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Abstract—Data clustering, which is to partition the given data into different groups, has attracted much attention. Recently various
effective algorithms have been developed to tackle the task. Among these methods, non-negative matrix factorization (NMF) has been
demonstrated to be a powerful tool. However, there are still some problems. First, the standard NMF is sensitive to noises and outliers.
Although `2,1 norm based NMF improves the robustness, it is still affected easily by large noises. Second, for most graph regularized
NMF, the performance highly depends on the initial similarity graph. Third, many graph-based NMF models perform the graph
construction and matrix factorization in two separated steps. Thus the learned graph structure may not be optimal. To overcome the
above drawbacks, we propose a robust bi-stochastic graph regularized matrix factorization (RBSMF) framework for data clustering.
Specifically, we present a general loss function, which is more robust than the commonly used L2 and L1 functions. Besides, instead
of keeping the graph fixed, we learn an adaptive similarity graph. Furthermore, the graph updating and matrix factorization are
processed simultaneously, which can make the learned graph more appropriate for clustering. Extensive experiments have shown the
proposed RBSMF outperforms other state-of-the-art methods.
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F

1 INTRODUCTION

C LUSTERING, as one of the most fundamental and im-
portant tasks in machine learning and data mining

fields [1], has been extensively studied for many years.
Given some data samples, clustering aims to divide them
into several different groups, such that there is high simi-
larity for those samples within the same group. Because no
label information of data is utilized, clustering can be con-
sidered as a special unsupervised classification. Therefore,
the clustering performance mainly depends on the similar-
ity relationships between data [2]. In the past decades, lots
of approaches of clustering have been developed, such as k-
means [3], hierarchical clustering [4], spectral clustering [5],
subspace clustering [6], non-negative matrix factorization
(NMF) [7], and so on.

As one of the most widely used clustering methods,
NMF has drawn lots of attention in recent years. It was
originally proposed in the seminal works [7] [8] as a kind
of matrix factorization technique. Afterwards, Ding et al.
[9] found the connection between NMF and k-means, and
further proved NMF can be used as a clustering method.
NMF aims to approximate the original matrix with two
non-negative matrices. For data clustering, the two non-
negative matrices are called clustering centroid matrix and
clustering indicator matrix respectively. Such non-negative
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constraints make NMF easy to interpret the real-world data.
Since there is only additive (no subtractive and combinative)
operator, NMF can obtain a parts-based representation. So
NMF has the ability to learn the parts of objects like human
brain. Because of these advantages, NMF has been widely
applied into many applications. For example, in [10], Luo
et al. proposed the approach of non-negative latent factor
analysis, which is specifically designed for handling a high-
dimensional and sparse (HiDS) matrix. Its data density-
oriented modeling and learning strategies enable its high-
efficiency in both computation and storage [11]. Morevoer, it
has good representative learning ability on an HiDS matrix,
especially when its data density is extremely low [12]. In
addition, NMF has also achieved huge success in the fields
of face recognition [13], document clustering [14], image
annotation [15], crowd analysis [16] and co-clustering [17].

Although NMF has acquired good performance in most
tasks, there are still some limitations. One main problem
is that the standard NMF utilizes the Frobenius norm (i.e.,
L2 loss function) to define the objective function, which is
widely considered unstable to noises and outliers. However,
most real-world data contains noises and outliers in practi-
cal applications. Although L2 loss function has some good
mathematical properties and is usually applied in other
tasks, it is not the best choice for the robustness. Kong
et al. [18] has proven the standard NMF using Frobenius
norm is most suitable for the data with the Gaussian noises
(i.e., zero-mean normal distribution noises). However, most
actual data does not satisfy the assumptions. In order to de-
crease the sensitivity for noises and outliers, Kong et al. [18]
proposed a robust `2,1-NMF, which replaces the Frobenius
norm with `2,1 norm to measure the reconstructed errors.
Comparing with the standard NMF, `2,1-NMF removes the
square of errors such that a few outliers can not dominate
the loss function. Besides, `2,1-NMF can be better applied
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for the data with the Laplacian noises. Although `2,1-NMF
improves the robustness of NMF, it is still influenced by
some very large noises. Only removing the square of errors
is not enough.

Another main problem is that the local data structures
are ignored, which makes the original NMF fails to preserve
the data correlation of neighboring points. In order to cope
with the problem, many graph-based NMF models [19]
[20] [21] [22] [23] have been proposed to incorporate the
essential manifold structures. Such methods assume that
data samples with small distance have high probability of
belonging to the same cluster. It is a reasonable manifold
assumption and has derived many manifold learning meth-
ods [24] [25]. Most graph regularized NMF models first
construct a similarity graph based on the distances of data
samples. And then matrix factorization is performed by con-
straining the encoding matrix with the constructed graph.
Therefore, graph-based NMF models strongly depend on
the initial graph. If the quality of the input graph is low,
the performance of NMF would be poor. Therefore, some
problems come with these grapd-based NMF methods.
Firstly, most methods usually apply some simple methods
to construct the initial graph, such as 0-1 weighting and
heat kernel weighting [19]. So the graph may be of low
quality. Secondly, once the similarity graph is built for NMF,
it would be fixed in the process of matrix factorization. So
the graph may be not the optimal for NMF and would limit
the performance for clustering task.

To address the above drawbacks, a robust bi-stochastic
graph regularized matrix factorization (RBSMF) framework
is proposed in this paper. First, we present a new robust
Hx(x), which is a general loss function and can be used in
NMF to improve its robustness. Second, a better graph is
learned by bi-stochastic matrix based on the input graph.
Traditional graph construction methods (i.e., ε-ball graph,
k-nn graph [5]) only employ the pairwise distances of the
original data. Our graph learning strategy combines both
the original data and its new encoding matrix to learn a
better graph. Third, the proposed RBSMF simultaneously
decomposes the given data matrix and learns an adaptive
graph, which is not fixed one and helps to obtain better
clustering indicator matrix. Finally, we summarize the main
contributions of the paper as follows.

• We propose a simple and effective loss function
Hx(x) to measure the reconstruction errors of NMF.
It has the following two main advantages: 1) By mak-
ing the larger noises and outliers have the smaller
weight on the whole loss, the proposed Hx(x) has
the better robustness than the widely used L2 and
L1 loss functions. 2) It is a general loss function
and can be extensively used for other reconstruc-
tion problems, such as linear regression, principal
component analysis (PCA), and etc. Besides, we also
derive an efficient optimization algorithm to solve
the problems associated with Hx(x).

• We present an adaptive bi-stochastic graph regular-
ized NMF. Most graph construction methods only
utilize the original data to get an input graph, which
may be not appropriate. Combining the low-noise
encoding matrix, the adaptive graph learning can

learn a better high-quality graph by bi-stochastic
matrix from an initial low-quality graph. Instead of
fixing the input graph like most graph-based NMF,
our method can update dynamically graph such that
the local geometrical structures are fully exploited.

• The connection between iterative reweighted algo-
rithm and NMF is built in this paper. We summarize
a new important and valuable rule, i.e., for any given
loss function f(x) to measure the reconstruction er-
rors of NMF, it can be uniformly and easily solved by
iterative reweighted algorithm. But traditional ways
of solving f(x)-NMF need to employ different spe-
cific algorithms, which may be complicated. The rule
has been verified correctly by the original NMF and
`2,1-NMF. Also we employ the rule to successfully
solve the proposed robust Hx-NMF.

• We develop a general robust and graph-based NMF
framework for data clustering. The proposed frame-
work mainly incorporates two powerful tools into
the original NMF and greatly improves the clustering
performance of NMF. The first tool is robust loss
function. It makes the proposed RBSMF framework
has less sensitivity to noises and outliers. The second
tool is adaptive graph learning strategy. It helps
to learn a high-quality graph to regularize NMF.
Certainly, the general framework also can use other
(not just the proposed RBSMF) robust functions and
graph learning strategies to improve NMF.

The remainder of the paper is organized as follows.
Section 2 introduces some related works about robust NMF
and graph regularized NMF. Section 3 gives some brief
reviews of iterative reweighted algorithm, NMF and `2,1-
NMF. Section 4 proposes a general loss function Hx(x),
the robust Hx-NMF, and the RBSMF framework. Section
5 derives an effective optimization algorithm to solve the
proposed RBSMF framework. Section 6 shows extensive
experiments on the proposed Hx-NMF and RBSMF. Finally,
section 7 concludes the paper and gives some future works.

2 RELATED WORK

In this paper, we mainly focus on two kinds of widely
studied NMF, i.e., robust NMF and graph regularized NMF.
Therefore, we will introduce some related works about them
in this section.

2.1 Robust NMF
Due to using the least square error function, the original
NMF is sensitive to noises and outliers. This leads to that
NMF fails to accurately decompose most real-world data
with some large noises in actual applications. To improve
the robustness of NMF, various robust NMF methods have
been developed. Hamza et al. [26] presented the L1 + L2

function to define the loss function of NMF. L1+L2 function
combined the advantages of L2 and L1 functions, and
became a more robust loss function. However, the solving
algorithm of the proposed objective function was a general
gradient descent method, which was very time-consuming.
As was mentioned in section 1, Kong et al. [18] proposed
the `2,1-NMF which used `2,1 norm to measure the loss.
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Due to removing the square of reconstructed errors, `2,1-
NMF was more robust than the original NMF. In [27], a
direct robust matrix factorization model was developed for
anomaly dection. It applied two constraints (low-rank clean
matrix and sparse noises) to improve the robustness of ma-
trix factorization. Zhang et al. [28] presented an assumption
that noises are sparse and used a matrix to extract the
sparse noises. This method decomposed the original data
into one sparse matrix, and two non-negative matrices. So
the robustness was also improved. Moreover, Shen et al. [29]
also proposed to encode the noises and outliers with an L1

regularized sparse term. Meanwhile, an effective iterative
solving algorithm was developed to obtain the desired
clean factorization matrices. Considering that maximum
correntropy criterion (MCC) has acquired some success to
handle non-Gaussian noises and outliers, Peng et al. [30]
proposed to employ MCC to measure the reconstructed
errors of NMF. Besides, an L1 sparse constraint on non-
negative encoding matrix was also utilized to improve the
clustering performance.

2.2 Graph Regularized NMF

As is well known to us, NMF decomposes the given data
matrix into two non-negative matrices. But it only utilizes
the global data information and ignores the local struc-
tures of neighboring data. This makes the ability of NMF
to acquire discriminative data representation is not fully
exploited and the clustering performance of NMF is also
strongly restricted. To overcome the limitations, many rele-
vant studies, which incorporate the manifold learning into
NMF, have been developed in recent years. Cai et al. [19]
proposed a novel graph regularized NMF (GNMF), which
constructed an affinity graph to encode the low dimensional
manifold for NMF. Thus the geometrical information of
data was integrated into NMF and the data representation
became more compact and discriminative. Considering that
GNMF still used Frobenius norm based NMF, which was
sensitive to noises and outliers, Huang et al. [20] presented
a robust manifold regularized NMF (RMNMF), which re-
placed Frobenius norm with `2,1 norm to measure the loss.
The operation enhanced the robustness of NMF. Besides,
RMNMF added an orthogonal constraint on clustering indi-
cator matrix, which improved the clustering results of RM-
NMF. Furthermore, Li et al. [31] indicated that most useful
information of data was hidden in the low-rank parts. So
the work [31] combined low rank representation (LRR) and
Laplacian graph to design a new non-negative low-rank ma-
trix factorization. However, all the above graph regularized
NMF methods used the given fixed graph, which may be not
optimal for NMF. If the input graph was of low-quality, the
performance of NMF would be poor. Afterwards, Huang
et al. [32] developed a more effective NMF with adaptive
neighbors (NMFAN), which learned an adaptive graph for
NMF and better utilized the manifold structures of data.
However, NMFAN had too many hyperparameters to be
tuned, which would cost lots of time and was difficult to be
applied in practical applications.

For better describing the proposed method, we summa-
rize all notations in Table 1.

TABLE 1
Descriptions of all notations

notations descriptions

Φ(·) a general loss function

(·)Hx the simplification of
∑

i log(1 + ‖(·)i‖2)

L2(·) L2 loss function

L1(·) L1 loss function

ψ(ei) dΦ(ei)/dei, influence function

w(ei) dψ(ei)/dei, weight function

‖·‖F Frobenius norm

‖·‖2 `2-norm of a vector

‖·‖2,1 `2,1-norm

Tr(·) the trace of a matrix

diag(·) the column vector composed of diagonal
elements of a square matrix

LS Laplacian matrix

µ, ρ ALM parameters

α, β regularization parameters

3 PRELIMINARIES

In this section, we briefly review some important prelimi-
naries. One of them is the iterative reweighted algorithm,
which is usually used to solve the general reconstruction
problem. Then we introduce two widely studied NMF, i.e.,
the standard NMF and the robust `2,1-NMF. After reviewing
the related preliminaries, we will propose a more robust
NMF and build a connection between iterative reweighted
algorithm and NMF with any loss functions in next section.

3.1 Iterative Reweighted Algorithm

Denote the reconstruction error of the i-th sample by ei,
which is the difference between the true value and recon-
structed value of the i-th sample. The general reconstruction
problems can be formulated as the following objective func-
tion [33]

min
∑
i

Φ(ei), (1)

where Φ(·) is a general loss function. It needs to satisfy the
condition that Φ(ei) is an increasing function with respect to
|ei|. Assume that there are m unknown variables, denoted
by p = [p1, p2, ..., pm]T , to be solved in problem (1). We
can obtain the optimal solution by making the derivative of
problem (1) be zero, which is

∑
i

ψ(ei)
∂ei
∂pj

= 0, j = 1, 2, ...,m, (2)

where ψ(ei) = dΦ(ei)/dei is called influence function.
Furthermore, Eq. ( 2) can be rewritten as

∑
i

w(ei)ei
∂ei
∂pj

= 0, j = 1, 2, ...,m, (3)
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where w(ei) is called weight function [33]. It is a very im-
portant function for the subsequent algorithms. The weight
function w(x) is defined as

w(x) =
ψ(x)

x
=

Φ′(x)

x
. (4)

It can be observed easily that Eq. (3) is also exactly the
solution of the following iterative reweighted problem

min
∑
i

w(ek−1i )e2i , (5)

where the superscript k − 1 stands for the (k-1)-th iteration.
Each iteration of solving problem (5) can be divided into two
steps. Firstly, consider the weight w(ek−1i ) as a constant, and
then obtain the optimal solution according to the specific
form of problem (5). Secondly, recompute the weight value
of w(ek−1i ) according to the current reconstructed error eki
and it would be used during the next iteration.

Finally, the detailed iterative reweighted algorithm for
solving the general reconstructed problems like (1) is
demonstrated as Algorithm 1.

Algorithm 1 iterative reweighted algorithm for solving
problem (1)
Input: The loss function Φ(x).
Output: The optimal solution of problem (1).
Initialize: Compute the corresponding weight function
w(x) of the given loss function Φ(x). The original problem
(1) is then converted as the iterative reweighted problem (5).
While not converged do

1) Fix w(ek−1i ), and solve problem (5).
2) Recompute the weight value of w(eki ).

End while

3.2 NMF and `2,1-NMF

Denote the given data matrix by X = [X1, X2, ..., Xn] ∈
Rm×n, where each column represents a data sample. m
and n represent the number of features and samples, re-
spectively. NMF aims to find two non-negative matrices
U ∈ Rm×k and V ∈ Rn×k, which can well reconstruct data
matrix X as

X ≈ UV T . (6)

A commonly used objective function, which uses Euclidean
distance to measure the quality of reconstruction, can be
seen as follows

min
U≥0,V≥0

‖X − UV T ‖2F =
n∑
i=1

‖(X − UV T )i‖22, (7)

where ‖·‖F is Frobenius norm. For the arbitrary matrix M ∈
Rm×n, the Frobenius norm of M is defined as ‖M‖F =√∑n

j

∑m
i M

2
i,j . ‖(X−UV T )i‖2 is the reconstructed error of

the i-th sample. Problem (7) is proven convex with respect
to U only or V only. Therefore, it is impractical to obtain
the globally optimal solution of problem (7). Fortunately,
Lee et al. [8] found a simple iterative updating algorithm to

acquire the locally optimal U and V . The detailed algorithm
for solving problem (7) is given as

Uik = Uik
(XV )ik

(UV TV )ik
, (8)

Vjk = Vjk
(XTU)jk

(V UTU)jk
. (9)

Because the standard NMF (7) uses the square of re-
constructed errors to define the loss, some large noises
and outliers would easily dominate the objective function.
This makes the standard NMF very sensitive to noises and
outliers. To improve the robustness of NMF, Kong et al. [18]
proposed a more robust `2,1-NMF, which replaced Frobe-
nius norm with `2,1 norm to measure the reconstructed
errors. The objective function of `2,1-NMF can be seen as
follows

min
U≥0,V≥0

‖X − UV T ‖2,1 =
n∑
i=1

‖(X − UV T )i‖2, (10)

where ‖·‖2,1 denotes the `2,1-norm. For the given ma-
trix M ∈ Rm×n, its `2,1-norm is defined as ‖M‖2,1 =∑n
j

√∑m
i M

2
i,j . It can be clearly observed that `2,1-NMF

uses the original reconstructed error ‖(X − UV T )i‖2, and
removes the square. Therefore, `2,1-NMF can better handle
noises and outliers than the standard NMF. Moreover, Kong
et al. [18] also provided an effective iterative updating algo-
rithm as follows to solve `2,1-NMF

Uik = Uik
(XWV )ik

(UV TWV )ik
, (11)

Vjk = Vjk
(WXTU)jk

(WV UTU)jk
, (12)

Wi = 1/‖(X − UV T )i‖2, (13)

where W is a diagonal weight matrix with the diagonal
element Wi. Experimental results [18] have shown that `2,1-
NMF can improve the robustness of NMF and achieve the
better clustering performance.

4 THE PROPOSED HX-NMF AND RBSMF
In this section, we firstly propose a general loss function
Hx(x), and then develop a more robust Hx-NMF using
Hx(x) function. After that, we derive a very efficient op-
timization method to solve the proposed Hx-NMF by iter-
ative reweighted algorithm. Finally, combining the robust
Hx-NMF and bi-stochastic graph learning strategy, we pro-
pose the RBSMF framework for data clustering.

4.1 Robust Loss Function Hx(x)

In this subsection, we propose a robust function Hx(x) and
its important properties are also given. Note that Hx(x) is
a general loss function which can be extensively applied in
other reconstructed problems.

As we all know, there exists two widely used loss func-
tions, L2 and L1 functions, and L1 function is more robust
than L2 function. Here, we propose a general loss function,
called Hx(x), which is more robust than L1 function. To be
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specific, the three loss functions, their influence functions
and weight functions are shown as follows

Hx(x) = c ∗ log(1 +
|x|
c

),

ψHx(x) = c
sgn(x)

1 + |x|
c

, wHx(x) =
c

|x|(1 + |x|
c )
,

(14)

L2(x) =
x2

2
, ψL2(x) = x, wL2(x) = 1, (15)

L1(x) = |x|, ψL1(x) = sgn(x), wL1(x) =
1

|x|
. (16)

In our proposed loss function Hx(x), c > 0 is a constant
and we set c = 1 in subsequent analyses. It may have been
noticed that the standard NMF and `2,1-NMF employ L2

and L1 function respectively as their loss functions. Because
the reconstructed error ‖(X − UV T )i‖2 is always greater
than 0, the absolute value symbols (|·|) of (14) and (16) can
be removed.

The influence function ψ(x) can reveal the influence of
the reconstructed errors on the whole loss. For instance,
for the L2 function L2(x) = x2

2 , its influence function is
ψL2

(x) = x. This indicates the whole loss of L2 function
increases linearly with respect to the reconstructed errors.
That is non-robust and sensitive to noises and outliers.
Besides, the influence function of L1 function is ψL1

(x) = 1
(due to x > 0, sgn(x) = 1). This implies that no matter
how large the reconstructed errors are, they would has the
same effect on the whole loss. From this perspective, we also
prove that L1 loss is more robust that L2 loss. Similarly, for
the proposed Hx(x) loss function, its influence function is
as Eq. (14). Due to c = 1 and x > 0, the influence function
of H(x) can be simplified into ψHx(x) = 1

1+x . It can be
seen clearly that ψHx(x) is a strictly decreasing function,
i.e., the larger the reconstructed error is, the less influence
it has on the whole loss. Therefore, comparing with L2 and
L1 functions, the proposed Hx(x) is the most robust loss
function. In order to better understand the superiority of
the proposed Hx(x), we draw the loss functions of Hx(x),
L2(x) and L1(x) in Fig. 1. In particular, we can see from Fig.
1 that: 1) Hx(x) ≤ L1(x) whatever x-value is; 2) the value
of Hx(x) increases very slow. This indicates that Hx(x)
can decrease the influence of noises and outliers rather
than enlarging the errors like L2(x), or keeping the errors
unchanged like L1(x). Therefore, we also reach the same
conclusion that the proposed Hx(x) is the most robust loss
function among the three functions according to Fig. 1.

4.2 Robust NMF Using Hx(x)

In this subsection, we propose a new robust NMF using the
proposed robust loss fuction Hx(x). It is more robust than
the original NMF and `2,1-NMF. Besides, the optimization
algorithm is very efficient and has the almost same compu-
tational cost as the original NMF.

By considering Hx(x) as the objective function, the new
robust NMF model, called Hx-NMF, is formulated as

min
U≥0,V≥0

n∑
i=1

log(1 + ‖(X − UV T )i‖2). (17)
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Fig. 1. Curves of the loss functions of Hx(x), L2(x) and L1(x).

For simplifying the representation, we also use (X −
UV T )Hx to denote the objective function of Hx-NMF. Note
that the new proposed Hx-NMF model is difficult to solve
than the standard NMF. One main contribution of the pa-
per is to build a connection between NMF and iterative
reweighted algorithm, and derive an effective and elegant
optimization method to solve Hx-NMF. To be specific,
Hx(x) function and ‖(X − UV T )i‖2 in Eq. (17) can be
considered as Φ(·) function and ei in Eq. (1) respectively.
According to the iterative reweighted algorithm in subsec-
tion 3.1, the proposed Hx-NMF (17) is first converted to the
following iterative reweighted problem:

min
U≥0,V≥0

∑
i

Wi ∗ ‖(X − UV T )i‖22

⇐⇒ min
U≥0,V≥0

Tr(X − UV T )W (X − UV T )T ,
(18)

where Tr(·) stands for the trace of a matrix. W is a diagonal
matrix whose diagonal element is the weight Wi of each
sample. Next, we will discuss how to solve the proposed
Hx-NMF. Denote Aik and Bjk as the Lagrange multipliers
for variables Uik and Vjk respectively, and then we get the
following Lagrangian function

min
U≥0,V≥0

Tr(X − UV T )W (X − UV T )T

+ Tr(AUT ) + Tr(BV T ).
(19)

By making the partial derivatives with respect to U and V
be 0, we obtain the following equations

U : 2UV TWV − 2XWV +A = 0, (20)

V : 2WV UTU − 2WXTU +B = 0. (21)

According to KKT conditions AikUik = 0 and BjkVjk = 0,
we have

U : (UV TWV )ikUik − (XWV )ikUik = 0, (22)

V : (WV UTU)jkVjk − (WXTU)jkVjk = 0. (23)

The two equations suggest the following updating rules.
Besides, combining the updating of the weight matrix W ,
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we obtain the final optimization algorithm to solve the
proposed Hx-NMF,

Uik = Uik
(XWV )ik

(UV TWV )ik
, (24)

Vjk = Vjk
(WXTU)jk

(WV UTU)jk
, (25)

Wi =
1

‖Ei‖2 ∗ (1 + ‖Ei‖2)
, (26)

Ei = (X − UV T )i. (27)

By observing the above updating rules, we find that the
difference between the solving algorithms of the proposed
Hx-NMF and `2,1-NMF is only the updating of W . In
fact, we can consider iterative reweighted algorithm as a
unified framework to solve the standard NMF, `2,1-NMF
and the proposed Hx-NMF. For the standard NMF and `2,1-
NMF, the updating of W is Wi = 1 and Wi = 1/‖Ei‖2
respectively according to Eq. (15) and Eq. (16).

4.3 Robust Bi-stochastic Graph Regularized NMF
In this subsection, we firstly analyse some problems of
the existing graph regularized NMF. In order to handle
the problems, we present to use bi-stochastic matrix to
adaptively learn a better graph from an input low-quality
graph.

Due to the non-negative constraints on U and V , NMF
can acquire part-based representation for given data matrix
X . Therefore, NMF gives a better physiological and psycho-
logical interpretation than other methods for non-negative
data, such as documents and face images. However, as is
seen from (7), NMF can only explore the global structure of
data X . So some graph-regularized variants are presented.
A typical variant is GNMF [19] which characterizes the
local data relationships by k-nearest neighbor (k-nn) graph.
GNMF is to solve the following problem

min
U≥0,V≥0

‖X − UV T ‖2F + λTr(V TLSV ), (28)

where LS is graph Laplacian defined as LS = DS − S. S
is similarity matrix, and the diagonal matrix DS is called
degree matrix with the elements Dii =

∑n
j Sij . The second

term encourages that samples with higher similarity have
smaller distance, which improves the original NMF by
exploiting local geometric features.

However, the graph constructed by k-nn is too simple
and is not discriminative enough. It can not well represent
the original data structure. Besides, the input graph is fixed
in the process of matrix factorization. In this paper, we focus
on the more high-quality graph construction to improve
the performance of NMF, thus clustering result also would
become better. Given an initial low-quality graph H , we
want to learn a high-quality graph S based on H . Generally
speaking, S should has the following properties. First, S
depicts the probability of each two data samples to be
neighbors. So the sum of every row of S is 1, i.e., S1 = 1.
Then LS = DS − S = I − S, where I is identity matrix.
Second, S represents the similarity of each pair of points. So
it needs to be non-negative and symmetric, i.e., S = ST , and
S ≥ 0. With the above constraints (i.e., S ≥ 0, S = ST , and
S1 = 1) on similarity matrix S, it is also called bi-stochastic

matrix [34] [35] [36]. Besides, according to the graph theory
[5], each vertex is not allowed to be connected by itself. So
we add the constraint diag(S) = 0. Finally, we can learn
a bi-stochastic matrix from the input graph H as the new
graph by solving

min
S

‖S −H‖2F
s.t. S ≥ 0, S = ST , S1 = 1, diag(S) = 0.

(29)

Combining the robust Hx-NMF (17), we propose the
following robust bi-stochastic graph regularized matrix fac-
torization (RBSMF) framework

min
U,V,S

(X − UV T )Hx + αTr(V TLSV ) + β‖S −H‖2F

s.t. V ≥ 0, V TV = I, S ≥ 0, S = ST ,

S1 = 1, diag(S) = 0.
(30)

where α and β are two regularization parameters, which
control the weights of manifold learning term and graph
learning term respectively. (X − UV T )Hx is the simplifi-
cation of

∑n
i=1 log(1 + ‖(X − UV T )i‖2). Furthermore, the

orthogonal constraint V TV = I has the following two
advantages: 1) It guarantees the solution of RBSMF is
unique. Assume that U∗ and V ∗ are the solutions of the
proposed RBSMF (30), and then for any given positive
diagonal matrix D, UD and V D−1 would have the same
value in (X−UV T )Hx and a lower value in Tr(V TLSV ). To
eliminate the uncertainty, the constraint V TV = I is added
into the proposed RBSMF. 2) The final clustering results
can be obtained directly from clustering indicator matrix V
without employing other post-processing algorithms (e.g.,
k-means) like NMF and GNMF. Note that the non-negative
constraint on U is dropped, suggested by [20], to make the
proposed RBSMF applicable for mixed data.

In a word, the proposed RBSMF can improve the robust-
ness and learn a high-quality graph adaptively to obtain
more important and accurate local structure information,
which would definitely give a better performance of the
clustering task. Moreover, compared with NMFAN which
is also an adaptive graph regularized NMF method, RBSMF
does not have many hyperparameters to be tuned and is
more suitable for practical applications.

5 OPTIMIZATION

Since we learn the bi-stochastic graph S and clustering
indicator matrix V simultaneously, and the original F -norm
in NMF is replaced with Hx(x) function, the conventional
iterative updating algorithm in [8] is no longer suitable for
our proposed RBSMF. In this section, we develop a new
iterative algorithm, which is based on Augmented Lagrange
Multiplier (ALM) [37], to solve the proposed objective func-
tion (30). In order to make the problem (30) easily solvable,
we firstly add two auxiliary variables Z and E. Then the
equivalent problem of (30) can be obtained as follows

min
U,V,Z,E,S

(E)Hx + αTr(V TLSZ) + β‖S −H‖2F

s.t. Z ≥ 0, Z = V, V TV = I, S ≥ 0, S = ST ,

S1 = 1, diag(S) = 0, E = X − UV T .

(31)
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Based on problem (31), the augmented Lagrangian func-
tion is written as

min
U,V,Z,E,S

(E)Hx + αTr(V TLSZ) + β‖S −H‖2F

+
µ

2
‖Z − V +

Y1
µ
‖2F +

µ

2
‖X − UV T − E +

Y2
µ
‖2F

s.t. Z ≥ 0, V TV = I, S ≥ 0, S = ST ,

S1 = 1, diag(S) = 0,

(32)

where µ is the penalty coefficient to control the unequal
level of three equation constrains, and Y1, Y2 are Lagrange
multipliers. Then it is easy to solve problem (32) by alterna-
tive optimization strategy, i.e., when updating a variable, all
the other variables are fixed and viewed as constants. The
detailed updating steps can be seen as follows

Update E: fix U , V , Z , S, and then E can be solved as
follows

min
E

(E)Hx +
µ

2
‖X − UV T − E +

Y2
µ
‖2F . (33)

Another contribution of this paper is that we derive an effec-
tive optimization algorithm to solve a general problem like
(33). We summarize the solving algorithm as the following
Theorem 1 and also give the detailed proof.

Theorem 1 Given a positive constant λ and a matrix W =
[W1,W2, ...,Wn] ∈ Rm×n, let X∗ be the optimal solution of the
following general problem

min
X

λ(X)Hx +
1

2
‖X −W‖2F , (34)

and then the i-th column of X∗ is

X∗(:, i) =

 (1− λ
λ+a+a2 )Wi, if λ < ‖Wi‖2

0, otherwise,
(35)

where a = (‖Wi‖2 − 1 +
√

(‖Wi‖2 + 1)2 − 4λ)/2.
Proof: Problem (34) is firstly expanded as the following

problem

min
X

λ
n∑
i=1

log(1 + ‖Xi‖2) +
1

2
‖X −W‖2F . (36)

Note that problem (36) is independent for each Xi, so it can
be converted to the equivalent problem

min
Xi

λ ∗ log(1 + ‖Xi‖2) +
1

2
‖Xi −Wi‖22. (37)

As we know, the derivative of ‖Xi‖2 with respect to Xi is

d‖Xi‖2
dXi

=

 r, Xi = 0
Xi

‖Xi‖2 , otherwise,
(38)

where r is called subgradient, and ‖r‖2 ≤ 1.
We can set the derivative of (37) with respect toXi as 0 to

solve problem (37). The detailed solving process is divided
into the following two cases.

1) For the case Xi = 0, we have

λr−Wi = 0, (39)

which indicates λ ≥ ‖Wi‖.

2) For the case Xi 6= 0 (i.e., λ < ‖Wi‖2), we have

λXi

(1 + ‖Xi‖2)‖Xi‖2
+Xi −Wi = 0. (40)

Let a = ‖Xi‖2, and then we have

Xi =
a+ a2

λ+ a+ a2
Wi. (41)

By using the operator ‖·‖2 on both sides of Eq. (41), we have

a =
a+ a2

λ+ a+ a2
b, (42)

where b = ‖Wi‖2. After solving Eq. (42), we have

a =
b− 1 +

√
(b+ 1)2 − 4λ

2
. (43)

Substituting Eq. (43) into Eq. (41) and combining the case
Xi = 0, we obtain the final optimal solution Eq. (35) of
problem (34). �

Let Q = X − UV T + Y2/µ, and then we obtain the
following optimal solution of problem (33) according to
Theorem 1,

E(:, i) =

 (1− 1/µ
1/µ+a+a2 )Qi, if 1

µ < ‖Qi‖2
0, otherwise,

(44)

where a = (‖Qi‖2 − 1 +
√

(‖Qi‖2 + 1)2 − 4/µ)/2.
Update U: fix V , Z , E, S, and then U can be solved as

follows

min
U

µ

2
‖X − UV T − E +

Y2
µ
‖2F . (45)

By making the derivative of problem (45) be 0, we obtain
the following optimal U,

U = (X − E +
Y2
µ

)V. (46)

Update V: fix U , Z , E, S, and then V can be solved as
follows

min
V TV=I

αTr(V TLSZ) +
µ

2
‖Z − V +

Y1
µ
‖2F

+
µ

2
‖X − UV T − E +

Y2
µ
‖2F

⇐⇒ min
V TV=I

‖V − P‖2F ,

(47)

where P = (Z+ Y1

µ )+(XT−ET+
Y T
2

µ )U−α
µLSZ . According

to [20], the solution is V = FGT , where F and G are left
and right singular vectors of SVD decomposition of P .

Update Z: fix U , V , E, S, and then Z can be solved as
follows

min
Z≥0

αTr(V TLSZ) +
µ

2
‖Z − V +

Y1
µ
‖2F

⇐⇒ min
Z≥0

‖Z −R‖2F ,
(48)

where R = V − Y1

µ −
α
µL

T
SV . The solution is obtained by

Z = max(R, 0). (49)
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Update S: fix U , V , Z , E, and then S can be solved as
follows

min
S

αTr(V TLSZ) + β‖S −H‖2F
s.t. S ≥ 0, S = ST , S1 = 1, diag(S) = 0.

(50)

Let M = H + α
2βV Z

T , and then problem (50) can be
rewritten as

min
S

‖S −M‖2F
s.t. S ≥ 0, S = ST , S1 = 1, diag(S) = 0.

(51)

In order to solve problem (51), it is firstly divided into the
following two subproblems

min
S

‖S −M‖2F , s.t. S = ST , S1 = 1. (52)

and

min
S

‖S −M‖2F , s.t. S ≥ 0, diag(S) = 0. (53)

Then we solve the above two subproblems alternately, and
project their solutions mutually. Specifically, we iteratively
carry out the following two steps until convergence: 1)
Obtain the optimal solution S1 of subproblem (52), and view
S1 as M of subproblem (53); 2) Obtain the optimal solution
S2 of subproblem (53), and view S2 as M of subproblem
(52).

The convergence of the above solving strategy is guar-
anteed by Von Neumann successive projection lemma [38].
The lemma proves theoretically that the solution of mutual
projection strategy finally converges to the global optimal
solution of the original problem (51).

According to [36], the optimal solution of subproblem
(52) is

S1 = T +
n+ 1TT1

n2
11T − 1

n
T11T − 1

n
11TT, (54)

where T = M+MT

2 . 1 is a vector with all elements 1, while
11 is a square matrix with all elements 1.

Subproblem (53) is easily solved by

S2 = max(M, 0), diag(S2) = 0. (55)

Update ALM parameters: some parameters with respect
to ALM algorithm need to be updated as follows

Y1 = Y1 + µ(Z − V ),

Y2 = Y2 + µ(X − UV T − E),

µ = ρµ.

(56)

Then, we evaluate the computational complexity of the
proposed RBSMF. Because multiplication operations domi-
nate all the computational complexity, we use the number of
multiplication operations as the computational complexity
of the proposed RBSMF. The computation of RBSMF can
be divided into five parts as follows. Note that m, n and
k represent the number of samples, features, and clusters
respectively. 1) When updating variable E, the complexity
is O(mnk); 2) When updating variable U , the complexity
is O(mnk); 3) When updating variable V , the complexity
is O(n2k); 4) When updating variable Z , the complexity
is O(n2k); 5) When updating variable S, the complexity is

O(n2k). In most cases, m < n. So computational complexity
of the proposed RBSMF is O(n2k) each iteration.

At last, we summarize the whole optimization algorithm
in Algorithm 2 for solving the proposed RBSMF (30). Sim-
ilar to the arguments in [20] and [39], the convergence of
Algorithm 2 relies on the convergence of ALM framework.
The convergence of ALM framework has been discussed
and proved in previous literatures [37] [40] [41].

Algorithm 2 ALM for solving RBSMF
Input: Data matrix X , cluster number k, the initial graph
H , parameter α, β.
Output: Cluster centroid matrix U , cluster indicator matrix
V , the learned bi-stochastic graph S.
Initialize: ε = 10−2, h = 1, maxiter = 500.
While not converged do

1) Update E according to (44).
2) Update U according to (46).
3) Update V by solving (47).
4) Update Z according to (49).
5) Update S according to (54) and (55).
6) Update ALM parameters according to (56).
7) Check the convergence conditions

h > maxiter, or
‖Z − V ‖∞ < ε, ‖X − UV T − E‖∞ < ε.

8) h← h+ 1.

End while

6 EXPERIMENTS

In this section, we firstly perform some experiments on
synthetic and real-world data to verify the robustness of
the proposed Hx-NMF. Then extensive experiments on eight
popular datasets are conducted to validate the clustering
performance of the proposed RBSMF framework.

6.1 Robustness of Hx-NMF
6.1.1 Experiments on Synthetic Data
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Fig. 2. Comparison on synthetic data of three NMF methods.

Before demonstrating the superior clustering perfor-
mance of the proposed RBSMF, we firstly validate the ro-
bustness of the proposed Hx-NMF for noises and outliers.
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The comparison algorithms are as follows: 1) the standard
NMF [8]: using Frobenius norm as objective function. The
corresponding weight function is constant 1; 2) `2,1-NMF
[18]: using `2,1 norm as objective function. The correspond-
ing weight function is 1

x ; 3) the proposed Hx-NMF: using
our proposed robust Hx(x) (14) as objective function. The
corresponding weight function is 1

x(1+x) .
We firstly utilize 2-dimensional synthetic data to verify

the robustness of the proposed Hx-NMF. As is seen from
Fig. 2, we generate 20 data points, which are drawn in
red. Among 20 original samples, the top 6 points in Fig.
2 are outliers, which can be easily observed that they
deviate from the normal data structure. After running the
standard NMF, `2,1-NMF, and the proposed Hx-NMF, we
project all data points into 1-dimensional subspace and
draw the reconstructed samples with different colors and
shapes in Fig. 2. It can be clearly seen that the performance
is ”Hx-NMF > `2,1-NMF > the standard NMF” according
to robustness. To be specific, the standard NMF is strongly
influenced by 6 outliers because the square errors dominate
the objective function. `2,1-NMF improves the robustness of
NMF by replacing Frobenius norm with `2,1 norm, where
the square operation of errors is removed. Although `2,1-
NMF can decrease the sensitivity of noises and outliers, it is
still affected by 6 outliers according to Fig. 2. The proposed
Hx-NMF is the most robust method among all comparison
algorithms. The fact is also verified from Table 2, which
shows the weights of 6 outliers for all methods. As is shown
in Table 2, these weights for the proposed RBSMF are the
smallest (close to 0). So the proposed Hx-NMF can avoid
the negative influence of six outliers and achieve the best
robustness.

TABLE 2
Weights of 6 outliers for all methods

Methods 1 2 3 4 5 6

NMF 1 1 1 1 1 1
`2,1-NMF 0.0305 0.0292 0.0351 0.0326 0.0402 0.0390
Hx-NMF 4.1e-4 3.7e-4 4.4e-4 4.1e-4 4.9e-4 4.9e-4

6.1.2 Experiments on Real-world Data
In order to further prove the robustness of the proposed Hx-
NMF, we conduct a series of experiments on a real-world
dataset. The ORL face database (its detailed descriptions are
in section 6.2.2) is selected to perform the experiments. All
the images are resized to 23 × 28 here. We randomly add
some square block noises with different sizes to four face
images of each person. Some noisy images of ORL datasets
are shown in Fig. 3.

We set the sizes of block as 2 × 2, 4 × 4, 6 × 6, and
8 × 8. The comparison methods are k-means, the standard
NMF, `2,1-NMF, and the proposed Hx-NMF. We report the
clustering results of all algorithms in Table 3. ACC, NMI
and PUR (their detailed descriptions are in section 6.2.1)
are considered as the evaluation indexes. Following [18],
we initialize U and V of NMF, `2,1-NMF and the proposed
Hx-NMF using k-means. It is easily seen from Table 3
that the proposed Hx-NMF can achieve the best clustering
performance no matter how large the noises are. Therefore,

the experiments on real-world data also demonstrate that
the proposed Hx-NMF is more robust than the standard
NMF and `2,1-NMF.

Futuremore, we conduct the experiment using ORL
dataset with 8 × 8 block noises to verify the convergence
of the proposed Hx-NMF. As is shown in Fig. 4, Hx-NMF
also has a good convergence like NMF and `2,1-NMF.

Fig. 3. Some noisy images of ORL dataset. The upper images have 4×4
block noises, and the lower images have 8× 8 block noises.
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Fig. 4. Convergence of the proposed Hx-NMF, NMF and `2,1-NMF.

TABLE 3
Experimental results of ORL dataset with some noises

block Metric k-means NMF `2,1-NMF Hx-NMF

2×2
ACC 0.6525 0.6727 0.6730 0.6815
NMI 0.8261 0.8266 0.8309 0.8318
PUR 0.6973 0.7195 0.7165 0.7220

4×4
ACC 0.6205 0.6520 0.6560 0.6662
NMI 0.8000 0.8089 0.8080 0.8183
PUR 0.6543 0.6923 0.6943 0.7121

6×6
ACC 0.5350 0.5495 0.5617 0.5855
NMI 0.7219 0.7386 0.7479 0.7571
PUR 0.5615 0.5855 0.6007 0.6275

8×8
ACC 0.4137 0.3888 0.3915 0.4292
NMI 0.6299 0.6130 0.6101 0.6324
PUR 0.4355 0.4122 0.4200 0.4525

6.2 Clustering Performance of RBSMF

6.2.1 Evaluation Indexes
In the subsection, we will introduce three widely used
quantitative metrics to evaluate the clustering performance.
They can be seen in detail as follows

Clustering Accuracy (ACC): It can not only discover the
one-to-one relationship between clustering results and true
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classes, but also acquire the data points that each cluster
contains from the corresponding class. Specifically, it is
defined as below

ACC =

∑n
i=1 δ(map(ri), li)

n
, (57)

where ri is the clustering label of sample xi, and li denotes
the true label of xi. n is the number of all data samples.
map(ri) is the optimal matching function which can per-
mutate all clustering results to best map clustering labels to
the true labels. δ(a, b) is the indicator function which equals
1 if a = b, and equals 0 otherwise.

Normalized Mutual Information (NMI): It is another
commonly used metric to measure the clustering quality.
The detailed definition of NMI is given as follows

NMI =

∑c
i=1

∑c
j=1 ni,j log

ni,j

nin̂j√
(
∑c
i=1 nilog

ni

n )(
∑c
j=1 n̂j log

n̂j

n )
, (58)

where c denotes the number of classes, and ni is the num-
ber of samples belonging to the cluster Ci(1 ≤ i ≤ c).
n̂j denotes the number of samples contained in the class
Lj(1 ≤ j ≤ c), and ni,j represents the number of over-
lapped samples between cluster Ci and class Lj .

Purity (PUR): It aims to measure the extent to which
every cluster covers data samples from primarily one class.
The purity of clustering results is computed by the weighted
sum of all individual cluster purity values. The value of
purity is obtained by

PUR =
c∑
i=1

ni
n
P (Si), P (Si) =

1

ni
max
j
nji , (59)

where Si represents the particular cluster with size ni, and
nji is the number of samples of the i-th class which are
assigned to the j-th cluster.

More detailed descriptions about these evaluation in-
dexes can be found in [18] [20].

TABLE 4
Descriptions of eight datasets

Datasets #Samples (n) #Dimensions (m) #Class (c)

ORL 400 168 40
Yale 165 256 15

USPS 300 256 10
UMIST 575 644 20
JAFFE 213 256 10
Seeds 210 7 3
Ecoli 336 7 8
Vote 435 16 2

6.2.2 Dataset Descriptions
In this subsection, we introduce eight publicly available
datasets, which are used to evaluate the clustering per-
formance of the proposed RBSMF and other comparison
methods. The eight datasets include four face datasets, one
hand-written digit dataset, and three other datasets from
UCI Machine Learning Repository (UCI for short) [42]. Table
4 summarizes the statistics of the eight datasets.

1) ORL: The ORL1 face recognition database contains
400 grayscale images in total. It consists of 40 differ-
ent persons and each subject has 10 images, which
are taken under various conditions. All images have
a homogeneous dark background with each person
in a frontal, upright position. Besides, we resize all
images to 12× 14 in the comparison experiments.

2) Yale: The Yale1 face recognition database has
15 different individuals, each of which is taken
11 images. All images are acquired from dif-
ferent conditions, such as normal/sleepy/sad,
center/left/right-lighting, with/without glasses,
and so on. Each image is scaled to 16 × 16 in our
experiments.

3) USPS: The USPS2 database is the US Postal hand-
written digit dataset. It consists of 8-bit grayscale
images from 0 to 9. The whole dataset has 9298
images in total. In our experiments we randomly
select 30 images per class and keep the original pixel
size of 16× 16.

4) UMIST: The UMIST [43] database is another face
recognition dataset. It includes 20 persons with 19-
36 grayscale images with each individual. The 575
images are obtained from various views. In our
experiments all images are resized to 23× 28.

5) JAFFE: The JAFFE3 database is a female expres-
sion dataset. It includes 213 images of 7 different
emotional faces from 10 Japanese females. The 7
facial expressions contain 1 natural and 6 basic
expressions. All images are resized to 16 × 16 in
our experiments.

6) Seeds: The Seeds4 database is from UCI [42]. It
covers 210 different instances of 7 attributes. The
number of classes is 3.

7) Ecoli: The Ecoli5 database is also from UCI [42].
It consists of 336 objects, and each of them has 7
features. There are 8 different categories in Ecoli.

8) Vote: The Vote6 database is another dataset from
UCI [42]. It constains 435 different samples, each of
which has 16 attributes. The number of classes is 2.

6.2.3 Comparison Methods
To verify the effectiveness and superiority of the proposed
RBSMF for clustering, we consider other eight clustering
algorithms as the comparison methods. They are listed in
detail as follows.

1) k-means [44]: the most commonly used clustering
method.

2) Rcut [45]: a spectral clustering using ratio cut.
3) Ncut [46]: another spectral clustering using normal-

ized cut.
4) NMF [8]: the original NMF using Frobenius norm.
5) `2,1-NMF [18]: a robust NMF using `2,1 norm.

1. http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
2. http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
3. http://www.kasrl.org/jaffe.html
4. https://archive.ics.uci.edu/ml/datasets/seeds
5. https://archive.ics.uci.edu/ml/datasets/Ecoli
6. https://archive.ics.uci.edu/ml/datasets/congressional+voting+

records
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TABLE 5
ACC of ten clustering algorithms on eight datasets

Datasets k-means RCut NCut NMF `2,1-NMF Hx-NMF GNMF RMNMF NMFAN RBSMF

ORL 0.6645 0.6743 0.7125 0.6863 0.6877 0.6945 0.7177 0.7395 0.7421 0.7625
Yale 0.5148 0.5524 0.5585 0.5279 0.5381 0.5533 0.5315 0.5437 0.5476 0.5636

USPS 0.6785 0.6907 0.6867 0.6313 0.6487 0.6547 0.6563 0.6585 0.6626 0.6967
UMIST 0.4357 0.5979 0.5704 0.4120 0.4228 0.4275 0.6052 0.5814 0.6135 0.6221
JAFFE 0.8333 0.9226 0.9231 0.8704 0.8948 0.9173 0.9343 0.9156 0.9203 0.9577
Seeds 0.8852 0.8429 0.8429 0.8385 0.8425 0.8571 0.8614 0.8625 0.8678 0.8900
Ecoli 0.5747 0.5655 0.5512 0.5658 0.5458 0.5539 0.5907 0.6125 0.5945 0.6332
Vote 0.8387 0.8493 0.8467 0.8018 0.8046 0.8082 0.8255 0.8432 0.8348 0.8621

TABLE 6
NMI of ten clustering algorithms on eight datasets

Datasets k-means RCut NCut NMF `2,1-NMF Hx-NMF GNMF RMNMF NMFAN RBSMF

ORL 0.8328 0.8308 0.8553 0.8347 0.8413 0.8422 0.8628 0.8632 0.8693 0.8711
Yale 0.5789 0.5827 0.5744 0.5541 0.5673 0.5926 0.5642 0.5702 0.5802 0.5967

USPS 0.6176 0.6362 0.6349 0.6349 0.5936 0.5978 0.6071 0.6087 0.6115 0.6372
UMIST 0.6521 0.7768 0.7589 0.6003 0.6163 0.6179 0.7944 0.7756 0.8125 0.8153
JAFFE 0.8632 0.9265 0.9261 0.8795 0.8872 0.9050 0.9356 0.9145 0.9234 0.9358
Seeds 0.6634 0.6305 0.6305 0.5617 0.5948 0.6146 0.6134 0.6146 0.6175 0.6720
Ecoli 0.5402 0.5371 0.5294 0.5048 0.4567 0.4752 0.5485 0.5634 0.5512 0.5821
Vote 0.3738 0.3895 0.3847 0.3065 0.3064 0.3148 0.3585 0.3785 0.3645 0.4128

TABLE 7
PUR of ten clustering algorithms on eight datasets

Datasets k-means RCut NCut NMF `2,1-NMF Hx-NMF GNMF RMNMF NMFAN RBSMF

ORL 0.7028 0.7133 0.7483 0.7220 0.7296 0.7308 0.7510 0.7785 0.7854 0.7900
Yale 0.5355 0.5717 0.5766 0.5382 0.5515 0.5673 0.5394 0.5524 0.5632 0.5818

USPS 0.6922 0.7113 0.7127 0.6433 0.6533 0.6617 0.6670 0.6696 0.6732 0.7133
UMIST 0.5178 0.6868 0.6697 0.4824 0.5007 0.5066 0.7061 0.6825 0.7047 0.7121
JAFFE 0.8451 0.9277 0.9282 0.8803 0.9001 0.9174 0.9366 0.9162 0.9225 0.9577
Seeds 0.8852 0.8429 0.8429 0.8386 0.8425 0.8571 0.8614 0.8571 0.8596 0.8900
Ecoli 0.8243 0.8280 0.8030 0.7991 0.7875 0.7830 0.8314 0.8452 0.8275 0.8521
Vote 0.8387 0.8375 0.8426 0.8018 0.8051 0.8085 0.8268 0.8432 0.8352 0.8621

6) Hx-NMF: a more robust NMF using the proposed
Hx(x) function.

7) GNMF [8]: the graph regularized NMF incorporat-
ing the low dimensional manifold into NMF.

8) RMNMF [20]: a more effective NMF which uses `2,1
norm and simultaneously combines the local data
structures.

9) NMFAN [32]: an improved NMF by utilizing adap-
tive neighbors to better incorporate geometric infor-
mation .

10) RBSMF: the proposed method in our paper.

6.2.4 Experimental Settings
Before conducting the experiments, every value of all
datasets is normalized to [0, 1]. For RCut, NCut, GNMF and
RMNMF, we construct the k-nn graphs to exploit the latent
data structure and the corresponding parameter k is set by
searching from {3, 5, 7, 9, 11 ,13}. For GNMF, RMNMF and
NMFAN, the regularization parameters are determined by
searching the grid {0.001, 0.01, 0.1, 1, 10, 100}. Because the
number of clusters is given, no other parameters need to be

tuned for k-means, NMF, `2,1-NMF and the proposed Hx-
NMF.

For the proposed RBSMF, we set the regularization pa-
rameters α and β by searching the grid {0.001, 0.01, 0.1, 1,
10, 100}. Because our RBSMF can learn adaptively the more
suitable graph, we just construct a simple 5-nn graph as
the input graph. The experimental machine is a PC with 1)
CPU: Intel Core i7-3770 3.40 GHz; 2) Memory: 32-GB RAM;
3) Sofeware: MATLAB R2015a.

Because some comparison methods need to tune one
or more parameters, to make experiments more fair, we
run these algorithms with different parameters and choose
the best clustering results. The ground truth label number
is set to the number of clusters for all methods. Besides,
k-means is used to initialize the values of U and V for
NMF-based algorithms. Note that NMF, `2,1-NMF, Hx-
NMF, GNMF and NMFAN need to employ k-means as
post-processing method to get the final clustering results.
RMNMF and the proposed RBSMF can directly obtain the
clustering results by the largest element in every row of V ,
i.e., class(Xi) = arg max

k=1,...,c
Vik. In addition, we repeat inde-
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Fig. 5. Clustering ACC of the proposed RBSMF with respect to the parameters α and β in eight datasets.

pendently each method ten times and report the average
clustering results under the best parameter settings.

6.2.5 Experimental Results and Analyses
After running every method under the best paremeter set-
tings, all the clustering results of ten different algorithms
are demonstrated in Table 5, 6, and 7. They are reported by
the aforementioned evaluation indexes, i.e., ACC, NMI and
PUR. As is seen from the experimental results, we can obtain
the follows interesting points and some detailed analyses.

• In most datasets, the clustering performance of RCut
and NCut is better than k-means. Meanwhile, GNMF,
RMNMF, NMFAN, and the proposed RBSMF (all of
them incorporate local geometrical structures) out-
performs the standard NMF. The fact indicates that
the local manifold information between neighboring
data can bring great help for clustering task.

• `2,1-NMF, Hx-NMF, RMNMF, and the proposed RB-
SMF can achieve better clustering performance than
the original NMF. Among them, `2,1-NMF and RM-
NMF replace Frobenius norm with `2,1 norm as the
objective function. Besides, Hx-NMF and RBSMF
propose a more robust loss function Hx(x) to mea-
sure the reconstructed errors. It reveals that robust
objective function, which is insensitive to noises and
outliers, can improve the clustering results of NMF.

• It can be noticed that both NMFAN and RBSMF
yield better clustering performance than GNMF and
RMNMF in most datasets. This is because NMFAN
and RBSMF can learn an adaptive similarity graph.
The dynamic learning process makes the obtained
graph more suitable for clustering. Although GNMF
and RMNMF, which also combine the local data
structures, can enhance the clustering performance
of NMF, the input data graph is fixed in the whole
matrix factorization process and may not the optimal
graph.

• It can be clearly observed that the proposed RBSMF
consistently outperforms other nine comparison al-
gorithms and achieves the best clustering results.
On one hand, the proposed RBSMF presents a more
robust loss function than the widely-used `2,1 norm.
This decreases the negative influence of noises and
outliers. On the other hand, the proposed RBSMF
proposes an adaptive updating scheme to learn dy-
namically an optimal graph instead of keeping the
initial graph fixed.

6.2.6 Parameter Sensitivity

Similar to most other algorithms, the proposed RBSMF also
needs to tune some hyperparameters, i.e., the two important
regularization parameters α and β. In particular, α balances
the manifold learning term, and β controls the weight of the
graph learning term. In this subsection, we conduct a great
number of experiments to investigate the sensitivity of α
and β. The parameter of β is set as the optimal value when
studying α. The same setting is also applied when studying
β. Fig. 5 exhibits the clustering ACC curves of eight datasets
when α and β change from the range of {0.001, 0.01, 0.1, 1,
10, 100}. It can be seen that both two parameters are not very
sensitive. The clustering results of the proposed RBSMF are
good generally when α and β are within the range of {0.1,
1, 10}.

7 CONCLUSION AND FUTURE WORK

In this paper, a robust bi-stochastic graph regularized NMF
(RBSMF) framework is proposed for data clustering. In or-
der to address the existing problems of two kinds of widely
concerned NMF, i.e., robust NMF and graph-based NMF, the
proposed RBSMF develops a general robust loss function
Hx(x) and an adaptive graph learning strategy. Specifically,
Hx(x) function decreases the adverse impact of large noises
and it is more robust than L2 and L1 functions. Besides,
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the proposed loss function Hx(x) can be extensively em-
ployed in other fields. For the graph learning strategy, it
can learn a better graph using bi-stochastic matrix, which
is proved more suitable than heat kernel matrix to capture
the local data structures. Furthermore, the proposed RBSMF
can simultaneously perform matrix factorization and graph
learning. This makes the learned graph is more helpful to
indicate the true cluster structures. Experimental results on
eight benchmark datasets also confirm the effectiveness and
superiority of our proposed RBSMF.

In the futher work, we will investigate other graph
learning methods. For our proposed RBSMF, an initial graph
is required to get a new graph. So it is desirable to study
other ways, which aim to learn directly a better adaptive
graph from the original data. Moreover, lots of NMF-based
methods are used to cluster the given data. So we want
to integrate some priori information and labeled data into
NMF, and design a novel semisupervised NMF.
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