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ABSTRACT
Hyperspectral image super-resolution (SR) methods are con-
tinually being refreshed due to deep neural networks. Despite
this, the existing works barely explore more spatial informa-
tion using mixed 2D/3D convolution. Moreover, they do not
make full use of multi-domain features to realize information
complementation. To tackle these challenges, we propose a
hyperspectral image SR approach via multi-domain feature
learning. To be specific, a multi-domain feature learning strat-
egy using 2D/3D unit is presented to explore spatial and spec-
tral information by alternate manner. To recover the more de-
tails, the edge body generation mechanism (EBGM) is intro-
duced to learn the high frequency information, which gener-
ates the edge prior. Besides, the multi-domain feature fusion
(MDFF) is designed to fully integrated hierarchical knowl-
edge from different 2D/3D units, leading to further achieve
information complementation. Experiments demonstrate that
our approach attains the better performance over the state-of-
the-art methods.

Index Terms— Hyperspectral image, super-resolution,
multi-domain feature learning, edge body generation

1. INTRODUCTION

Hyperspectral image has rich spectral information, which can
reflect the subtle spectral properties of the target in detail.
Combined with related image processing tasks, specific spec-
tral features are selected according to target attributes, which
is helpful for accurate analysis. Due to physical limitations
on spectral sensor, hyperspectral image presents lower reso-
lution in spatial domain than in spectral domain. Hence, more
efforts have been proposed to address super-resolution (SR),
which refers to restoring a LR hyperspectral image to a high-
resolution (HR) hyperspectral image.

Hyperspectral image SR methods using convolutional
neural network (CNN) have shown great success in the re-
cently. According to the type of convolution used by the
networks, it can be roughly divided into three categories,
namely, 2D convolutional network, 3D convolutional net-
work, and mixed 2D/3D convolutional network. As for the

∗ Qi Wang is the corresponding author.

models adopting 2D convolution [1, 2], they views each band
of the hyperspectral image as an image to design the net-
work. This helps to explore spatial features, but does not
take advantage of rich spectral information. Considering
this issue, various networks using regular 3D convolution
have been proposed [3]. Compared with 2D convolutional
networks, these algorithms significantly improve the perfor-
mance. However, the regular 3D convolution yields a large
number of parameters compared with 2D convolution, which
is not conducive to designing deeper networks for limitation
hardware condition. To address this problem, the researchers
exploit separable 3D convolution [4] to build the model [5],
which greatly reduces unaffordable memory usage.

Since the contents of two adjacent spectra are usually sim-
ilar [6], the constructed model should more emphasis on the
analysis of spatial domain in feature learning. Thus, Li et al.
first propose a parallel structure SR network via mixed 2D/3D
convolution (MCNet) [7]. Although the method produces the
superior performance over the state-of-the-art approaches, the
parallel structures leads to module redundancy. With respect
to the mixed convolution, there has been little research into
this in existing works. Importantly, previous studies do not
make full use of multi-domain features to realize information
complementation. To address these challenges, we propose
a hyperspectral image SR approach via multi-domain feature
learning, which is shown in Fig. 1. In summary, our main
contributions of this paper are as follows:

• A novel multi-domain feature learning strategy using
2D and 3D unit is proposed by alternate manner, which can
effectively explore multi-domain knowledge by sharing spa-
tial information.

• The edge body generation mechanism is introduced to
explicitly learn edge feature representation, which provides
edge prior for high-quality reconstruction, so as to recover
the more details.

• The multi-domain feature fusion is designed to adap-
tively preserve the accumulated features for different deep
2D/3D unit. It is conducive to the integration of spectral and
spatial information.
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Fig. 1. The overall architecture of the proposed network for hyperspectral image SR.

2. METHODOLOGY

In this section, we describe the proposed method in details, in-
cluding network architecture, multi-domain feature learning,
and edge body generation mechanism.

2.1. Network Architecture

Now we present the proposed architecture. Suppose ILR ∈
RL×W×H is the LR hyperspectral image, where L is the total
bands. W and H denote the width and height of hyperspec-
tral image, respectively. Since 3D convolution can analyze
information other than spatial dimension, we adopt separable
3D convolution [4] (it is defined as SConv) to extract the ini-
tial features M0. Then, these features are fed into the main
module that contains 2D and 3D unit. To make full use of
all the hierarchical features generated by different 2D and 3D
units, the multi-domain feature fusion (MDFF) is designed to
adaptively preserve the accumulated features, i.e.,

F3D = fD(Concat[M1, ...,Mk]), (1)

F2D = fD(Concat[N1, ..., Nk]), (2)

where Concat is utilized to concatenate the different deep
information, and fD(·) is the function to reduce the feature
channel. As the size of feature maps obtained by the two is
different, we reshape one of them. With respect with specific
operation, it will be described in Section 2.2. Finally, the
fused features are produced by

FD = fD(Concat[w1 ∗ F3D, w2 ∗Reshape(F2D)]). (3)

Through this way, it can effectively integrate spectral and spa-
tial information, leading to achieve deep complementation.

After extracting features in the LR space, we exploit a
transposed convolution layer to upscale them in the HR space
according to r, which is followed by a SConv. The super-
resolved image ISR ∈ RL×rW×rH is achieved by

ISR = fSD(fup(FD +M0, r), (4)

where fup(·) and fSD(·) are the functions for upscaling and
reconstruction, respectively.

2.2. Multi-domain feature learning

The benefit of using spectral information of hyperspectral
image is to improve the spatial performance. Under the con-
dition that the spectral information can be extracted, how
to combine the 2D/3D convolution to increase spatial ex-
ploration still needs more research efforts. Therefore, we
develop a novel structure that appears alternately through
2D and 3D unit, which can effectively explore multi-domain
knowledge by sharing spatial information.

With respect to 3D unit, we employ the kernels k× 1× 1
and 1× k× k to explore the spatial and spectral information,
i.e., SE and SA. After obtaining independent features, how to
fuse them is one of the key skills to improve the performance.
Currently, the existing works nearly employ addition to fuse
them. In our work, three fusion strategies are adopted to ana-
lyze the performance impact of the model, whose results are
shown in Section 3.3.

To apply 2D convolution after 3D unit, it is necessary to
reshape the feature maps. Concretely, suppose that the size
of feature maps is N × C × L × W × H , where B is the
batch size, and C denotes the number of filters. To trans-
form it, we handle the each band individually, i.e, the chan-
nel L and N are integrated together in this process. Differ-
ent from the structure in MCNet [7], 2D unit add more 2D
blocks, which consists of two 2D convolutions with the kernel
k × k, ReLU function, and residual connection. Meanwhile,
the edge body generation mechanism (EBGM) is embedded
to explicitly learn edge feature representation, which provides
edge prior for high-quality reconstruction.

Compared with the network in which 2D units are re-
placed by 3D units, the alternate structure not only effectively
add the learning ability in spatial domain, but also can re-
duce the number of parameters. Importantly, this alternate
approach can also integrate multi-domain knowledge by shar-
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Fig. 2. The architecture of edge body generation.

ing spatial information, thus improving feature learning.

2.3. Edge body generation mechanism

For hyperspectral image SR task, the introduction of high-
frequency information is helpful to restore the texture details.
A natural way is to utilize off-the-shelf edge detectors, such
as Canny, Sobel, etc., to retain image edge information. How-
ever, these methods use the binarization measurement, easily
leading to the loss of image features and the existence of false
edge. Inspired by optical flow in semantic segmentation [8],
the edge body generation mechanism (EBGM) is adopted to
generate the edge prior.

Without loss of generality, the feature map F from 2D
block can be divided into the body part Fbody and the edge
part Fedge, which describe the smooth structure and sharper
details, respectively. Suppose they satisfy the addition, i.e,

F = Fbody + Fedge. (5)

Usually, the LR feature map contains more body part, so we
first exploit the bilinear method to downsample the original
feature map. Subsequently, it is upsampled to the same size
as the original feature map F by bilinear method, and the two
are concatenated together. These features are input in the con-
volution layer to predict the flow field. Finally, the original
feature map F is deformed by flow field to obtain the body
part, which can be formulated as

Fbody(x) =
∑

x∈N(xl)

wxF (x), (6)

where wx is the weight calculated from the flow field. F (x)
is the corresponding pixel feature. N(xl) represents the pixel
involved in the calculation. Finally, the edge prior Fedge is
acquired by subtraction with original feature map F .

3. EXPERIMENT

3.1. Dataset

To verify the performance the proposed method, two public
datasets are adopted, including CAVE1 and Chikusei2. With
regard to CAVE dataset that contains 32 images, we select
80% of samples as training set and the rest as the test set. As

1http://www1.cs.columbia.edu/CAVE/databases/multispectral/
2http://naotoyokoya.com/Download.html

Table 1. Study of spatial and spectral fusion in 3D unit.
Fusin Method PSNR SSIM SAM #Params.

Add 39.140 0.9320 3.242 1826k
Max 39.273 0.9321 3.200 1826k

Concat + Conv 39.117 0.9317 3.210 1893k

Table 2. Ablation study about different combinations
Part Different combinations of part

EBGM × ×
√ √

MDFF ×
√

×
√

PSNR 39.052 39.125 39.115 39.273
SSIM 0.9317 0.9317 0.9318 0.9321
SAM 3.242 3.216 3.204 3.200

for Chikusei dataset, it is hyperspectral remote sensing data.
The image in the top left 128 × 2000 × 2335 is selected to
train, and the rest of image is used to test. Given a train-
ing set, we randomly crop 24 and 108 patches for CAVE and
Chikusei dataset, respectively. These patches are augmented
by rotation, flip, etc. Then, the LR hyperspectral images with
the size of L × 32 × 32 are obtained by downsamping these
patches using bicubic interpolation.

3.2. Implementation Details and Evaluation Metrics

During training the network, we fix the size k and number
of filters as 3 and 64, except for upsampling and convolution
layer in EBGM. As for EBGM, the size and number of filter
is set to 3 and 2. The model is optimized by Adam optimizer
with β1 = 0.9, β2 = 0.999 to minimize L1 loss function. The
initial learning rate is set to 10−4 for all layers, which de-
creases by a half at every 35 epochs.

To evaluate SR performance, three metrics are utilized, in-
cluding Peak Signal-to-Noise Ratio (PSNR), Structural SIM-
ilarity (SSIM), and Spectral Angle Mapper (SAM).

3.3. Study of Spectal and Spatial Fusion

In our work, three fusion ways are adopted to analyze the in-
fluence of the performance. Given two inputs X and Y , they
represent the extracted spatial and spectral features, respec-
tively. Suppose they are all N × C × L × W × L in size.
Conv fusion is to stack X and Y together along second chan-
nel, and then convolve the stacked data with a group of filters
with 1 × 1 × 1 to obtain fused result. Table 1 show the per-
formance of different fusion strategies for ×4 SR on CAVE
dataset. As seen from the table, max fusion achieves good
results, especially in PSNR. Therefore, max fusion is utilized
to evaluate the performance for the rest of the paper.

3.4. Ablation Study

To demonstrate the effectiveness of main parts, including
EBGM and MDFF, the ablation study is performed for ×4



Table 3. Quantitative evaluation on CAVE dataset.
Method PSNR SSIM SAM #Params

SSPSR[1] 38.366 0.9227 3.484 12875k
3D-FCNN [3] 37.626 0.9195 3.360 39k

MCNet [7] 39.026 0.9319 3.292 2174k
Ours 39.273 0.9321 3.200 1826k

Table 4. Quantitative evaluation on Chikusei dataset.
Method PSNR SSIM SAM #Params.

SSPSR[1] 39.775 0.9450 7.890 13546k
3D-FCNN [3] 39.060 0.9364 10.681 39k

MCNet [7] 40.516 0.9507 11.087 2174k
Ours 40.483 0.9512 7.369 1826k

SR on CAVE dataset by setting different combinations, which
is depicted in Table 2. We can find that when any one part
is added into the network, three evaluation metrics are im-
proved to a certain extent, compared with those before the
attachment. When both EBGM and MDFF exist, all values
attains better results than the above combinations.

3.5. Comparisons with the State-of-the-art Methods

Tables 3-4 show the proposed method achieves the compara-
ble or even better results among these competitors. Compared
with these methods, the designed model could explore more
multi-domain knowledge by alternate 2D and 3D unit. More-
over, the EBGM can generate edge prior, which enables the
model to focus on high-frequency information to recover de-
tails. We also show the visual results on CAVE dataset in Fig.
3. To clearly exhibit the difference with ground-truth, the ab-
solute error map is given by selecting 10-th band. As seen in
figure, our method yields the shallow textures in some areas.
Besides, one pixel position is selected to analyze the spectrum
difference. The curve generated by the proposed approach are
closer to the ground-truth in most cases.

4. CONCLUSION

In this paper, we develop a hyperspectral image SR approach
using multi-domain feature learning. To fully utilize comple-
mentary information between domains, a novel multi-domain
feature learning strategy 2D and 3D unit is proposed by alter-
nate manner. Moreover, the edge body generation mechanism
is introduced to learn edge prior, which helps to restore tex-
ture details. The experiments demonstrate that our method
obtains the better performance over the existing approaches.
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