back-
bone, feature network, and bounding box/category pre-
diction network. They found that the recently proposed
EfficientNet is more efficient than the previously commonly
used backbone structures such as ResNets, ResNetXt and
AmoebaNet. Therefore, the authors combine the proposed
BiFPN and hybrid scaling with the EfficientNet structure
and name it EfficientDet.
YOLOv3 [51]: YOLOv3 utilizes multi-scale features for ob-
ject detection, and it exploits the logistic to replace softmax
in classification. It improves the prediction accuracy while
maintaining the speed advantage, and especially strength-
ens the detection ability of small objects. Although there are
already YOLOv4 and v5, they are not released in published
papers, so we do not take these as comparative experiments.
Faster-RCNN [49]: In this work, a Region Proposal Network
(RPN) is proposed which generates high-quality region pro-
posals for detection. In general, it can detect small objects
but relatively sacrifices running time.
SSD512 [29]: SSD is a single-stage detector, which is more
accurate and faster than the previous algorithm YOLO, and
does not use RPN and Pooling operations. It utilizes a small
convolution filter to be applied in different feature map
layers, achieving better detection effect in a smaller input
image compared with Faster-RCNN.

DFF [47]: DFF (Deep Feature Flow Network) utilizes the
optical flow network to propagate the features between
video frames, which has the advantage of running time in
the task of video object detection. In addition, the authors
also distinguish between key frames and non-key frames.
Feature extraction and detection are performed on key
frames, while non-key frames propagate key frame features
to non-key frames through optical flow for detection.
FGFA [46]: Compared with DFF, FGFA (Flow Guided Fea-
ture Aggregation Network) does not distinguish between
key frames and non-key frames. It aggregates the features of
adjacent frames into the examined frame through an optical
flow network for detection. The features of each frame are
integrated with the information of nearby frames, which has
high detection accuracy in video object detection.
LPDNet [52]: End-to-end trainable network for degraded LP
detection. LPDNet is proposed to estimate the local region
around the LP via vehicle-plate relation mining, reducing
the search area for LPs. Besides, compared with other ob-
ject detection models, LPDNet localizes the quadrilateral
bounding box of the oblique LP by regressing the four
corners of the LP.

5.1.2 LP Recognition Methods

CRNN [42]: It is believed that text recognition is a method
of sequence prediction, so CRNN utilizes Recurrent Neural
Network (RNN) for sequence prediction. After extracting
the features of the image through CNN, the sequence is
predicted by RNN, and finally the final result is obtained
through a Connectionist Temporal Classification (CTC)
translation layer.
Attention OCR [43]: A text recognition method based on
the attention mechanism is proposed in it. This method
does not require a text box and can be trained end-to-end,
which is simpler and more versatile, and greatly surpasses
the previous optimal method.
MORAN [44]: The MORAN (Multi-Object Rectified Atten-
tion Network) is composed of a multi-object rectification
module which is designed for rectifying images that contain
irregular text and an attention-based sequence recognition
module. Due to the lack of correction link annotations in
most character recognition datasets, the MORAN is trained
in a weak supervision way, which requires only images and
text labels.
DAN [45]: DAN (Decoupled Attention Network) is an end-
to-end text recognizer, which is composed of three compo-
nents: 1) a feature encoder that extracts features; 2) a con-
volutional alignment module that performs the alignment
operation; 3) a decoupled text decoder that makes final pre-
diction. Compared with other networks, DAN decouples the
alignment operation from using historical decoding results
and achieves SOTA on multiple text recognition tasks in
2020.
LPRNet [53]: LPRNet, consisting of the lightweight Con-
volutional Neural Network, is a real-time LP recognition
system that does not combine RNNs. Meanwhile, LPRNet is
a robust network to handle complex tasks including Chinese
LPs.
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5.2 Implementation Details

In the experiments, we evaluate the proposed model with
other state-of-the-art methods on both LP detection per-
formance and LP recognition performance. All training
data comes from our proposed LSV-LP dataset, the largest
publicly available video based LP dataset. We conduct all
experiments on a computer with an Intel Core 3.4GHz CPU,
12GB of RAM and four NVIDIA 1080Ti GPU. Except for the
hardware configuration, the batch size of our model is 16,
and the maximum epoch is 20.

In the training stage, all three subsets of the dataset will
be fed into the network training model. For the detection
part, we follow the experimental settings of the official
papers. In the recognition part, the LP area is cut out for
training and recognition verification. Since some LPs in
the dataset are fuzzy, ’#’ is used instead. This type of LP
participates in the training and testing of the detection stage,
but does not participate in the recognition stage. Here, we
do not conduct experiments on joint training of recognition
and detection. This means that our recognition result is
independent of the detection module, and the prediction
result of the detection model is not used.

5.3 Results and Analysis on the Validation Set

Detection Accuracy Metric. In the test stage of the exper-
iment, Intersection-over-Union (IoU) is used as the eval-
uation criterion for positive and negative samples of the
predicted results according to the test standard of object
detection. The predicted result is considered to be true
positive (TP) sample only if its IoU with the ground-truth
bounding box is more than 0.5. The rest of the prediction
results are false positive (FP) samples. In order to better
compare the results of various object detection methods on
LSV-LP, we evaluate Precion, Recall, Average Precion (AP)
and F-score. The formulas of various evaluation criteria are
shown as follows:

Precision =
NTP

Npredict
, (18)

Recall =
NTP

Ngt
, (19)

Fscore =

(
1 + α2

)
PR

α2 (P +R)
, (20)

where NTP denotes the number of the true positive sam-
ples. Npredict denotes the number of the predict results and
Ngt represents the number of the ground-truth bounding
boxes. For F-score, α represents the parameter that can
reconcile average precision and recall. In the experiments,
α is set to 1, namely F1-score. The runtime indicates the effi-
ciency to process a single image (not include the processing
of NMS). Due to the large data set and different image sizes,
we first detect each frame to get the total running time after
processing, and then calculate the average running time of
each frame based on the total number of frames. All running
times in the experimental results are in milliseconds.

Detection Results and Analysis. We test 7 algorithms,
and the results of the detection algorithm are shown in Table

4. YOLOv3 achieves the best performance of 12ms by virtue
of its model’s fast running mechanism. At the same time,
the F-score criterion combining recall and precision achieves
a relatively good effect of 67.48%. Faster-RCNN is more
sensitive to small targets (LPs, in this case) than the YOLO
algorithm, with an F-score of 69.14%. The runtime is longer
and requires 58ms. Theoretically, DFF and FGFA combine
the optical flow module to fuse the characteristics of adja-
cent frames, and they accelerate the model and improve the
accuracy of video object detection respectively. However,
due to the small proportion of LP in the input image,
the direct application of the two algorithms achieves poor
results. The official version of FGFA by default combines
the features of 20 frames adjacent to the examined frame,
which causes a lot of noise to the examined frame, and
the runtime also increases dramatically, requiring 178ms to
achieve only 48.35% of the F-score. The LPDNET proposed
in 2020 achieves good results in F-score, with the runtime
of 42ms and F-score of 72.18%. Since the official code does
not provide training modules, we utilize the provided pre-
training model to conduct tests on the proposed dataset
while do not fine-tune them. It is clear from Table 4 that
our method, MFLPR, achieves the best results on multiple
subsets. However, it does not perform well in the move vs.
static subset. The possible reason is that the frames before
and after the examined frame we use have a large offset in
the background of the move vs. static scene, and it is difficult
to play a supplementary role in the examined frame.

Recognition Accuracy Metric. Unlike AOLP, UFPR-
ALPR, and SSIG-Segplate, our dataset contains Chinese
provincial characters in addition to English letters and
numbers. It has the following 3 different characteristics: 1)
Compared with letters and numbers, Chinese fonts are more
square, and the space inside the font is smaller, which makes
the distinction between Chinese fonts very difficult when
they are seen from a far distance; 2) Chinese characters
only exist at the first position of the LP, which is more
distinctive from the random distribution of numbers and
letters; 3) Since these Chinese LP datasets contain Chinese
characters, other datasets that do not contain Chinese char-
acters are unable to perform model transfer testing and
must be retrained. Therefore, we select two test indica-
tors, Accuracy 6C and Accuracy 7C, which respectively
represent the probability of correct recognition of all LPs
without considering Chinese characters and the probability
of correct recognition of all characters. Because some LPs in
the dataset could not show the specific characters, they are
replaced by #. In the recognition stage, we ignore such LPs
and do not include them in the training and testing. The
runtime of the recognition phase is calculated in the same
way as the detection phase.

Recognition Results and Analysis. In the recognition
stage, we test five recognition algorithms, including CRNN
[42], AttentionOCR [43], MORAN [44], DAN [45], and LPR-
NET [53], with the final results shown in Table 5. As can be
seen from the results, DAN achieves the best results in each
subset, not including the running time. The performance
of the two subsets static vs. move and move vs. move is
relatively similar, mainly because their shooting background
is driving on the road. However, the LPs in the move vs.
static subset are largely deformed and distorted, making it
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TABLE 4
The detection results of various indicators on the LSV-LP dataset.

Method
LSV-LP

static vs. move move vs. static move vs. move average
precision recall F-score precision recall F-score precision recall F-score precision recall F-score Runtime

EfficientDet [50] 51.98 88.65 65.53 73.14 82.38 77.49 58.86 80.92 68.15 59.89 83.59 69.78 62
YOLOv3 [51] 50.58 86.45 63.82 72.66 95.78 89.49 51.71 85.52 64.45 54.79 87.84 67.48 12
SSD512 [29] 50.77 77.15 61.24 32.36 97.11 48.54 52.18 63.03 57.09 44.98 80.12 57.62 21

Faster-RCNN [49] 37.81 82.06 51.77 70.15 98.07 81.79 55.66 76.20 64.33 57.60 86.45 69.14 58
DFF [47] 30.56 58.96 40.25 46.27 84.98 59.91 73.51 67.95 70.62 48.93 68.69 57.15 46

FGFA [46] 19.70 29.78 23.71 35.17 49.23 41.03 74.73 67.69 71.00 44.60 52.79 48.35 178
LPDNet [52] 53.78 83.75 65.50 78.51 63.32 70.10 67.63 84.56 75.15 68.99 75.69 72.18 42
MFLPR-Net 51.91 94.77 67.07 74.33 89.42 81.18 70.44 86.31 77.57 67.89 89.47 76.7 31

TABLE 5
The recognition results of various indicators on the LSV-LP dataset.

Method
LSV-LP

static vs. move move vs. static move vs. move average
Accuracy 6c Accuracy 7c Accuracy 6c Accuracy 7c Accuracy 6c Accuracy 7c Accuracy 6c Accuracy 7c Runtime

AttentionOCR [43] 37.3 36.3 19.8 18.5 58.3 56 44.39 42.68 9.3
CRNN [42] 72.94 71.37 51.20 45.37 65.14 62.55 64.54 61.57 0.6

MORAN [44] 18.22 17.87 8.91 8.91 48.94 48.64 40.3 39.98 4.8
LPRNet [53] 74.12 71.85 48.79 44.51 62.1 59.38 62.89 60.03 0.26

DAN [45] 78.17 76.34 57.47 54.39 73.18 71.62 71.35 69.40 1.7
MFLPR-Net 80.29 78.57 71.21 69.23 75.5 74.31 75.99 74.49 1.8

difficult for attention-based methods such as AttentionOCR
and MORAN to achieve satisfactory results. The possible
reason is that the clipped area is a rectangular box, while the
LP is actually a quadrilateral. In the case of deformation, the
LP has a large tilt, and it is difficult to learn the parameters
of attention to perform well. LPRNet is an open-source LP
recognition method. Its network structure is very simple
without combining RNN, so it has sufficient advantages in
running time. It achieves an average of 0.26ms to process
recognition, that is, the FPS exceeds 3000, which can fully
meet the real-time requirements in the LPDR system. As
an algorithm proposed in 2020, DAN combines bidirec-
tional encoders and alignment operations to achieve the
best results. Due to the affine transformation process, the
overall recognition rate of our proposed method has been
improved, and the recognition stage can also meet the real-
time requirements.

5.4 Performance Impact Analysis

Compared with other datasets, LSV-LP has a larger scale,
more negative samples and more complex backgrounds. Ac-
cording to our experimental results and the characteristics
of the dataset, we continue to do analytical experiments that
affect the experimental results. We divide the influencing
factors into two categories: the impact of data volume on
performance, and the influence of the proposed framework.
The experimental results verify that it is necessary to pro-
pose a large-scale LP dataset in video scenes.

Impact of Data Volume on Performance. Generally
speaking, large-scale datasets can improve the robustness
of the model to adapt to more complex scenarios. This is
exactly the motivation for us to present this dataset. In this
section, we deeply study the influence of data volume on
model performance. We split the training set into 10 equal
parts, and add them to the training set with increasing
scale. We still choose precision, recall and F1-score as the

criterion for comparison of results. Since the training set
does not affect the model test time, we discard the runtime
comparison.

The results for detection stage on different volumes of
the training data is shown in Fig. 10. We test the results on
three subsets and all data, including precision, recall and
F-socre. It can be clearly seen that large-scale training data
is positive for the model’s results. After the data size is 0.6
times larger, the improvement of the data volume to the
result is no longer obvious. However, the effect becomes
worse at 0.5. The reason is that a large number of noise
samples are included in this place. The experiments are also
tested in the recognition stage, and the results have not
changed much from 72.32% to 74.32% which can be seen
as shown in Fig. 11. It is worth noting in the figure that the
curve of move2static 7c has a significant decrease, which
is mainly because the subset of move vs. static contains a
lot of noisy data. The learning curve of move2static 7c and
move2static 6c in this subset is quite different, which can
also reflect Chinese characters may be quite different from
letters and numbers in the recognition training. The volume
of data has little influence on recognition, but it has a great
effect on detection. In general, a large dataset is necessary.

Influence of The Proposed Framework. In addition
to the impact of data on the results, the design of the
model is no exception. In this section, we conduct ablation
experiments on the model. In the detection stage, we set up
a comparative experiment without inter-frame feature prop-
agation and with inter-frame feature propagation. In the
recognition stage, we carry out a comparative experiment
with no correction module and with correction module.

The results of the ablation study are shown in TABLE
6 and TABLE 7. Fusion of adjacent frame information has
a positive effect, and its overall F-score is higher than the
result without a optical flow module. The same is true for
the affine transformation module that the effect of having



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

TABLE 6
The results of the optical flow module on the detection stage.

Optical Flow Module static vs. move move vs. static move vs. move average
precision/recall/F-score precision/recall/F-score precision/recall/F-score precision/recall/F-score

53.06/89.73/66.69 75.76/90.03/82.27 63.68/80.18/70.98 66.25/86.33/74.97
! 51.91/94.77/67.07 74.33/89.42/81.18 70.44/86.31/77.57 67.89/89.47/76.7

TABLE 7
The results of the affine transformation on the recognition stage.

Affine Transformation static vs. move move vs. static move vs. move average
Accuracy 6c/Accuracy 7c Accuracy 6c/Accuracy 7c Accuracy 6c/Accuracy 7c Accuracy 6c/Accuracy 7c

76.34/78.17 54.39/57.47 71.62/73.18 69.40/71.35
! 78.57/80.29 69.23/71.21 74.31/75.5 74.49/75.99
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Fig. 10. The results of the detection stage under different volumes of the
training data on the validation dataset. a,b,c are the three subsets of the
LSV-LP dataset and d is the average results of the whole dataset.

this module is significantly higher than that of not having it.
The experimental results not only confirm the effectiveness
of the affine transformation but also verify that the optical
flow module brings positive benefits to the overall model.

6 CONCLUSION AND OUTLOOK

In this paper, we propose a large-scale video based LP
dataset, namely LSV-LP, which is carefully annotated, in-
cluding vehicle positioning boxes, points of the LP vertex,
and LP numbers. At the same time, according to the shoot-
ing scene, it is divided into three subsets move vs. move, move
vs. static and static vs. move, which can be applied to the
research of LPDR in the video scene. The large data scale
(400k frames), the diversity of data (three different cate-
gories) and the detailed annotation make LSV-LP a valuable
dataset for LPDR systems. Based on LSV-LP, we present a
novel framework named MFLPR-Net, which combines the
features extracted from adjacent frames of the examined
frame. Extensive experiments prove that the algorithm can
improve the accuracy.
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Fig. 11. The results of the recognition stage under different volumes of
the training data on the validation dataset.

According to the research on the datasets and LPDR
algorithms, we summarize the following points for further
research:

1) How to combine the context information of the
nearby frames to improve the accuracy and ef-
ficiency? Videos contain dynamic information of
time sequences and correlation between frames. Rea-
sonable use of timing information can well enhance
the recognition accuracy of key frames. Our model
uses the optical flow network to calculate feature
differences. Whether there is a better way to combine
contextual features is worth exploring. Besides, com-
pared with single images, videos involve the high
degree of information redundancy, such as the fea-
ture similarity between two adjacent frames is high.
The key to realize real-time performance is to prune
the model reasonably and improve the efficiency of
the model on videos.

2) How to coordinate speed and accuracy? Fusing
video inter-frame information can improve the accu-
racy and reduce the speed, while using video redun-
dancy information is just the opposite. According
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to different actual tasks, reasonable coordination of
speed and accuracy plays an important role in video
based LP detection and recognition. Video frames
can be skipped to improve the recognition speed,
or the information of multiple video frames can be
fused to improve the recognition accuracy. On this
basis, a good model compression scheme can fully
exploit the potential of the dataset.

3) How to balance detection and recognition when op-
timizing the system? An LPDR system is composed
of LP detection and LP recognition, and the perfor-
mance of recognition depends on the performance of
detection. When the two parts cannot be guaranteed
at the same time, the performance of the whole sys-
tem will be better if the two stages of detection and
recognition are properly coordinated. The detection
and recognition stages of the entire LPR system can
best be jointly trained, and operations such as RoI
(Region-of-Interest) Align can be used to connect the
two stages.

In the future work, we will continue to study the above
mentioned issues and improve the performance of the LPDR
systems in the real world.
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