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Gradient Matters: Designing Binarized Neural
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Abstract—Binarized neural networks (BNNs) have drawn significant attention in recent years, owing to great potential in
reducing computation and storage consumption. While it is attractive, traditional BNNs usually suffer from slow convergence
speed and dramatical accuracy-degradation on large-scale classification datasets. To minimize the gap between BNNs and deep
neural networks (DNNs), we propose a new framework of designing BNNs, dubbed Hyper-BinaryNet, from the aspect of
enhanced information-flow. Our contributions are threefold: 1) Considering the capacity-limitation in the backward pass, we
propose an 1-bit convolution module named HyperConv. By exploiting the capacity of auxiliary neural networks, BNNs gain
better performance on large-scale image classification task. 2) Considering the slow convergence speed in BNNs, we rethink the
gradient accumulation mechanism and propose a hyper accumulation technique. By accumulating gradients in multiple variables
rather than one as before, the gradient paths for each weight increase, which escapes BNNs from the gradient bottleneck problem
during training. 3) Considering the ill-posed optimization problem, a novel gradient estimation warmup strategy, dubbed
STE-Warmup, is developed. This strategy prevents BNNs from the unstable optimization process by progressively transferring
neural networks from 32-bit to 1-bit. We conduct evaluations with variant architectures on three public datasets: CIFAR-10/100
and ImageNet. Compared with state-of-the-art BNNs, Hyper-BinaryNet shows faster convergence speed and outperforms existing
BNNs by a large margin.

Index Terms—Neural network accelerating, 1-bit convolution, gradient approximation.
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1 Introduction

D eep Neural Networks (DNNs) have achieved remarkable
success in various fields such as computer vision [1],

[2], speech recognition [3], [4] and reinforcement learning [5],
[6]. Various architectures are developed with more param-
eters and heavier matrix computation. As a result, DNNs
have better performance on several tasks. While the over-
parameterized DNNs are attractive and powerful, the deploy-
ment of DNNs on resource-constrained embedded devices,
such as cell phones, drones, self-driving cars, and other edge-
devices, is not conductive and prevents DNNs from large-scale
commercial applications. Consequently, this raises an inter-
esting question whether current models can be compressed
and accelerated? Recent studies show that the capacity of
typical architectures such as VGG and ResNet is redundant
and various techniques have been explored. The main meth-
ods of DNNs compression can be divided into three parts:
1) Compact architecture design where researchers mainly
focus on finding new convolution methods with decreased
computation. For example, ShuffleNet exploits the group
convolution to accelerate DNNs and increase the feature-
propagation with a channel-shuffling operation. MobileNet
proposes a separable convolution to decouple the feature-
extraction and feature-fusion. 2) Network quantization where
the numerical precision of DNNs is transferred from 32-bit to
fixed-point representation such as 16-bit, 4-bit, or even 1-bit.
3) Neural network pruning where unnecessary weights are
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pruned away from DNNs based on importance estimation.
Among these methods, quantization is a hardware friendly
method which accelerates DNNs with modified numerical
computation techniques. Specifically, DNNs with fixed-point
representation can be accelerated by replacing full precision
matrix multiplication with several addition operations and
bit-operations. From this perspective, DNNs with quantiza-
tion methods can maximize the performance of hardware.
Therefore, many efforts have been made to train DNNs with
limited numerical precision (e.g., 16-bit, 8-bit, 4-bit) [7], [8],
[9], [10], with the hope of maintaining similar performance
with their 32-bit counterparts.

Among all these quantization methods, 1-bit quantization
is the extreme case, where only a single bit is used to replace
the full-precision representation of weights or activations in
DNNs. Consequently, the fully quantized DNN (i.e., 1-bit)
has drawn the attention of researchers [11], [12]. Specifi-
cally, when only the weights are binarized, DNNs with 1-
bit weights are ∼32x smaller than the equivalent one with
32-bit weights. The convolution operation in DNNs can
also be implemented using only addition and subtraction
operations, leading to ∼2x computation acceleration [11]. If
the intermediate representations in DNNs are simultaneously
binarized, all floating-point operations in convolution layer
can be replaced with XNOR and bit-counting operations [11],
[12], which theoretically accelerates DNNs by ∼58x on CPUs.
The pipeline of traditional binarized neural networks can be
well summarized as follows [13]: 1) Binarizing the proxy 32-
bit weights, activations in DNNs using binarizing function; 2)
Going forward-propagation and backward-propagation with
the 1-bit weights and activations; 3) Accumulating the 32-bit
gradient in real valued variables to ensure that the Stochastic
Gradient Descent (SGD) algorithm still works.
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Although the acceleration effect of 1-bit neural network is
significant during the inference stage, BNNs still suffer from
the serious performance degradation and slow convergence
speed problem on large scale datasets like ImageNet. In this
paper, we summarize the main reasons behind these problems
on three aspects:

Capacity Limitation: As the weights and activations are
constrained to be +1 or -1, the capacity of BNNs which
means the possible combination of numerical representation,
is greatly reduced. Therefore, BNNs with equivalent structure
as DNNs can not cover the great diversity in large-scale
datasets like ImageNet. Some recent methods have tried to
enhance BNNs by increasing the channel numbers of each
reduced-precision layer and gained much better performance
[14]. This indicates that capacity-limitation is one of the key
problems for BNNs.

Gradient Mismatch: The gradient of directly training
BNNs is almost zero everywhere due to the non-differential
sign function [11], [13]. To train BNNs in a differentiable
manner, existing methods address this issue using the Straight
Through Estimator [15] scheme. Specifically, at each back-
ward propagation, this scheme manually approximates the
gradient of sign function with a related surrogate (normally
hyperbolic tangent function) [12], [13], [15]. In this way, a full
differentiable pipeline is constructed. However, this unusual
“gradient” is actually not the real gradient of the loss function
and can only provide a coarse gradient descent direction for
weights. Therefore, inaccurate gradients can hurt the training
procedure of BNNs and result in more iterations to correct
the searching procedure. Such difference between forward and
backward passes is called gradient-mismatch.

Gradient Accumulation: As being analyzed above, BNNs
go forward and backward using 1-bit weights/activations, but
accumulate 32-bit gradients in predefined 32-bit buffers. The
reason is that the magnitude of the gradient is too small to be
directly used for binary adjustments (±1) [13] and has to be
progressively accumulated in a proxy tensor with equivalent
shape. Though accumulating gradients in 32-bit tensors keeps
the effectiveness of SGD algorithm, the current accumulation
method is certainly not the optimal choice for bit flipping
optimization. The accumulation procedure also means that
1-bit representation can only be turned in an inefficient proxy
manner, and BNNs can even stop learning if the gradient is
too small to change the sign of the proxy tensor.

Considering the aforementioned problems, in this paper,
a new framework of training BNNs called Hyper-BinaryNet
is proposed to enhance the binarized neural network with
improved gradient propagation. Several modules are proposed
to address current limitations in BNNs, considering the
smoothness of the training procedure. The main contributions
can be summarized as follows:

1) This paper is the first attempt to combine the training
of BNNs with auxiliary neural networks. By exploiting
auxiliary capacity only during the training stage , the
capacity-limitation of BNNs can be well relieved.

2) This paper proposes a progressive neural architecture
binarizing strategy to alleviate the gradient-mismatch
problem in current BNNs. By transferring neural
networks from full-precision to single-bit, BNNs are
trained with smoother and more accurate gradients.

3) This paper rethinks the importance of gradient-
accumulation mechanism in BNNs and an improved
Hyper-accumulation is proposed. By increasing gradi-
ent paths for each 1-bit weights, current training of
BNNs can be well accelerated.

4) To evaluate the effectiveness of Hyper-BinaryNet,
experiments on CIFAR-10/100 and ImageNet-12
datasets are conducted. The numerical results show
that Hyper-BinaryNet outperforms SOTA methods by
a large margin.

The remainder of this paper is organized as follows.
Section 2 reviews the related works of neural network bi-
narization. Section 3 introduces the details of the proposed
Hyper-BinaryNet. In Section 4, extensive experiments are
conducted to validate the proposed method comprehensively.
Conclusions and future work are presented in Section 5.

2 Related Work
In this section, we review some early researches related to
ours. Firstly, recent studies on neural network binarizing are
introduced. Secondly, the related works on numerical dis-
cretization are investigated. Finally, the relationship between
HyperNetwork [16] and our work is explained.

Network Binarizing: BNNs have drawn the attention of
researchers in recent years [11], [12], [13], [17], [18], [19], [20],
[21]. For example, [11] shows that filters can be quantized to
±1 without noticeable dropping of classification accuracy on
CIFAR-10. [13] further proves that BNNs still work when
both weights and activations are binarized. Further, [12]
introduces XNOR-Net, and extends the first benchmark result
on the ImageNet-12 classification task, exploiting extra 32-
bit scaling factor to approximate typical convolution. More
recent studies focus on BNNs with improved representation
ability. For instance, [17] introduces ABC-Net, approximating
full-precision weights/activations with the linear combination
of multiple binary bases. Both [14] and [18] find that wider
BNNs suffer less from the accuracy degradation problem,
benefiting from the increased capacity. [19] mines the channel-
wise interactions by a reinforcement learning model, and
imposes channel-wise priors on the intermediate feature maps
through the interacted bitcount function. What’s more, [20]
proposes an improved binary training method (BNN+), by
introducing a regularization function that encourages training
weights around binary values. [21] shows that by attempting
to minimize the discrepancy between the output of the binary
and the corresponding real-valued convolution, additional
significant accuracy gains can be obtained. Along with early
studies, Hyper-BinaryNet is an effective way of improving the
capacity of BNNs. However, what needs to note is that though
extra full-precision capacity from the auxiliary network is
exploited, it is not embedded in BNNs and is removed away
during the inference stage, maximizing the advantage of bit-
counting operation.

Hard Binarizing: Most BNNs use hard binarization to
obtain 1-bit representation during training. Courbariaux et al.
[11] combine expectation back-propagation (EBP) [22] with
BNNs, and propagate gradients through discrete weights for
the first time. Later, they extend the same idea to BinaryNet
[13] to binarize activation (±1) as well, maintaining suffi-
ciently high accuracy on the MNIST, CIFAR10 and SVHN
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TABLE 1
A brief introduction of variables used in the paper

G: convolution function L: loss function W: weights for G W̃: fused weights of W
F: continuous function x: general variables A: input activations for C Ã: fused activations of A
D: Auxiliary Neural Network Z: embedded vectors for D
i: channel index of A λ: scalable scalar for F σ: exponential decay rate for λ l: layer index
j: kernel index of W t: current iteration index α: learning rate S: exponential decay step

datasets. They also introduce a binary matrix multiplica-
tion GPU kernel to verify its great potential in speeding
up computation. [12] further introduces XNOR-Net, where
efficient bit-counting operation multiplying full-precision scale
factor is used to approximate each typical convolution.
Owning to the improved mix precision representation and
new architecture, they extend the first benchmark result on
ImageNet classification task. More recently [23] introduces
a variant of residual module to enhance the representation
ability of BNNs, dubbed Bi-Real Net. The idea of involving
extra network capacity is also exploited in [24]. An extra
trainable bit-projection function is proposed to replace typical
weight binarization function, and it is proved to be helpful
for BNNs. Furthermore, [25] concludes that BNNs are easier
to suffer from intrinsic instability (training time) and non-
robustness (train & test time) problems. Therefore, they
combine BNNs with ensemble methods, obtaining perfor-
mance improvement in terms of accuracy, robustness, and
stability. However, BNNs using hard binarization (e.g., sign
function) from scratch have already been verified to suffer
from slow convergence and serious accuracy-degradation on
large scale classification dataset ImageNet. The focus of this
paper is the efficient training of a network with binary
weights and activations. Different from current methods,
Hyper-BinaryNet starts from the real-valued network and
progressively transfers itself into BNNs, which is a smoother
training strategy.

Soft Binarizing: One of the most related method to ours is
the soft binarization. To get rid of the gradient approximation
problem in DNNs where discretization operations are used,
there have already been interests in studying continuous
discretization technique. For example, [26] proposes repa-
rameterizable Gumbel-Softmax trick to afford low-variance
path derivative gradients for the categorical distribution for
the first time. Inspired by this, HashNet [27] explores the
relationship between sign function and scalable hyperbolic
tangent function and designs a recurrent optimization ap-
proach to address the end-to-end hashing problem. Similarly,
[28] exploits a similar approach to achieve true-gradient based
optimization of BNNs, but the scalable tangent function
is replaced with clip function. The method in [28] is only
verified on small datasets.(e.g, MNIST, CIFAR10). [29] tries
extending the similar idea to ImageNet classification task,
but the experimental results 37.84% using XNOR-Net as
the backbone is even lower than that reported in XNOR-
Net paper 44.2%. Though continuous discretization skills
above achieve true-gradient based optimization at the begin-
ning of training, continuous function irresistibly degenerates
into discretization function progressively as the continuous
function shrinks. As a result, the SGD algorithm is not
effective again. Therefore, the soft discretization methods

above rely on iterative optimization trick to escape from the
bottleneck effect in the backward pass. What needs to be
pointed out is that this is not the case in Hyper-BinaryNet.
While similar scalable continuous function is used, one of
the key ideas on this aspect is the gradient approximation
warmup scheme, which means an evolving Straight Through
Estimation process during training. This is different from
existing soft discretization methods.

Weight Generation: The idea of using a small network to
generate weights for a larger network has already been studied
in [16]. Then, SMASH [30] exploits the same idea in [16] as
a way of accelerating neural architecture search. Specifically,
by comparing the relative validation performance of networks
with generated weights, a wide range of architectures can be
searched in parallel. Further, [31] redesigns the structure of
HyperNetwork, and combines it with graph neural network
to model the topology of a full architecture. In this paper, we
rethink the relationship between the gradient-accumulation
mechanism and network convergence. Specifically, we extend
HyerNetwork to discrete weight generation and combine it
with the training of BNNs for the first time. As a result,
each 1-bit weight is generated and tuned via a proxy network
rather than single variable, which means improved neural
capacity and gradient paths during training. Note that the
key insight in this paper is the relationship between gradient-
accumulation and training efficiency, rather than a simple
weights generation mechanism.

3 Methodology
In this paper, we focus on improving BNNs from three
different aspects: capacity-limitation, gradient-accumulation
and gradient-approximation. The detailed approach for each
aspect and its corresponding motivation will be introduced in
this section.

3.1 Standard Binary Neural Network

To realize the compression and acceleration of DNNs, how to
construct a neural network with binary weights/activations
and effectively train it have become an interesting direction.
In [13], a sign function based network binarization method is
proposed for the first time:

xb = Sign(xr) =

{
+1, if x ⩾ 0,
−1, othersize,

(1)

where xb is the binarized variable (e.g., binary weight Wb

or activation Ab) and xr represents the real-valued variable
(e.g.,Wr or Ar respectively). While binarized representations
are used in forward and backward process, [13] accumu-
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Fig. 1. The pipeline of Hyper-BinaryNet using ResNet-18 as backbone. Firstly, the main binarized neural network is built, except that the
kernel size of convolution in skip connection branch is 3 rather than 1. Secondly, convolution layers in ResNet are mostly replaced with
HyperConv modules, except the first convolution layer; Thirdly, during each forward propagation, the 1-bit kernels are regenerated by the
auxiliary neural networks and used layer by layer. Finally, the real-valued gradients are top-down computed based on 1-bit weights/activations
and accumulated in auxiliary networks. After training, all embedded vectors and auxiliary neural networks are removed, leaving a full binarized
neural network which can be accelerated based on bit-counting operations.

1-bit Convolution 
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1-bit Convolution 
Function

1-bit Weights 1-bit Weights

Weight Generation Hyper AccumulationForward Propagation
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Binarize

FC

WN

Binarize

Fig. 2. A brief sketch of the weight-generation and hyper-
accumulation mechanism based on auxiliary networks. ”Wn” indi-
cates binarized weights. ”An” indicates input feature maps. Gradient
information will be introduced into embedded vectors and proper
binary weights will be generated.

lates the gradient in full-precision buffer Wr. The gradient-
accumulation process can be clearly formulated as follows:

W t+1
r = W t

r − αt
∂L
∂W t

r

,
∂L
∂W t

r

=
∂L
∂W t

b

· ∂W
t
b

∂W t
r

, (2)

where ∂W t
b

∂W t
r
= 1∥Wr∥≤1 represents the approximated gradient

based on Straight Through Estimator scheme. L indicates
the loss function. t represents current iteration index, and
α represents the learning rate. Wr denotes full-precision
weights. Wb denotes binary weights. This strategy makes
it possible to train BNNs with gradient-based optimization.
However, as we have analyzed above, this approach is not
efficient and limits BNNs in three aspects: capacity limitation,
gradient-mismatch and gradient-accumulation. As a result,
BNNs are more difficult than DNNs to converge on large
scale datasets like ImageNet [32]. Though several approaches
have been explored to relieve one of these problems, they have
not considered these problems together and addressed them
in one single framework.

3.2 Hyper Binary Neural Network
Considering the capacity-limitation problem in current BNNs,
we redesign the proxy optimization mechanism in neural

network binarization. The main intuition behind our design
is that we intend to alleviate the gradient-clamp problem
in training. In traditional BNNs, the gradients of binary
weights are clamped to 0 if the absolute value is larger than
1. It makes the network sensitive to initialization and noisy
gradients. In this paper, an enhanced 1-bit weights generation
mechanism with auxiliary network is introduced. Although
1-bit representation is still used for forward/backward prop-
agation, each 1-bit weight is not optimized based on single
full-precision variable anymore. Instead, we combine every
1-bit convolution function with a 32-bit auxiliary network.
Specifically, for each convolution layer Gl(W l

b , A
l
b) in the

main BNNs, a kernel-wise shared auxiliary neural network
Dl(zl) is constructed at the beginning of training. A trainable
3-D tensor zl with the shape of [Cin ∗ Cout, Zn] is then
defined to be the input of auxiliary network, where Cin indi-
cates the number of input channels of convolution layer, Cout

indicates the number of output channels and Zn indicates
the number of variables used for gradient-accumulation. The
overall optimization process can be summarized as follows:
1) Generating 1-bit weights via proxy network; 2) Going
forward-propagation and backward-propagation with the 1-
bit weights and activations; 3) Accumulating the 32-bit gradi-
ent in real-valued proxy neural netwrok Dl to ensure that the
Stochastic Gradient Decent (SGD) algorithm still works. By
accumulating gradients in multi-variables rather than a single
variable, the gradient path for each binary weight is connected
to the whole kernel. Specifically, for each forward propagation,
the 1-bit convolution layer Gl receives binarized kernels W l

b

generated by Dl(zl), and use it to perform convolution on
input feature maps of the lth layer Al

b. Then, the outputs are
processed in subsequent layers:

Gl(W l
b , A

l
b) = Gl(Dl(zl), Al

b), l ∈ 1, ..., L, (3)

where l indicates the index of convolution layer in main BNNs.

To ensure the capacity of auxiliary neural network Dl,
a specific multi-layer structure is exploited to generate the
discrete kernels. In [16], the auxiliary HyperNetwork is con-
structed with two trainable full-connected(FC) layers and is
shared across all layers. It can generate a slice of 32-bit tensors
kji with dimension [Nin, Nout, fsize, fsize] at a time. The final
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Fig. 3. Comparison of gradient-accumulation process between tradi-
tional BNNs and our Hyper-BinaryNet.

kernels kj within a single layer is the concatenation of every
ki. In this paper, however, the discrete HyperNetwork G(z) is
constructed based on three components: fully-connected layer,
weight normalization layer [32] and sign function. During
the forward propagation, the discrete HyperNetwork G(z)
generates a 3-D tensor with dimension [1, fsize, fsize] at a
time, which is easy for parallel acceleration during the training
procedure with a kernel size fsize.

3.3 Improved Gradient Paths via Hyper Accumulation
Considering the inefficient slow convergence speed in binary
neural networks, an improved hyper-accumulation mechanism
is proposed in this work. In traditional BNNs [11], [12], [13],
each binary weight Wb owns one full-precision buffer Wr,
and it is used to accumulate gradients to boost the learning
of Wb using stochastic gradient descent algorithm. Though
this simple strategy is effective, it still has a limitation:
accumulating gradient in single variable is not efficient as
the numerical accumulation during training can be slow
and even stop because of the coarse gradient. However, in
Hyper-BinaryNet, every Wb is generated by a parameterized
multi-dimension linear transformation D(z), therefore the
main optimization target transfers into real valued auxiliary
neural network D and the corresponding embedded vectors
z. Compared with traditional method, gradients for each Wb

are accumulated in multiple variables W 1
r ,W

2
r ...W

n
r . As a

result, the gradient paths for each Wb are greatly increased
and the tuning of W i

b (e.g., ±1) is not limited by single
variable W i

r anymore. For example, if both W i
r and its

gradient are negative, W i
b will be -1 all the time. Our Hyper

Accumulation accumulates every gradient of W i
r through the

Full-Connected(FC) block to update some W i
b . We hold the

point that even if the change of a single W i
r is too small

to update W i
b , the accumulation of such tiny changes will

make a difference. Additionally, owning to the fully-connected
structure in auxiliary network, the generated 1-bit kernels
can learn structured representations automatically. In this
paper, we call this technique hyper-accumulation. For a better
understanding of the hyper-accumulation, we further visualize
the gradient-accumulation mechanism of our method and that
used in existing BNNs methods [11], [12], [13] in Figure 3.

As we can see, the key difference between BinaryNet [13]
and Hyper-BinaryNet lies in how are the binary variables
w1

b , w
2
b ...w

9
b generated. Consequently, BinaryNet [13] here can

be viewed as a special case of Hyper-BinaryNet, i.e., Hyper-
BinaryNet with gradients accumulated in the single variable
wi

r.

3.4 Progressive Forward Binarization
Considering the ill-posed training problem above, we propose
a progressive neural architecture binarizing technique, dubbed
STE-Warmup. Although BNNs have great advantages during
inference stage, current BNNs are hard to converge and need
much more time/samples to reduce the negative effects of the
coarse gradients. This raises a direct question that shall we
consistently constrain the representation in BNNs to be 1-bit
during training stage? The problems in SOTA methods show
that it is not necessary and even harmful for the training
procedure. Therefore, we do not use the hard binarization
technique like sign function at the begining of training as be-
fore, considering the ill-posed STE strategy at the beginning
of training which is harmful to the convergence of binary
neural network. Instead, a scalable, continuous, piecewise
differentiable function is used to replace sign function. During
each forward propagation, the slope of this function can be
adjusted with a single scalar λ. As the scalable function
shrinks itself into sign function, the weights and activations
passing through it transfer from 32-bit to 1-bit smoothly.
During backward propagation stage, though the evolving
scalable function F (x/λ) is theoretically full differential, it
is replaced with F (x/1) to escape BNNs from the bottleneck
effect in backward pass. In this way, the network starts with
32-bit representations and ends with 1-bit representations.
Meanwhile, the gradients are progressively approximated with
a smaller average gap than the standard STE. In this paper,
we use Hardtanh function as the initial continuous binarizing
function, and the continuous binarizing process in forward
propagation can be formulated as follows:

F (x, λ) = Hardtanh(
x

λ
), (4)

lim
λ→0

Hardtanh(
x

λ
) = Sign(x). (5)

Compared with existing BNNs, the gradient-mismatch prob-
lem in progressive binarizing is not obvious or does not exist
at the beginning of training. Because we do not constrain the
weights and activations to start from binary values [+1, -1].
Further, thanks to the continuous binarization method, we
find that Hyper-BinaryNet also has more powerful represen-
tation ability during training, and can effectively relieve the
capacity-limitation problem in BNNs. Additionally, a specific
exponential decay strategy is designed for λ to keep the
smoothness of training:

λt = σ(Max(0, t − M)//S), (6)

where σ is exponential decay rate of λ, and M represents
the minimal number of iterations without binarization. S
indicates the exponential decay step. If there are no additional
instructions, weights and activations in Hyper-BinaryNet
share the same scalable continuous function and each λ is
adjusted synchronously in our experiments. To escape Hyper-
BinaryNet from the bottleneck effect existing continuous
binarization, the gradient of scalable continuous function
above is not used in backward propagation. Instead, the
continuous function with λ as 1 is used. In this way, the SGD
algorithm is still effective as λ in forward propagation is close
to 0. For example, when F (x) denotes Hardtanh function, the
back-propagation process of Hyper-BinaryNet is formulated
as follows:
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Fig. 4. Network architectures of XNOR-Net, CBCN and Hyper-BinaryNet on ResNet18. Shortcut branch without gradient-mismatch problem
are further enhanced in Hyper-BinaryNet.

∂L
∂x

=
∂L

∂(F (x))
· ∂(F (x))

∂x
=

∂L
∂(F (x))

· 1∥F (x)∥≤1. (7)

Consequently, BNNs start from real-valued DNNs without
capacity limitation and gradient-mismatch problems, but end
with typical BNNs with standard STE. We call this dynamical
gradient approximation procedure as STE-Warmup, Algo-
rithm.1.

Algorithm 1 Straight Through Estimation Warmup.
Input: Traning dataset; full-precision W ; learning rate α and

scaled scalar λ;
Output: Binarized neural network;

1: Initialize W randomly;
2: for t = 0→ T do
3: // Forward Propagation;
4: for l = 1→ L do
5: // 2D Convolution with continuous binarizing
6: Al+1 = Gl(F (W l, λt), F (Al, λt)); //with Eq.4
7: end for
8: //Backward Propagation
9: for l = L→ 1 do

10: calculate gradients δW l
t
; //with Eq.7

11: W l
t+1 ←W l

t − αt ∗ δW l
t
;

12: end for
13: Adjust current learning rate αt and scalable scalar λt;
14: end for

3.5 Dual Path Backward Propagation
As introduced above, real-valued DNNs with STE-Warmup
gradually transfer themselves into typical BNNs during train-
ing. However, the gradient-mismatch problem still exists as λ
is close to 0. To further approach the gradient-mismatch prob-
lem, we design a new binary convolution module, dubbed DP-
Conv. The key idea is to construct top-down dual path back-
propagation mechanism. By propagating gradients through
extra path, weights can be adjusted using accurate feedback
from loss function. Figure 5 is a basic example of the DP-
Conv module. Except the typical 1-bit convolution in BNNs
(blue lines), an extra full-precision shortcut branch (red line)

between the real-valued input feature maps and the output
feature maps is constructed. In the shortcut branch, we first
add all input images through channel (Channel-wise fusion) to
get an one channel feature map and then convolute the feature
map with a 32-bit kerner. Finally, we concatenate it with
results obtained by the binary convolution. Consequently,
traditional 1-bit convolution is reformulated as a learning
function with respect to 32-bit inputs/weights again, and
gradient can be propagated through real-valued branch with-
out gradient-mismatch problem existing in ill-posed binary
branch. Though float-point computation is further involved,
the extra computation consumption is negligible. Specifically,
let W represent the real-valued trainable kernels with shape
[O × M × 3 × 3], where O is the number of output and
M is the number of input channels. A represents the input
activations of convolution with shape [N × C × H ×W], and
U denotes M×*O represents the layer index in BNNs. We can
get a compact representation of W and A as follows:

W̃ l =
1

U

U∑
i=1

(W l
i ), Ãl =

1

C

C∑
j=1

(Al
j), (8)

where i and j represent channel index of W and A re-
spectively. Consequently, each dual path convolution can be
formulated as follows:

Al+1 = G(F (W l), F (Al))⨿G(W̃ l, Ãl). (9)

⨿ is the channel-wise concatenation operation. G is tradi-
tional convolution function and F represents the continuous
function combined with STE-Warmup strategy. Owning to
the existence of real-valued shortcut branch, the DPConv
module also provides a flexible capacity compensation mech-
anism in bit-transition process, further smoothing the STE-
Warmup process.

3.6 Enhanced Shortcut Propagation
The shortcut branch without gradient-mismatch problem is
also not fully exploited in traditional BNNs and we design a
new strategy to enhance it. Specifically, in current BNNs, 1-
bit convolution layer with binary weights and inputs generates
integer outputs. The integer outputs are then transfered
into float-point values through BatchNorm layer. However,
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1-bit feature map 
1 x 4 x 112 x 112
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1-bit 
Convolution

Binarize

Binarize

32-bit 
kernels

Input Image

Concatenation

32-bit  1 x 1 x  112 x 112

Fig. 5. Example of the dual path convolution module.

the float-point values are binarized to ±1 again after sign
function. Empirically, the most efficient way to propagate
information in integers or real activations to subsequent
layers is shortcut connection. As we can see in Figure 4,
existing SOTA methods have improved BNNs by doubling the
shortcut propagation. In this way, information containing in
integers or real activations is reused. We call BNNs with such
structure as “Bi-Real BNNs”, which means informations in
BNNs is propagated and processed in two different branches.

However, compared with the binary branch, current meth-
ods do not fully exploit the information in real-valued shortcut
branches. Based on this observation, we design a new struc-
ture of shortcut propagation. As shown in Figure 4. Firstly,
we double the shortcut branch to fully exploit the real activa-
tions; Secondly, we note that the nonlinear layer is missing in
current shortcut strategy, which means reduced information
processing capability. Empirically, we find that adding an
ReLU layer before the 1×1 convolution in shortcut branch
and the last fully-connected layer is beneficial. Thirdly, the
1x1 convolution in the downsampling block ignores 3/4 of
input real-valued feature maps, and we modify it to a 2×2
average pooling layer with a stride of 2 and a 1×1 convolution
with a stride of 1.

4 Experiments
In this section ,we first introduce the hyper-parameter set-
tings in all experiments. Then the evaluation experiments
on CIFAR-10, CIFAR-100, and ImageNet-12 (ILSVRC2012)
datasets are explored. Finally, a detailed ablation study is
conducted to study the effectiveness of each module.

4.1 Experiment Setup
Here, the details about training are introduced. In all of our
experiments, the Hyper-BinaryNet is constructed by replacing
each convolution layer G(a,w) in backbone model with Hy-
perConv module G(a,D(z)), and then trained from scratch
without leveraging any pre-trained weights. The auxiliary

neural network D(z) is initialized using the kaiming uniform
initialization [33]. Only standard data argumentations are
used in all experiments, including randomly cropping, flipping
each image horizontally with probability 0.5 and normalizing.
To guarantee fairness in comparison with SOTA methods, no
special training skill is applied. We use AMSGrad optimizer
with initial learning rate 0.005, and coefficients used for
computing running averages of gradient and its square in
optimizer are set as (0.5, 0.99). In line with early studies [12],
[23], [34], the first and last layers in main BNNs are kept to
be full-precision for fair comparison. Additionally, there is no
bias term used for 1-bit convolution. We use PReLU when
weight-only binarized BNNs are trained. We use the multi-
step learning rate scheduling strategy provided by PyTorch
and drop the learning rate by 50% every 60 epochs. On
ImageNet, however, the initial learning rate is modified to
3e−4 and it is dropped by 20% at specific epochs 30, 45, 60, 70,
80, 85, 90. The scaled scalar λ is initialized to be 1 and decays
along with training iteration using Eq.6. 1x1 convolution
layer is widely used in modern DNNs, especially the shortcut
branch in ResNet. According to early studies, binarizing
it can dramatically damage the information transformation
between two stages. Most methods keep the weights and
input activations of it to be full-precision [12], [23]. In this
paper, we replace 32-bit 1×1 convolution in short-cut branch
with weight binarized 3×3/5×5 convolution layer for the
maximization of binarization. The Top-1/5 accuracies are
used as metrics. The best numerical result is selected for
comparison in all experiments.

4.2 Experiments on CIFAR-10/CIFAR-100 Datasets
Datasets: The CIFAR-10 dataset consists of 60, 000 32x32
colour images in 10 classes, and each class owns 6, 000 images.
50, 000 images are used for training and 10, 000 images are
used for testing. The CIFAR-100 dataset is similar, except
that it has 100 classes containing 600 images each, which
means less samples per class. Specifically, there are 500
training images and 100 testing images for each class.
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Backbone: On both datasets, ResNet18, ResNet34, Con-
vNet [11] and ShuffleNet are used as backbone. Hyper-
BinaryResNet18 (HB-ResNet18), Hyper-BinaryResNet-34
(HB-ResNet34), Hyper-BinaryConvNet (HB-ConvNet), and
Hyper-BinaryShuffleNet (HB-ShuffleNet) can be constructed
by replacing convolution layer in models with HyperConv
module. The Top-1 and Top-5 validation accuracy are used
as performance metrics, and the training processes on both
datasets are visualized in Figure 6. The experiments settings
are the same. We use multi-step lr scheduling schemes pro-
vided by Pytorch, and drop the learning rate by 50% every
60 epochs.

CIFAR-10: As we can see in Figure 6, on CIFAR-10
dataset, both full binarized ResNet18 and ResNet34 gain
85% Top-1 accuracy within 10 epochs. If only the weights
are binarized, a faster convergence speed is observed. But in
traditional BNNs, obtaining similar accuracy usually needs
several times of training epochs, resulting from the inefficient
ill-posed discrete optimization, which is not the case in Hyper-
BinaryNet. The main reasons are in two aspects: (1) Owning
to hyper-accumulation, gradient paths for each wb are greatly
increased. As a result, the bottleneck effect of gradient in
backward pass is well relieved and wb can learn faster; (2) The
STE-Warmup strategy provides better approximation to sign
function. Therefore, less time/samples are needed to correct
the coarse searching direction.

CIFAR-100: On CIFAR-100, our full binarized networks
still show remarkable performance, even close to some higher
precision quantization techniques (e.g., 2-bits binarization in
[35] with 72.16% Top-1 accuracy). Compared with CIFAR-
10, the CIFAR-100 dataset is more challenging. The samples
for each class is 0.1x times of that in CIFAR-10. However,
the classes need to be classified is 10x times. Whatever the
STE strategy is, the approximated gradient only provides n
rough searching direction. Consequently, many samples are
needed to keep stableness of weights updates. However, it
is not available on CIFAR-100 dataset, which explains why
binarized models on CIFAR-100 dataset drop more precisions
than that on CIFAR-10.

4.3 Experiments on ImageNet-12 Dataset
Dataset and hyper-parameters: The ImageNet-12 [32] is a
large image classification dataset. It consists of 1, 000 classes
with 1.2 million training images and 50k validation images.
Being in line with existing methods, the ResNet-18 is used as
backbone. In all experiments, it is trained for 100 epochs from
scratch with a degradation of learning rate by 10% every 30
epochs.

Furthermore, to demonstrate the effectiveness of Hyper-
BinaryNet on large scale ImageNet classification task, we
compare Hyper-BinaryNet with the state-of-the-art methods,
including BWN [11], BinaryNet [13], XNOR-Net [12], Bi-
Real Net [23], ABC-Net [17], PCNN [24] and recent CBCN
[38]. Two kinds of binarizing scheme with or without activa-
tion binarization are involved in the comparison. ResNet18,
ResNet34 and ResNet50 are used as full precision backbone
in this part. The numerical results are displayed in Table 3
and the results of SOTA methods are directly quoted from
the corresponding references.

ResNet18/34: As we can see in Table 3, when only the
weights are binarized, Hyper-BinaryNet achieves 66.9% Top-

1 accuracy, outperforming BWN by 6.0%, PCNN by 3.3%.
When both the activations and weights are binarized, Hyper-
BinaryNet achieves the best Top-1 accuracy 61.7%, outper-
forming existing SOTA BNNs by a large margin. Specifi-
cally, Hyper-BinaryNet outperforms traditional BinaryNet,
ABC-Net and XNOR-Net by 10% higher Top-1 accuracy.
Compared with recent methods, whose representation ability
is enhanced by doubling shortcut propagation or modified
architecture, like Bi-Real Net, PCNN and CBCN with k=4,
Hyper-BinaryNet still shows notable improvements. Addition-
ally, Hyper-BinaryNet relatively outperforms existing quan-
tization method HWPG, which owns 1-bit weights and 2-
bit activations, by 2% higher Top-1 accuracy while requires
less memory bandwidth. These obviously show the efficiency
of Hyper-BinaryNet. We need to note that, though CBCN
achieves similar Top-1 accuracy 61.4%, its computation con-
sumption is k times higher resulting from its specific circulant
structure, which is different from Hyper-BinaryNet. We also
plot the loss/accuracy curve during training in Figure 8. As
we can see, the training procedure is smooth and stable,
which means that our STE-Warmup strategy is still helpful
on large scale classification dataset. As the depth of ResNet is
modified from 18-layers to 34-layers, Hyper-BinaryNet shows
similar performance to methods whose weights are 1-bit and
activations are 2-bit or higher bit-width.

ResNet50: We also combine Hyper-BinaryNet with
ResNet50 to evaluate whether Hyper-BinaryNet can be ap-
plied to DNNs with bottleneck structure, which is a popular
way of constructing compact architecture in current DNNs. As
being pointed out in recent method [39], the 1x1 convolution
in bottleneck structure greatly reduces the filters between
layers, which means the reduced gradient paths in BNNs.
Therefore, constraining it to be binary ±1 is not suitable
for BNNs and we keep it to be full-precision herein. The
numerical results are presented in Table 3. When both the
weights and input activations are binarized, ResNet50 with
Hyper-BinaryNet works very well, achieving 69.6% Top-1
accuracy and 88.3% Top-5 accuracy respectively. When the
bottleneck structure is involved, Hyper-BinaryNet still gains
attractive accuracies and even outperforms some existing
SOTA fixed-point quantization methods HWPG and Lq-Net
with 1-bit weights and 2-bit activations. Consequently, Hyper-
BinaryNet is a generic and efficient method for binarizing
modern neural architectures.

4.4 Abalation Study
As introduced above, we overcome the slow convergence speed
and dropping of precision problems in BNNs from the aspects
of improving gradient propagation. Several modules are pro-
posed to address the capacity-limitation problem, gradient-
mismatch problem, inefficient gradient-accumulation problem
in BNNs respectably. To verify how BNNs can benefit from
each module, detailed ablation studies are carried out in
this subsection. The backbone used for experiments here is
ResNet-18, and the selected dataset is CIFAR-10.

Individual Contribution: The full precision ResNet18
with kernel stage as 16-32-64-128 is used as a backbone.
We combine it with the proposed modules separately and
then collectively to verify the impact of each one, and the
numerical results are shown in the Table 4. As we can
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TABLE 2
Top-1 accuracy on CIFAR-10/100 datasets and comparison with SOTA BNNs. “W/A” indicates bit-width of weights and activations.

Backbone Methods W/A(bit) Datasets
CIFAR-10 CIFAR-100

ConvNet

XNOR-Net [12] 1/1 89.93 -
BinaryNet [13] 1/1 89.85 -

BinaryConnect [11] 1/32 91.73 -
Ours 1/1 90.81 64.17
Ours 1/32 92.52 68.28

ResNet-18

BinaryNet [13] 1/1 89.85 61.20
BinaryNet [13] 1/32 91.37 66.20

Ours 1/1 92.81 69.53
Ours 1/32 93.23 72.40

ShuffleNet BinaryNet [13] 1/1 86.49 59.14
Ours 1/1 88.53 62.03

TABLE 3
Top-1/5 accuracy of Hyper-BinaryNet evaluated on ImageNet-12 dataset and comparison with other BNNs methods.

Comparison Methods W/A(bit) Top-1(%) Top-5(%)
ResNet-18 Full-Precison 32/32 69.3 89.2

BinaryNet [13] 1/1 42.2 67.1
XNOR-Net [12] 1/1 51.2 73.2
ABC-Net [17] 1/1 42.7 61.6

Bi-Real Net [23] 1/1 56.4 79.5
PCNN [24] 1/1 57.3 80.0

ResNet18 LQ-Nets [36]. 1/2 62.6 84.3
HWGQ [34] 1/2 59.6 82.2

DoReFa-Net [37] 1/2 53.4 -
BWN [12] 1/32 60.8 83.0

Ours 1/1 61.6 81.1
Ours 1/32 66.9 84.1

Full-Precision 32/32 73.3 91.3
Lq-Net [36] 1/2 66.6 86.9

ResNet34 HWPG [34] 1/2 64.3 85.7
ABC-Net [17] 3/3 66.7 88.2

Ours 1/1 64.5 86.5
Full-Precision 32/32 76.0 92.9
Lq-Net [36] 1/2 68.7 88.4

ResNet50 HWPG [34] 1/2 64.6 85.9
ABC-Net [17] 5/5 70.1 89.1

Ours 1/1 69.8 88.4

Fig. 6. The Top-1 accuracy evaluated on CIFAR-10 datasets with ResNet18, ResNet34 and ConvNet as base architecture.

Fig. 7. The Top-1 accuracy evaluated on CIFAR-100 datasets with ResNet18, ResNet34 and ConvNet as base architecture.
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Fig. 8. Training procedure on ImageNet dataset with ResNet18 as
backbone. Best viewed in color.

Fig. 9. Training procedure on ImageNet dataset with ResNet18 as
backbone. Best viewed in color.

see in Table 4, all proposed modules are beneficial to the
convergence of BNNs. Specifically, binary ResNet-18 with
hyper-accumulation achieve 82.1% Top-1 accuracy on CI-
FAR10 dataset and the STE-Warmup strategy also gains
81.%. The numerical improvements show that the inefficient
optimization technique in traditional BNNs is harmful to
convergence. An improved backward propagation can indeed
make BNNs gain better performance. Hence, we further com-
bine BNNs with the other proposed methods. A total 87.1%
Top-1 accuracy is gained, which outperforms BinaryNet [13]
76.9% by about 10% higher Top-1 accuracy. The numerical
improvements also indicate that traditional BNNs have not
fully exploited the full-precision branch existing in BNNs.
How to construct automatic trade-off between full-precision
operations and binary operations is the next key direction for
binary neural networks.

Gradient Approximation: A progressive binarizing strat-
egy is exploited in this paper. To provide a closer understand
about the effectiveness of this module, detailed ablation study
from two aspects are carried in this part. We maily focus on
the impact of this module and the progressiveness speed of it
during training stage. The full precision ResNet18 with kernel
stage as 16-32-64-128 is used as a backbone. In Table 5, we
compare the Top-1 accuracy of continuous binarizing with and
without Warmup using different exponential decay rate σ in
Eq. 6. In Figure 10, we further plot the training and testing
Top-1 accuracy curve. As shown in Table 5, the convergence
of BNNs using pure continuous binarizing function stops as
the scalable scalar λ shrinks. Such phenomenon is called the

Fig. 10. Training procedure of continuous binarizing with and without
warmup technique. Best viewed in color.

bottleneck effect in back propagation, but it is not the case
in STE-Warmup. And in both cases, the excessive capacity
change can harm the final performance. Table 5 shows that
0.95 is a suitable exponential decay rate for Hyper-BinaryNet
on CIFAR10 dataset. In general, our Hyper-BinaryNet owns
better Top-1 accuracy and more stable convergence speed.

Auxiliary Capacity: We also investigate whether the ca-
pacity of auxiliary neural network can influence the final
performance. The width and depth of auxiliary neural net-
work are considered in this part. The width indicates the
dimension of input embedded vector for each kernel and is
changed from 3 to 36. The depth indicates the number of
fully-connected layer in each auxiliary network and is adjusted
from 1 to 2. The results are presented in Table 6. In most
cases (6-36), Hyper-BinaryNet with different width shares
similar accuracy (±0.23%). But too deep HyperNetwork can
obviously hurt final performance. This can be resulted from
gradient vanishing problem. In general, the best accuracy is
always got when the width of HyperNetwork is the same as
vectorized binary kernel, e.g., 9.

Shortcut Binarization: The binarization strategy for short-
cut branch in BNNs is to further investigate the design
principle of BNNs. Three kinds of convolutions and the
corresponding binarizing strategies are collectively explored
and results are presented in Table 7. As we can see, keeping
shortcut branch to be full-precision can achieve the best Top-
1 performance in all related experiments but weight-only
binarizing can reach close performance(within 1% accuracy
declined). This is not investigated in early research and
the weight-only binarized module can be implemented with
addition and subtraction operations [12]. Furthermore, the
3×3/5×5 convolutions are investigated in this part. The nu-
merical performance show that larger kernel size is better than
normally used 1x1 convolution in all experiments. Therefore,
the shortcut strategy in BNNs shall be different from that in
DNNs. We believe that combining recent neural architecture
searching techniques [40] with BNNs is a better choice.

4.5 Computational Cost
In our work, the Hyper-BinaryNet and STE-Warmup strategy
are only used during training phase and has nothing to do
with the inference phase. The enhanced shortcut propagation
is a lightweight operation, and needs marginal computation.
Thus, only the DPConv module involves full-precision con-
volution. However, its computation load is also marginal.
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TABLE 4
Top-1 accuracy on CIFAR10 dataset. “BaseLine” indicates ResNet18 with kernel stage as 16-32-64-128, “H” indicates auxiliary neural

network based hyper accumulation, “W” indicates STE-Warmup strategy, “D” indicates DPConv module, “S” indicates enhanced shortcut
propagation.

Methods BaseLine H W D S W+D W+D+S W+D+S+H
Top-1 Accuracy 76.9 82.1 81.4 83.2 84.6 84.1 86.8 87.1
Top-5 Accuracy - 99.2 99.0 99.4 99.6 99.2 99.4 99.6

TABLE 5
Top-1 accuracy comparison with different exponential decay rate δ

on CIFAR10 dataset.

Optimization Methods Exponential Decay Rate δ
0.95 0.70 0.50 0.25

Soft Binarizing W/O Warmup 46.5 49.8 49.4 50.8
STE-Warmup 81.4 79.9 79.1 78.8

TABLE 6
Top-1 accuracy comparison on CIFAR-10 dataset with different

depth and width of auxiliary network

Models Depth Variables Per Binary Kernel
3 6 9 18 27 36

Binary ResNet-18 1 92.32 92.42 92.81 92.62 92.35 92.21
2 92.13 92.33 92.51 92.45 92.34 92.05

The DPConv module constructs a full-precision branch which
requires very low computational cost: convolution on a one-
channel feature map with one kernel. We compare the FLOPs
among different binary methods during inference phase, and
the results are shown in Table 8. A full-precision Resnet18
with kernel stage 64-128-256-512 is used as backbone.

5 Conclusion and Future Works
In this paper, we investigate a new framework of binary neural
networks, called as Hyper-BinaryNet. An auxiliary capacity
strategy is investigated to address the capacity limitation
problem in BNNs. The traditional proxy optimization tech-
nique in BNNs is proved to be a special case of the proposed
hyper-accumulation. A progressive binarization technique
STE-Warmup scheme and a light-weight DPConv module are
studied to alleviate the gradient mismatch problem in BNNs.
And the bottleneck effect of gradient in traditional continuous
discretization methods and the iterative optimization process
does not exist in our STE-Warmup procedure. Owning to

TABLE 7
Top-1 accuracy comparison on CIFAR10 dataset. Different

binarizing strategies on shortcut branch are used.

Binarizing Strategies kernel size CIFAR-10 CIFAR-100

Full Binarizatiion
1x1 90.28 64.39
3x3 91.31 65.87
5x5 91.03 65.87

Weight Binarizatiion
1x1 90.84 65.73
3x3 92.81 68.52
5x5 91.49 68.25

Without Binarizatiion
1x1 92.35 65.90
3x3 92.86 69.53
5x5 92.95 68.85

the reasonable design principle, the Hyper-BinaryNet algo-
rithm has outperformed existing state-of-the-art methods on
CIFAR10/100 and ImageNet classification tasks by a large
margin. As a generic BNNs design framework, Hyper-Binary
can be easily applied to other modern neural architectures and
tasks like object detection and image segmentation, which will
be studied in future works.
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