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Abstract—The fusion of a low spatial resolution hyperspectral
image (LR-HSI) with its corresponding high spatial resolution
multispectral image (HR-MSI) to reconstruct a high spatial
resolution hyperspectral image (HR-HSI) has been a significant
subject in recent years. Nevertheless, it is still difficult to
achieve the cross-mode information fusion of spatial mode and
spectral mode when reconstructing HR-HSI for the existing
methods. In this paper, based on convolutional neural network
(CNN), an interpretable Spatial-Spectral Reconstruction Network
(SSR-NET) is proposed for more efficient hyperspectral and
multispectral image fusion. More specifically, the proposed SSR-
NET is a physical straight-forward model which consists of
three components: (1) Cross-Mode Message Inserting (CMMI).
This operation can produce the preliminary fused HR-HSI,
preserving the most valuable information of LR-HSI and HR-
MSI. (2) Spatial Reconstruction Network (SpatRN). The SpatRN
concentrates on reconstructing the lost spatial information of
LR-HSI with the guidance of Spatial Edge Loss (Lspat). (3)
Spectral Reconstruction Network (SpecRN). The SpecRN pays
attention to reconstruct the lost spectral information of HR-MSI
under the constraint of Spatial Edge Loss (Lspec). Comparative
experiments are conducted on six HSI datasets of Urban, Pavia
University (PU), Pavia Center (PC), Botswana, Indian Pines (IP)
and Washington DC Mall (WDCM), and the proposed SSR-NET
achieves the superior or competitive results in comparison with
seven sate-of-the-art methods. The code of SSR-NET is available
at https://github.com/hw2hwei/SSRNET.

Index Terms—Hyperspectral image (HSI), multispectral image
(MSI), image fusion, Cross-Mode Message Inserting, convolu-
tional neural network (CNN), Spatial-Spectral Reconstruction
Network (SSR-NET).

I. INTRODUCTION

HYPERSPECTRAL imaging is a technology where im-
ages of hundreds of narrow spectral bands with different

wavelengths can be obtained. Since hyperspectral images
(HSI) have a high sepectral coverage which can accurately
identify the materials and objects on the ground, there are
wide applications of HSI in the fields of image classification
[1]–[3], object detection [4], band selection [5]–[8], change
detection [9]–[11] and so on. However, long exposures of
hyperspectral systems are necessary for enough signal-to-noise
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Fig. 1: Reconstructing HR-HSI from the corresponding HR-
MSI and LR-HSI. Firstly, the messages of HR-MSI and LR-
HSI are passed across spatial and spectral modes. Then in
the orange stage, the Spatial Reconstruction Network aims to
reconstruct the lost spatial information of LR-HSI. Finally in
the green stage, the Spectral Reconstruction Network aims to
reconstruct the lost spectral information based on the HSI
which is reconstructed in spatial mode, and generates the
estimated HR-HSI.

ratio (SNR), which leads to the low spatial resolution of hyper-
spectral images (LR-HSI). In contrast, multispectral systems
can acquire high spatial resolution of multispectral images
(HR-MSI). Thus, it is meaningful to reconstruct high spatial
resolution hyperspectral images (HR-HSI) with LR-HSI and
HR-MSI, which is called as hyperspectral and multispectral
image fusion .

In recent years, a number of researches have been done
in the field of hyperspectral and multispectral image fusion
[12]–[17], which can be roughly divided into two categories,
traditional methods and deep learning methods. In traditional
methods, there are some different approaches including ma-
trix factorization-based methods, Bayesian-based methods and
tensor-based methods. Although these methods have achieved
excellent performance on LR-HSI and HR-MSI fusion, it is
still challenging to efficiently pass messages across spatial
and spectral modes, which is crucial for improving the fusion
quality.

Compared with traditional methods, methods based on deep
learning, especially convolutional neural network (CNN) [18]–
[20], have shown superior performance owing to their powerful
feature-extraction ability. Hence, based on CNN, as shown
in Fig. 1, a Spatial-Spectral Reconstruction Network (SSR-
NET) is proposed for LR-HSI and HR-MSI fusion for the
first time in this paper. Different from the previous work, the
proposed method focuses on passing valuable messages across
spatial and spectral modes in an efficient and interpretable
manner. More concretely, the proposed SSR-NET is a three-
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stage network model made up of three modules: (1) Cross-
Mode Message Inserting (CMMI). (2) Spatial Reconstruction
Network (SpatRN) with the Spatial Edge Loss optimized by
Lspat. (3) Spectral Reconstruction Network (SpecRN) with the
Spectral Edge Loss optimized by Lspec.

Firstly, as the input of SSR-NET, the LR-HSI and HR-
MSI are sent into the CMMI, which maintains the valuable
spectral information of LR-HSI and spatial information of
HR-MSI, and then fuses them into a hyper-multiple spectral
image (HMSI) which has the same size as the reference HR-
HSI (i. e., the ground-truth HR-HSI). Secondly, the SpatRN
is designed to reconstruct the lost spatial information of
HMSI. However, CNN is a black-box model and the learned
features are lack of enough explaination. To assign the physical
meaning to Spatial Reconstruction Network, the spatial edge
loss of Lspat is presented to constrain SpatRN to focus on
spatial reconstruction. Finally, the SpecRN is designed to
reconstruct the lost spectral information from the reconstructed
HMSI in spatial mode. Similarly, the spectral edge loss of
Lspec is designed to make SpecRN pay attention to spectral
restoration.

In summary, the main contributions of this paper conclude
the following aspects:

1) Based on CNN, a novel Spatial-Spectral Reconstruction
Network (SSR-NET) is first proposed for more efficient
hyperspectral and multispectral image fusion in this pa-
per.

2) The proposed SSR-NET is a physical straight-forward
CNN model, which is under the constraint of Spatial
Edge Loss Lspat and Spectral Edge Loss Lspec. Lspat

and Lspec are specially designed for spatial and spectral
reconstruction.

3) Compared with seven state-of-the-art approaches, the
proposed SSR-NET achieves the best results on five
HSI datasets of Urban, Pavia University (PU), Pavia
Center (PC), Botswana and Indian Pines (IP), and the
competitive results on the dataset of Washington DC
Mall (WDCM). Such experimental results demonstrate
the effectiveness and superiority of the proposed SSR-
NET in LR-HSI and HR-MSI fusion.

The remainder of this paper is organized as follows: Section
II gives an introduction of the related works of LR-HSI and
HR-MSI fusion. In Section III, we describe the proposed
SSR-NET model in detail. The experimental results on four
datasets are analyzed in Section IV. In the end, conclusions
are provided in Section V.

II. RELATED WORK

In this section, some classical methods of HSI and MSI
fusion will be reviewed, which roughly fall into two categories:
traditional methods and deep learning methods.

A. Traditional Methods

Generally, traditional methods include the following three
types of methods:

1) Matrix Factorization-Based Methods: This type of meth-
ods usually unfold the 3-D HSI, where the three dimensions
respectively denote the width, height, and the number of
spectral bands, into a 2-D matrix, where the two dimensions
denote the flattened spatial locations and the band number.
In these methods, two matrices of an endmember matrix and
an abundance matrix are expected to be respectively estimated
from the LR-HSI and the HR-MSI, and are used to reconstruct
the corresponding HR-HSI.

For example, based on unsupervised unmixing, Yokoya et
al. [12] present a coupled nonnegative matrix factorization
(CNMF) method for LR-HSI and HR-MSI fusion, where the
abundance matrix of high spatial resolution acquired from
multispectral images and the hyperspectral endmember matrix
are integrated to generate a new HR-HSI. Then Lanaras et
al. [13] propose a method which concentrates on jointly the
spectral unmixing problem for both two input images, where
some constraints are added according to the physical properties
of spectral unmixing. In [14], Dong et al. present a sparsity-
based hyperspectral image super-resolution method on the
basis of dictionary learning and sparse representation. After
that, considering the ill-posed inverse problem, an ADMM-
based CO-CNMF algorithm is proposed by Lin et al. [21]
for further optimization of CNMF, where `1 norm and SSD
regularizers are incorporated and added to CNMF criterion.

2) Bayesian-Based Methods: This type of methods gen-
erally utilize the appropriate prior distribution of the given
images to solve the fusion problem of LR-HSI and HR-MSI.

For instance, a Bayesian sparse representation based ap-
proach is first proposed by Akhtar et al. [15]. In this work,
the non-parametric Bayesian dictionary learning is utilized to
learn the distributions of the scene spectrum and the proportion
of them in the image, where the distributions would be utilized
to compute sparse codes of the high resolution image. In [22],
Wei et al. propose a fast multi-band image fusion algorithm
(FUSE) which is based on a solution of a Sylvester equation.
Combining the alternating direction method of multiplier and
block coordinate descent, this algorithm can be easily extended
to calculate Bayesian estimators of fusion.

3) Tensor Factorization-Based Methods: Different from
matrix factorization-based methods, methods based on tensor
factorization typically treat the HSI as a 3-D tensor, which
has three modes as described above. In these methods, the
HR-HSI are cut apart into some cubes, and then the similar
cubes would be grouped based on the learned clusters and
some certain priors.

For example, on the basis of Tucker factorization, Dian et al.
first propose a novel HSI super-resolution method [16] which
is called as the NLSTF. It unifies the sparse tensor factorization
and the non-local means approach into one framework, and
thus considering the HSI super-resolution problem from the
point of the estimation of dictionaries and a sparse core tensor
for each cube. Similarly, a coupled sparse tensor factorization
based framework named as CSTF is proposed in [23], where
the estimation of the core tensor and three dictionaries are
formulated as a coupled sparse tensor decomposition of the
HR-MSI and LR-HSI. In [24], taking geometric structures into
account, a spatial-spectral-graph-regularized low-rank tensor
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decomposition method (SSGLRTD) is presented by Zhang et
al. Meanwhile, a ALM based algorithm is specially designed
for better optimization of the fusion model. Following the
previous work in [16], Dian et al. design a novel LTTR prior
in [25] to learn the relationship among the spectral, spatial,
and nonlocal modes of the nonlocal similar HR-HSI cubes. In
this work, the similar HR-HSI cubes are composed into a 4-D
tensor, and the ADMMs [26] algorithm is adopted to solve the
optimization problem.

B. Deep Learning Methods

With the rapid develpoment of deep learning methods,
especially convolutional network (CNN) [18]–[20], [27]–[29],
these types of methods have become a growing trend in all
kinds of hyperspectral image processing [30]–[32]. In LR-
HSI and HR-MSI fusion, deep learning methods show the
excellent performance. Different from traditional methods, in
deep learning-based approaches, various neural networks are
usually exploited to enhance the performance of image fusion
in a learnable manner.

For example, Palsson et al. [33] first propose a 3-D-
Convolutional Neural Network (CNN) to acquire HR-HSI
from LR-HSI and HR-MSI, where PCA prior is utilized for
dimensionality reduction of the fusion. After that, a deep
HSI sharpening method (DHSIS) is proposed by Dian et al.
[17], which learns the priors by residual learning to achieve
the regularization of image fusion problem. In [34], a novel
MS/HS fusion network is presented by Xie et al., which
considers the generation mechanism underlying the MSI/HSI
fusion data. Following that, based on CNN denoiser and
subspace representation, Dian et al. [35] propose a new HSI-
MSI fusion method which can be applied to different HSI
datasets without retraining. By utilizing techniques of network-
in-network convolutional unit, skip connection, and batch
normalization, Xu et al. [36] propose a two-branch network
(HAM-MFN) to gradually reconstruct HR-HSI via fusing LR-
HSI and HR-MSI at different scales, where a RAP loss is
designed to deal with spectral and spatial distortions. And
some other related deep learning methods including TFNet
[37], ResTFNet [37], SSFCNN [38], ConSSFCNN [38] and
MSDCNN [39] are introduced in detail in Section IV as the
comparative methods.

III. METHODOLOGY

In this section, the proposed Spatial-Spectral Reconstruction
Network (SSR-NET), which is shown in Fig. 2, will be intro-
duced in detail. Overall, the proposed SSR-NET is a physical
straight-forward CNN model and it mainly consists of three
modules: (1) Cross-Mode Message Inserting (CMMI). (2)
Spatial Reconstruction Network (SpatRN) with Spatial Edge
Loss (Lspat). (3) Spectral Reconstruction Network (SpecRN)
with Spectral Edge Loss (Lspec).

A. Cross-Mode Message Inserting

In the proposed SSR-NET, the reference HR-HSI and
the estimated HR-HSI are denoted as R ∈ RH×W×L and

Z ∈ RH×W×L, where H and W respectively represent the
dimensions of the height and width, and L represents the
number of spectral bands. Besides, its inputs are a LR-HSI
denoted as X ∈ Rh×w×L (h � H,w � W ) and a HR-MSI
denoted as Y ∈ RH×W×l (l � L). X and Y are respectively
sampled in the spatial and spectral mode, which are obtained
by: {

X = Gaussian(Z),
X = Bilinear(X, 1/r), (1){

Y(k) = Z(sk), k ∈ {1, ..., l},
sk = (k − 1) ∗ L/(l − 1), sk ∈ {s1, ..., sl}

(2)

where X is spatially downsampled by bilinear operation at
the ratio of r from Z, which is blurred by Gaussian filter in
advance. Y is sampled from Z at an equal interval of bands.
Y(k) represents the k-th band of Y, and {s1, ..., sl} represent
the sampled band numbers in HR-HSI.

The goal of Cross-Mode Message Inserting (CMMI) is to
produce a preliminary concatenated hyper-multiple spectral
image (HMSI) represented as Zpre ∈ RH×W×L, which takes
advantages of both the spatial information of HR-MSI and
the spectral information of LR-HSI preserving their relative
spatial-spectral position.

By utilizing bilinear interpolation, the LR-HSI of X would
be upsampled to the same size as the HR-MSI of Y in the
spatial mode, which is denoted as:

X ↑= Bilinear(X, r), (3)

where r is the upsampling ratio, and X↑ is the upsampled
LR-HSI.

Then the HR-MSI and the upsampled LR-HSI would be
preliminarily fused, which is formulated as:

Zpre(k) =

{
Y(k), if k ∈ {s1, ..., sl},
X(k) ↑, otherwise, (4)

where Zpre denotes the HMSI, and Zpre(k) is the k-th band of
HMSI. Similarly, Y(k) and X(k)↑ represent the k-th band of
HR-MSI and the upsampled LR-HSI, respectively. In this way,
the concatenated HMSI can contain both spatial and spectral
information of HR-MSI and LR-HSI.

To preliminarily pass the information between the modes of
spatial and spectral, a convolutional layer with the kernel size
set to 3 × 3 and spatial height and width stride set to 1 is
applied in HMSI. It is denoted as:

Zpre = ReLU(Convpre(Zpre)), (5)

where ReLU is the non-linear activation function of Rectified
Linear Unit [40].

B. Spatial Reconstruction Network with Spatial Edge Loss

In order to reconstruct the spatial information from Zpre,
another 3 × 3 convolutional layer with height/width stride set
to 1 serves as the Spatial Reconstruction Network (SpatRN),
which is formulated as:

Zspat = Zpre + Convspat(Zpre), (6)
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Fig. 2: The framework of the proposed SSR-NET.
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Fig. 3: The illustration of spatial and spectral edges.

TABLE I: The architecture and optimization loss of the variant
models of the proposed SSR-NET on Urban dataset.

Model Input Architecture Loss

Spat-CNN LR-HSI (X) Conv(3×3, L, L)
Conv(3×3, L, L) Lfus

Spec-CNN HR-MSI (Y) Conv(3×3, l, L)
Conv(3×3, L, L) Lfus

SpatR-NET HMSI (Zpre) Conv(3×3, L, L) Lspat

Conv(3×3, L, L) Lfus

SpecR-NET HMSI (Zpre) Conv(3×3, l, L) Lspec

Conv(3×3, L, L) Lfus

SSR-NET HMSI (Zpre)
Conv(3×3, L, L)
Conv(3×3, L, L) Lspat

Conv(3×3, L, L) Lspec+Lfus

where Convspat represents the convolutional layer. It is worth
mentioning that the skip-connection operation is used to
improve the model stability during the training stage.

However, due to the black-box characteristic of CNN, it
is uncontrollable for the learned feature mapping. As we all

know, the spatial edges of images contain the high frequency
feature, which are crucial for spatial reconstruction. To make
SpatRN focus on the restoration of spatial information, based
on spatial edges as shown in Fig. 3, a novel Spatial Edge
Loss (Lspat) is proposed in this paper to constrain the output
of SpatRN. Lspat is calculated by:

Espat1(i, j, k) = Zspat(i+ 1, j, k)− Zspat(i, j, k), (7)

Espat2(i, j, k) = Zspat(i, j + 1, k)− Zspat(i, j, k), (8)

Ēspat1(i, j, k) = Z(i+ 1, j, k)− Z(i, j, k), (9)

Ēspat2(i, j, k) = Z(i, j + 1, k)− Z(i, j, k), (10)

Lspat1 =

∑L
k=1

∑H−1
i=1

∑W
j=1(Espat1(i, j, k)− Ēspat1(i, j, k))2

2WL(H − 1)
,

(11)

Lspat1 =

∑L
k=1

∑H
i=1

∑W−1
j=1 (Espat2(i, j, k)− Ēspat2(i, j, k))2

2HL(W − 1)
,

(12)

Lspat = 0.5 ∗ Lspat1 + 0.5 ∗ Lspat2, (13)

where Espat1 ∈ R(H−1)×W×L and Espat2 ∈ RH×(W−1)×L

are the edge maps of Zspat along spatial height and width,
respectively. Similarly, Ēspat1 ∈ R(H−1)×W×L and Ēspat2 ∈
RH×(W−1)×L are the edge maps of the reference HR-HSI of
Zspat along spatial height and width, respectively. Lspat1 and
Lspat2 are the spatial height edge loss and spatial width edge
loss, which are calculated between Espat and Ēspat by the loss
function of Mean Squared Error (MSE). Finally, Lspat1 and
Lspat2 are fused into Lspat.

C. Spectral Reconstruction Network with Spectral Edge Loss

After spatial reconstruction, one more convolutional layer
serving as the Spectral Reconstruction Network (SpecRN)
with the same architecture as SpatRN is used to further
reconstruct the spectral information based on Zspat. It is
formulated as:

Zspec = Zspat + Convspec(Zspat), (14)
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where Convspec represents the convolutional layer. And the
skip-connection operation is also applied in SpatRN.

Similar to spatial edges, as shown in Fig. 3, the spectral
edges of bands contain the high frequency information that
are crucial for spectral reconstruction. To make SpecRN pay
attention to spectal restoration, the Spectral Edge Loss (Lspec)
is also proposed in this paper to constrain the output of
SpecRN. Lspec is calculated by:

Espec(i, j, k) = Zspec(i, j, k + 1)− Zspec(i, j, k), (15)

Ēspec(i, j, k) = Z(i, j, k + 1)− Z(i, j, k), (16)

Lspec =

∑L
k=1

∑H−1
i=1

∑W
j=1(Espec(i, j, k)− Ēspec(i, j, k))2

2HW (L− 1)
,

(17)
where Espec ∈ RH×W×(L−1) and Ēspec ∈ RH×W×(L−1)

are the edge maps of Zspec and Z along the spectral mode,
respectively. The spectral edge loss of Lspec is the MSE loss
of Espec and Ēspec. After CMMI, SpatRN and SpecRN, Zspec

is used as the final estimated HR-HSI denoted as Zfus. It is
fomulated as:

Zfus = Zspec, (18)

For Zfus, it is optimized by the fusion loss denoted as
Lspec, which is formulated as:

Lfus =

∑L
k=1

∑H
i=1

∑W
j=1(Zfus(i, j, k)− Z̄(i, j, k))2

2WHL
. (19)

In the proposed SSR-NET, the overall loss denoted as L is
the sum of Lspat, Lspec and Lfus:

L = Lspat + Lspec + Lfus, (20)

D. Variations of SSR-NET

To explore the effectiveness of the components of SSR-NET
including CMMI, SpatRN and SpecRN, five variant models
of Spat-CNN, Spec-CNN, SpatR-NET, SpecR-NET and SSR-
NET are designed for ablation experiments.

The architectures and the layer-wise loss of these five
models are provided in Table I. Under the constraints of fusion
loss of Lfus, Spat-CNN and Spec-CNN aim to reconstruct the
HR-HSI using LR-HSI and HR-MSI respectively. In contrast,
the inputs of SpatR-NET, SpecR-NET and SSR-NET are all
the HMSI. The SpatR-NET focuses on restoring the spatial
information of the HMSI with the guidance of Lfus and
the spatial edge loss of Lspat, while the SpatR-NET focuses
on restoring the spectral information of the HMSI with the
guidance of Lfus and the spectral edge loss of Lspec. SSR-
NET is the combination of SpatR-NET and SpecR-NET. In
this table, Conv(3×3, l, L) denotes the 3 × 3 convolutional
layer, whose input and output channel number are respectively
l and L with the height/width stride set to 1. Besides, each
convolutional layer is followed by the non-linear activation
function of ReLU .

IV. EXPERIMENTS

In this section, sufficient experiments are conducted on six
datasets to verify the effectiveness of the proposed SSR-NET.

Original Image Train Region

Test Region

Cropped
for Training

Zero 
Padding

Fig. 4: An example of the train and test regions of Urban
dataset. During the training stage, the test region in the dataset
is padded by zeros.

First, the experimental datasets and evaluation metrics are
introduced. Then the experimental settings are provided in
detail. Following that, the ablation experiments of SSR-NET
are performed to explore the role of its components. Moreover,
the comparison experiments of SSR-NET and some state-of-
the-art methods are conducted. Finally, we quantitatively anal-
yse the interpretability of SSR-NET and make a comparison
between SSR-NET and some other deep learning methods in
model size and test time.

A. Datasets

In this paper, six datasets are adopted to verify the ef-
fectiveness and generalization ability of the proposed SSR-
NET, including Urban, Pavia University (PU), Pavia Center
(PC), Botswana, Indian Pines (IP) and Washington DC Mall
(WDCM).

1) Urban: The HYDICE Urban dataset was obtained over
Copperas Cove, TX, USA, in 1995. In this dataset, there are
210 bands in total which cover the wavelengths from 0.4 to
2.5 µm with an interval of 10 nm. After removing the bands of
dense water vapor and atmospheric, the remaining 162 bands
are used in this paper, and the image of each band measures
307 × 307 pixels with a spatial resolution of 2 m.

2) Pavia University: The Pavia University (PU) dataset
was obtained by the Reflective Optics Spectrographic Imaging
System (ROSIS) sensor over Piavia University, Italy in 2003.
In this dataset, there are 103 bands covering the spectral range
from 0.43 to 0.86 µm with an interval of 10 nm, and the
image of each band measures 610 × 340 pixels with a spatial
resolution of 1.3 m.

3) Pavia Center: The Pavia Center (PC) dataset was ob-
tained by the same hyperion sensor of PU dataset with the
same spatial resolution as PU dataset. However, it has one
more band than PU dataset with the total number of bands as
103. The image of each band measures 1096 × 1096 pixels,
which is much larger than PU dataset.

4) Botswana: The Botswana dataset was obtained by the
hyperion sensor of the NASA EO-1 satellite over the Oka-
vango Delta, Botswana in 2001-2004. In Botswana, there are
242 bands in total which cover the spectral range from 0.4
to 2.5 µm with an interval of 10 nm. After removing the
uncalibrated and noisy bands of water absorption features,
the rest 145 bands are remained, and the image of each band
measures 1476 × 256 pixels with a spatial resolution of 30
m.
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(a) LR-HSI ↑ (b) Spat-CNN (c) Spec-CNN (d) SpatR-NET (e) SpecR-NET (f) SSR-NET (g) GT

Fig. 5: The fusion results of Urban based on different model variations, where ‘GT’ refers to the ground-truth image. The first
row shows the R-G-B images (26-11-1 bands) of the estimated HR-HSIs, and the second row shows the difference images
between the estimated R-G-B image and the reference R-G-B image (i. e., the ground-truth R-G-B image), which are processed
by pseudocolor technique.

(a) LR-HSI ↑ (b) CNMF (c) LTTR (d) MSDCNN (e) TFNet (f) ResTFNet (g) SSFCNN (h) ConSSF (i) SSR-NET (j) GT

Fig. 6: The fusion results of different methods on Urban dataset, where ‘ConSSF’ and ‘GT’ reprensent the ConSSFCNN and
the ground-truth image. The first row shows the R-G-B images (26-11-1 bands) of the estimated HR-HSIs, and the second
row shows the difference images between the estimated and the reference R-G-B images, which are processed by pseudocolor
technique.

5) Indian Pines: The Indian Pines (IP) dataset was obtained
by AVIRIS sensor over the Indian Pines test site, Indiana. In
this dataset, there are 224 bands covering the spectral range
from 0.4 to 2.5 µm. After removing the bands covering the
region of water absorption, there are 200 bands remained, and
the image of each band measures 145 × 145 pixels.

6) Washington DC Mall: The Washington DC Mall
(WDCM) dataset was obtained by the sensor of hyperspectral
digital imagery collection experiment (HYDICE) over the
National Mall in Washington, DC in 1995. In WDCM, there
are 210 bands in total which cover the wavelengths from 0.4 to
2.5 µm. After removing the bands of water vapor absorption,
the remaining 191 bands are used in this paper, and the image
of each band measures 1280 × 307 pixels with a spatial
resolution of 2.5 m.

B. Evaluation Metrics

Four widely used metrics are employed to evaluate the
performance of the proposed SSR-NET and the comparison
methods. Here, Rk(i, j) and Zk(i, j) denote the element value

at spatial location (i, j) in band k of the reference HR-HSI
and the estimated HR-HSI.

1) Root Mean Squared Error (RMSE): It can be used to
measure the difference between R and Z which is defined as:

RMSE =

√∑L
k=1

∑H
i=1

∑W
j=1(Rk(i, j)− Zk(i, j))2

HWL
,

(21)
where the smaller the RMSE is, the better the performance is.

2) Peak Signal-to-Noise Ratio (PSNR): The PSNR can
evaluate the spatial quality of the reconstructed HR-HSI in
unit of band. The PSNR of k-th band is defined as:

PSNR = 10 log10

(
max(Rk)2

1
HW ‖Rk − Zk‖22

)
, (22)

where Rk and Zk respectively represent reference image and
the estimated image of the k-th band. And ‖·‖2 refers to the
2-norm. The final PSNR is the average of the PSNRs of all
bands. The higher the PSNR is, the better the performance is.

3) Erreur Relative Globale Adimensionnelle de Synthèse
(ERGAS): The ERGAS [41] is specially designed for assess-
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(a) LR-HSI ↑ (b) CNMF (c) LTTR (d) MSDCNN (e) TFNet (f) ResTFNet (g) SSFCNN (h) ConSSF (i) SSR-NET (j) GT

Fig. 7: The fusion results of different methods on Pavia University dataset, where ‘ConSSF’ and ‘GT’ respectively reprensent
the ConSSFCNN and the ground-truth image. The first row shows the R-G-B images (67-29-1 bands) of the estimated HR-
HSIs, and the second row shows the difference images between the estimated and the reference R-G-B images, which are
processed by pseudocolor technique.

(a) LR-HSI ↑ (b) CNMF (c) LTTR (d) MSDCNN (e) TFNet (f) ResTFNet (g) SSFCNN (h) ConSSF (i) SSR-NET (j) GT

Fig. 8: The fusion results of different methods on Pavia Center dataset, where ‘ConSSF’ and ‘GT’ reprensent the ConSSFCNN
and the ground-truth image. The first row shows the R-G-B images (67-29-1 bands) of the estimated HR-HSIs, and the second
row shows the difference images between the estimated and the reference R-G-B images, which are processed by pseudocolor
technique.

(a) LR-HSI ↑ (b) CNMF (c) LTTR (d) MSDCNN (e) TFNet (f) ResTFNet (g) SSFCNN (h) ConSSF (i) SSR-NET (j) GT

Fig. 9: The fusion results of different methods on Botswana dataset, where ‘ConSSF’ and ‘GT’ reprensent the ConSSFCNN
and the ground-truth image. The first row shows the R-G-B images (48-15-4 bands) of the estimated HR-HSIs, and the second
row shows the difference images between the estimated and the reference R-G-B images, which are processed by pseudocolor
technique.

ing the quality of high resolution synthesised images, which
measures the global statistical quality of the estimated HR-
HSI. It is defined as:

ERGAS =
100

r

√√√√ 1

L

L∑
k=1

‖Rk − Zk‖22
µ2(Rk)

, (23)

where r refers to the ratio of the spatial down-sampling ratio
from HR-HSI to LR-HSI. And µ(Rk) denotes the mean value

of the reference image of the k-th band. The smaller the
ERGAS is, the better the performance is.

4) Spectral Angle Mapper (SAM): The SAM [42] is gener-
ally utilized to evaluate the spectral information preservation
degree at each pixel, which is defined as:

SAM = arccos

(
〈R(i, j),Z(i, j)〉
‖R(i, j)‖2 ‖Z(i, j)‖2

)
, (24)
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(a) LR-HSI ↑ (b) CNMF (c) LTTR (d) MSDCNN (e) TFNet (f) ResTFNet (g) SSFCNN (h) ConSSF (i) SSR-NET (j) GT

Fig. 10: The fusion results of different methods on Indian Pines dataset, where ‘ConSSF’ and ‘GT’ reprensent the ConSSFCNN
and the ground-truth image. The first row shows the R-G-B images (29-15-4 bands) of the estimated HR-HSIs, and the second
row shows the difference images between the estimated and the reference R-G-B images, which are processed by pseudocolor
technique.

(a) LR-HSI ↑ (b) CNMF (c) LTTR (d) MSDCNN (e) TFNet (f) ResTFNet (g) SSFCNN (h) ConSSF (i) SSR-NET (j) GT

Fig. 11: The fusion results of different methods on Washington DC Mall dataset, where ‘ConSSF’ and ‘GT’ reprensent the
ConSSFCNN and the ground-truth image. The first row shows the R-G-B images (55-35-11 bands) of the estimated HR-HSIs,
and the second row shows the difference images between the estimated and the reference R-G-B images, which are processed
by pseudocolor technique.

where R(i, j) and Z(i, j) respectively denote the spectral
vector of the reference and the estimated HR-HSI at the pixel
position of (i, j). Besides, 〈R(i, j),Z(i, j)〉 refers to the inner
product of R(i, j) and Z(i, j). The overall SAM is the average
of the SAMs of all pixels. The lower the SAM is, the better
the performance is.

C. Experimental Settings

For Indian Pines (IP) dataset which is limited by the spatial
resolution, the center 64 × 64 sub-region is cropped as the
test image, and the rest region is used for training. More
specifically, in each iteration, the training image with the
same spatial resolution of 64 × 64 is randomly cropped from
the training region. For all the other five datasets, the center
128 × 128 sub-region is cropped as the test image, and the
rest region is used for training. Similarly, in each iteration,
the training image with the same spatial resolution of 128
× 128 is randomly cropped from the training region. It is
worth mentioning that the training and test region are non-
overlapping, which is achieved by padding the test region with
zeros in the datasets during the training stage. An example of
the train and test regions of Urban dataset is illustrated in Fig.
4. The LR-HSI are down-sampled with the ratio of r set to 4
from the blurred HR-HSI, which is in advance processed by 5
× 5 Gaussian filter with the standard deviation set to 2. The

HR-MSI is composed of the five images, which are located in
HR-HSI at equal intervals.

Two traditional methods of CNMF [12] and LTTR [25],
and five deep learning methods of TFNet [37], ResTFNet
[37], SSFCNN [38], ConSSFCNN [38] and MSDCNN [39]
are selected as the comparison approaches to evaluate the
performance of the proposed SSR-NET. For the traditional
methods, except data processing, all the parameters are set
as the same as the original literatures. For all the deep
learning models, the channel number of its input and output are
adaptive to the used dataset. During the training stage, Adam is
selected as the optimizer. All the models are trained for 10,000
iterations with the learning rate of 1e-4. It is worth mentioning
that since the training images are randomly cropped from the
training area, in this paper, iteration is used as the interval of
metric measurement instead of epoch.

Besides, all the deep learning based experiments are im-
plemented by Pytorch 1.3.0 on Python 3.7. The computing
equipment contains the 64GB CPU memory and 1× GPU of
GeForce GTX 1080Ti.

D. Ablation Study of SSR-NET

In order to explore the role of the components of SSR-
NET in hyperspectral and multispectral image fusion, some
ablation experiments are conducted on the dataset of Urban
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(d) SAM

Fig. 12: The metrics between the proposed SSR-NET and three comparison methods of MSDCNN, ConSSFCNN and ResTFNet
on Urban dataset during the training stage.

TABLE II: The ablation experimental results of the proposed
SSR-NET on Urban dataset. The arrow attached to the metrics
points to the better performance. The best scores are marked
in bold.

Model Urban
RMSE↓ PSNR↑ ERGAS↓ SAM↓

Spat-CNN 18.1819 20.6904 9.8345 11.5203
Spec-CNN 7.7957 28.0460 3.8693 7.8680
SpatR-NET 15.5343 22.0573 8.5497 9.9719
SpecR-NET 7.0083 28.9709 3.3848 5.1665
SSR-NET 2.3693 38.3909 1.2173 2.3124

based on the five model variations of Spat-CNN, Spec-CNN,
SpatR-NET, SpecR-NET and SSR-NET.

The results of ablation experiments are shown in Table
II. Although SpatR-NET and SpecR-NET have the similar
network architectures with Spat-CNN and Spec-CNN, the first
two models perform quite better when compared to the last
two models. The reason is probably that the inputs of SpatR-
NET and SpecR-NET are both HMSI which contains more
information than a single LR-HSI or HR-MSI, and more valu-
able spatial/spectral feature can be learned under the guidance
of the spatial edge loss of Lspat and the spectrul edge loss
of Lspec. When comparing Spec-CNN and SpecR-NET with

Spat-CNN and SpatR-NET, it could be found that the first two
models reconstructing the spectral information have the better
performance than the last two models reconstructing the spatial
information. Such results indicate that spectral information is
easier to be reconstructed than spatial information. In other
words, the spatial information is much more complicated
than the spectral information. After combining the advantages
of SpatR-NET and SpecR-NET, SSR-NET achieves the best
image fusion performance, which is much better than each
individual of them.

E. Comparison with State-of-the-Art Methods

To verify the effectiveness of the proposed SSR-NET,
comparison experiments of the datasets of Urban, PU, PC and
Botswana are performed on seven state-of-the-art approaches,
including CNMF [12], LTTR [25], TFNet [37], ResTFNet
[37], SSFCNN [38], ConSSFCNN [38] and MSDCNN [39].
CNMF is a physical straight-forward matrix factorization
based method, which aims to utilize the hyperspectral end-
member matrix and the high-spatial-resolution abundance ma-
trix to simulate the HR-HSI based on LR-HSI and HR-
MSI. LTTR algorithm is a tensor-factorization based method,
which designs an LTTR prior to learn the relationships among
spectral, spatial, and nonlocal modes, and correspondingly
proposes a low tensor train (TT) rank (LTTR)-based HSI
super-resolution approach. TFNet, ResTFNet, SSFCNN, Con-
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TABLE III: The comparison results of the proposed SSR-NET
and seven state-of-the-art methods on Urban dataset. The best
scores are marked in red, and the second scores are marked
in green.

Method Urban
RMSE↓ PSNR↑ ERGAS↓ SAM↓

CNMF [12] 4.0198 36.0468 1.5612 2.4971
LTTR [25] 24.6837 20.2826 11.7672 9.1336
MSDCNN [39] 3.1317 35.9676 1.7652 3.1199
TFNet [37] 3.0405 36.2243 1.7146 2.8524
ResTFNet [37] 2.8916 36.6604 1.5980 2.7355
SSFCNN [38] 8.5801 27.2133 4.2196 8.7402
ConSSFCNN [38] 3.8841 34.0972 1.8671 3.1609
Our SSR-NET 2.3693 38.3909 1.2173 2.3124

TABLE IV: The comparison results of the proposed SSR-NET
and seven state-of-the-art methods on Pavia University dataset.
The best scores are marked in red, and the second scores are
marked in green.

Method Pavia University
RMSE↓ PSNR↑ ERGAS↓ SAM↓

CNMF [12] 7.5816 30.5356 3.8939 2.2469
LTTR [25] 9.4202 28.6496 5.5504 5.1883
MSDCNN [39] 2.3207 40.5032 1.6358 2.6309
TFNet [37] 2.2427 40.8004 1.6053 2.4890
ResTFNet [37] 2.0578 41.5477 1.5068 2.3517
SSFCNN [38] 1.9410 42.0550 1.3957 2.2121
ConSSFCNN [38] 2.3916 40.2420 1.6340 2.4235
Our SSR-NET 1.6447 43.4938 1.2146 1.9329

SSFCNN and MSDCNN belong to deep learning methods, but
they have different emphases. TFNet and ResTFNet are two-
stream networks that encode the spatial and spectral feature
independently and then decode the HR-HSI using the fusion
of spatial and spectral feature. Compared to TFNet, there are
extra skip-connection operations in ResTFNet. SSFCNN and
ConSSFCNN use the direct concatenated image of LR-HSI
and HR-MSI to predict the HR-HSI, where the latter con-
catenates the HR-MSI in each convolutional layer. Based on
residual learning and multiscale feature extraction, MSDCNN
presents a multiscale and multidepth CNN for remote sensing
image fusion.

1) Results on Urban: Firstly, the comparison experiments
based on the proposed SSR-NET and the aforementioned
seven comparative methods are conducted on Urban dataset
and the experimental results are provided in Table III. In order
to show the fusion performance intuitively, Fig. 6 illustrates
the fusion performance of all the used methods with the fusion
R-G-B images, which are selected from the estimated HR-
HSI, and the difference images of the fusion R-G-B images
and the corresponding reference R-G-B images. Among the
deep learning methods, the performance of SSFCNN on Urban
is not good enough, which falls far behind ConSSFCNN. It
indicates that the direct concatenation between HR-MSI and

TABLE V: The comparison results of the proposed SSR-NET
and seven state-of-the-art methods on Pavia Center dataset.
The best scores are marked in red, and the second scores are
marked in green.

Method Pavia Center
RMSE↓ PSNR↑ ERGAS↓ SAM↓

CNMF [12] 13.9777 25.2221 11.4360 4.3635
LTTR [25] 28.3373 19.0836 31.1229 17.0800
MSDCNN [39] 4,1687 35.7307 4.6840 5.4004
TFNet [37] 4.2473 35.5686 4.8295 4.8437
ResTFNet [37] 3.9258 36.2522 4.4449 4.6073
SSFCNN [38] 4.7720 34.5569 5.7509 5.7962
ConSSFCNN [38] 5.4998 33.3239 6.1594 6.1196
Our SSR-NET 3.4102 37.4752 3.8964 3.8618

TABLE VI: The comparison results of the proposed SSR-
NET and seven state-of-the-art methods on Botswana dataset.
The best scores are marked in red, and the second scores are
marked in green.

Method Botswana
RMSE↓ PSNR↑ ERGAS↓ SAM↓

CNMF [12] 26.3457 19.7166 9.4849 2.4866
LTTR [25] 9.1525 28.9000 14.2396 4.8682
MSDCNN [39] 0.5544 36.3497 3.1753 2.5996
TFNet [37] 0.4991 37.2622 2.7884 2.3161
ResTFNet [37] 0.4598 37.9749 2.6952 2.1537
SSFCNN [38] 1.4151 28.2108 11.4498 7.0424
ConSSFCNN [38] 2.5058 23.2475 15.2048 12.9631
Our SSR-NET 0.4106 38.9583 2.7994 2.0181

LR-HSI↑ is not suitable for Urban dataset.
Fig. 12 shows all the four evaluation metrics of the proposed

SSR-NET and comparitive methods on Urban dataset during
the training process. In the comparative methods, TFNet and
SSFCNN are not shown in the figure due to the limit of
space, and their better versions of ResTFNet and ConSSFCNN
are enough for comparison. It can be seen that although the
proposed SSR-NET has a larger fluctuation with noise, there
is an obvious advantage of the convergence speed in SSR-
NET when comparing with other methods, especially in the
early training iterations from 0 to 5,000. It mainly benefits
from the proposed loss of Lspec and Lspat. And it can be also
observed that our SSR-NET has the superior upper limits of
performance on the used metrics, which can be found in the
iterations from 5,000 to 10,000.

2) Results on Pavia University (PU): Secondly, Table IV
shows the experimental results on PU dataset, and Fig. 7 shows
the fusion R-G-B images and the different images. In Table
IV, it can be easily seen that for all four evaluation metrics,
the proposed SSR-NET achieves the best performance among
all the methods with the obvious advantage for PU dataset.
SSFCNN also obtains good performance on Pavia University
dataset. In contrast, ConSSFCNN performs worse than its sim-
ply verson of SSFCNN, which may be caused by the unstable
skip-concatenation that is harmful for training. And ResTFNet
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TABLE VII: The comparison results of the proposed SSR-
NET and seven state-of-the-art methods on Indian Pines
dataset. The best scores are marked in red, and the second
scores are marked in green.

Method Indian Pines
RMSE↓ PSNR↑ ERGAS↓ SAM↓

CNMF [12] 10.2174 27.9440 3.2092 2.8280
LTTR [25] 44.1083 15.2404 226.8429 19.0087
MSDCNN [39] 4.2063 34.4827 2.5249 2.9217
TFNet [37] 4.2682 34.3559 2.1629 2.9586
ResTFNet [37] 3.9815 34.9598 2.0790 2.8160
SSFCNN [38] 12.0730 25.3245 12.2866 9.6967
ConSSFCNN [38] 7.4048 29.5705 15.5868 5.6114
Our SSR-NET 3.8475 35.2573 8.5339 2.7886

TABLE VIII: The comparison results of the proposed SSR-
NET and seven state-of-the-art methods on Washington DC
Mall dataset. The best scores are marked in red, and the second
scores are marked in green.

Method Washington DC Mall
RMSE↓ PSNR↑ ERGAS↓ SAM↓

CNMF [12] 57.7621 12.8979 1356.2909 32.6896
LTTR [25] 18.6020 22.7396 301.2300 13.3933
MSDCNN [39] 2.7328 36.7345 0.4778 0.8993
TFNet [37] 1.9704 39.5756 0.3460 0.6756
ResTFNet [37] 1.7348 40.6816 0.3035 0.5836
SSFCNN [38] 16.4613 21.1373 3.1689 6.8978
ConSSFCNN [38] 14.0913 22.4876 2.6805 5.8734
Our SSR-NET 2.0591 39.1928 0.3603 0.7201

performs better when comparing to TFNet, which is probably
that the skip-connection in ResTFNet can extract more stable
feature based on step-wise residual strategy. According to Fig.
7, deep learning methods achieve superior fusion performance
than traditional methods. By taking advantages of both spatial
information in HR-MSI and spectral information in LR-HSI,
the proposed SSR-NET can obtain the best fusion quality in
a physical straight-forward manner.

3) Results on Pavia Center (PC): Table V lists the exper-
imental results of our SSR-NET and the same comparative
methods on PC dataset, and Fig. 8 illustrates the fusion
performance with the fusion R-G-B images of our SSR-NET
and the comparative methods. In Table V, it can be found that
for all four evaluation metrics, the proposed SSR-NET obtains
the superior performance than all the other comparative meth-
ods. Whether from the perspective of spatial reconstruction
quality (ERGAS), spectral reconstruction quality (SAM), or
the element-wise reconstruction quality (RMSE and PSNR),
the proposed SSR-NET has an obvious advantage. Similar to
the results of PU dataset, The deep learning methods are much
better than traditional methods. SSFCCN also performs worse
than ConSSFCNN and ResTFNet still has better fusion quality
than TFNet.

4) Results on Botswana: The experimental results of
Botswana dataset on the proposed SSR-NET and the compar-

TABLE IX: The metric scores measured between the reference
HR-HSI and the outputs of different stages in SSR-NET. The
best scores are marked in bold.

Output Urban
RMSE↓ PSNR↑ ERGAS↓ SAM↓

HMSI 14.5836 22.6058 7.9786 7.0940
Spectral HR-HSI 2.5869 37.6276 1.3295 2.6184
Spatial HR-HSI 2.3693 38.3909 1.2173 2.3124

ative methods are shown in Table VI, and the corresponding
fusion R-G-B images are illustrated in Fig. 9. Among all the
evaluation metrics, our SSR-NET obtains three best scores
of RMSE, PSNR and SAM, and one competitive score of
ERGAS. The first and second places of ERGAS are acquired
by ResTFNet and TFNet. In Botswana dataset, the spatial
resolution of a pixel is up to 30 m and thus its spatial
information is much more complex than other datasets with
the higher requirement for feature extraction. TFNet and
ResTFNet, which are much deeper than our three-layer SSR-
NET, have the advantage in extracting non-linear deep feature
that is benefical for spatial reconstruction. It is probably that
the proposed SSR-NET will perform better than TFNet and
ResTFNet if SSR-NET has the same model size as TFNet
and ResTFNet.

5) Results on Indian Pines (IP): Table VII lists the com-
parison results of IP dataset between the proposed SSR-
NET and the comparative methods, and Fig. 10 shows the
corresponding fusion R-G-B images. It can be seen that our
SSR-NET performs best among all the approaches in terms of
RMSE, PSNR and SAM. As for ERGAS, the proposed SSR-
NET achieves comparitive performance when comparing with
other state-of-the-art methods. There are two potential factors
leading to such the result. Firstly, it is probably that the metric
of ERGAS concentrates on global information. Instead, the
proposed Spatial Edge loss and Spectral Edge loss stress more
on the local features, ignoring the global features. Secondly,
limited by the model size, SSR-NET has a disadvantage in a
large receptive field.

6) Results on Wanshing DC Mall (WDCM): The results of
the proposed SSR-NET and the seven comparative methods on
WDCM dataset are shown in Table VIII, and the fusion results
of the used approaches on this dataset are illustrated in Fig. 11.
It can be seen that similar to TFNet, the experimental results of
our SSR-NET are in second echelon, which just slightly fall
behind ResTFNet. It is probably that compared with TFNet
and ResTFNet, the model size of the propsed SSR-NET is
rather smaller, which limits the performance of our model on
spatial feature extraction of a large receptive field. It is also our
future work in hyperspectral and multispectral image fusion.

Overall, the proposed SSR-NET has the best fusion perfor-
mance on the five datasets including Urban, PU, PC, Botswana
and IP, and achieves the comparable results in WDCM dataset.
Traditional methods of CNMF and LTTR perform worse
than deep learning methods. Among deep learning methods,
when compared to SSFCNN and ConSSFCNN, our SSR-
NET has more stable performance. When compared to TFNet,
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ResTFNet and MSDCNN, SSR-NET has not only better
performance but also much smaller model size.

F. Analysis of the Interpretability of SSR-NET

Although deep learning methods obtain excellent perfor-
mance, as black-box models, they are usually lack of inter-
pretability. Different from the existing deep learning methods
used in LR-HSI and HR-MSI fusion, the proposed SSR-
NET is interpretable to some extent. Due to the Cross-Mode
Message Inserting, all the outputs of different stages in SSR-
NET, which have the same size as the reference HR-HSI, can
serve as the estimated HR-HSI with defferent qualities. To
explore the process of the fusion HR-HSI in the proposed
SSR-NET, the outputs of different stages of Urban dataset are
quantitatively measured by the above four evaluation metrics.
The experimental results are shown in Table IX.

In the table, HMSI denotes the concatenation of LR-HSI
and HR-MSI according to Eqn (4). Spectral HR-HSI and Spa-
tial HR-HSI represent the output of Spectral Reconstruction
Network and Spatial Reconstruction Network respectively. It
could be found that the fusion qualities of HMSI, Spectral HR-
HSI and Spatial HR-HSI are increasing, which demonstrates
that the proposed SSR-NET is a physical straight-forward
model.

TABLE X: Model size, FLOPs and test time of the proposed
SSR-NET and the other deep learning models. The best data
are marked in bold.

Model Urban
Params (M) FLOPs (G) Test Time (Ms)

MSDCNN [39] 1.82 59.76 438
TFNet [37] 2.50 18.3 215
ResTFNet [37] 2.38 17.04 206
SSFCNN [38] 1.14 37.24 232
ConSSFCNN [38] 1.16 38.16 268
Our SSR-NET 0.69 23.26 151

G. Analysis of Model Complexity

For deep learning methods, model paramters and test time
are also the important indicators for performance evaluation.
In this sub-section, the number of model parameters, its
floating point operations (FLOPs) and its test time of the
proposed SSR-NET and the other five deep learning methods
are compared quantitatively, and the detailed data are provided
in Table X. The experiments are still performed on the test area
of Urban dataset with using only CPU.

According to the results, it is easily seen that the proposed
SSR-NET has an obvious advantage in both model parameters
and test time in comparison with the other deep learning
models. Compared to the TFNet, the parameters of our SSR-
NET is only 28% of TFNet but the test speed is about 50%
faster than it. As for FLOPs, the performance of our SSR-
NET just slightly falls behind TFNet and ResTFNet. It is
probably that all layers of our SSR-NET are operated at the
pixel level. Taking the fusion quality into consideration again,
the proposed SSR-NET has the overall advantage in the field
of LR-HSI and HR-MSI fusion.

V. CONCLUSION

In this paper, an interpretable CNN-based framework of
SSR-NET is proposed for hyperspectral and multispectral
image fusion. The proposed SSR-NET contains three compo-
nents of Cross-Mode Message Inserting, Spatial Reconstruc-
tion Network (SpatRN) and Spectral Reconstruction Network
(SpecRN). SpatRN and SpecRN are respectively optimized
by two kinds of losses of Spatial Edge Loss (Lspat) and
Spectral Edge Loss (Lspec), which are specially designed for
the spatial and spectral restoration. Comparative experiments
of the proposed SSR-NET and some state-of-the-art methods
are conducted on six widely used hyperspectral datasets,
including Urban, Pavia University, Pavia Center and Botswana.
The superior experimental results of SSR-NET demonstrate
the effectiveness of the proposed method. Besides the scores
of evaluation metrics, our SSR-NET also has an obvious
advantage in model size and test time in the type of deep
learning methods.
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