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Abstract—Band selection is one of the most important tech-
nique in the reduction of hyperspectral image (HSI). Differ-
ent from traditional feature selection problem, an important
characteristic of it is that there is usually strong correlation
between neighboring bands, i.e., bands with close indexes. Aiming
to fully exploit this prior information, a novel band selection
method called optimal neighborhood reconstruction (ONR) is
proposed. In ONR, band selection is considered as a combina-
torial optimization problem. It evaluates a band combination
by assessing its ability to reconstruct the original data, and
applies a noise reducer to minimize the influence of noisy bands.
Instead of using some approximate algorithms, ONR exploits a
recurrence relation underlies the optimization target to obtain
the optimal solution in an efficient way. Besides, we develop
a parameter selection approach to automatically determine the
parameter of ONR, ensuring it is adaptable to different data
sets. In experiments, ONR is compared with some state-of-the-
art methods on six HSI data sets. The results demonstrate that
ONR is more effective and robust than the others in most of the
cases.

Index Terms—Hyperspectral band selection, least square, dic-
tionary learning, sparse representation.

I. INTRODUCTION

Recently, hyperspectral image (HSI) has attracted wide
attention due to its ability of providing more abundant visual
information, which is unreachable for traditional RGB image.
A hyperspectral image is a 3-D data cube that consists of
hundreds of spectral bands, and each of them records the
reflectance of the scene to a specific electromagnetic wave.
Though HSI processing techniques have been successfully
applied in various of applications such as medical imaging
processing [1], production quality inspection [2], and environ-
mental monitoring [3], there are still troubles cannot be well
resolved caused by the high dimensionality of HSI, mainly
existing in efficient data storage, transmission, processing
and so forth. As an effective approach to handle the high
dimensionality, HSI reduction is considered as an important
research field in HSI processing.

Similar to traditional reduction techniques, HSI reduction
can be categorized into feature exaction [4, 5] and feature
selection [6–8] (also known as band selection). The former
combines some bands to generate new features, while the latter
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just drops some redundant bands. Though feature exaction
can well preserve the discriminative information of the entire
HSI, it will destroy the physical meaning of HSI data and
make the extracted features hard to be interpreted. Due to this
reason, band selection is more preferable in many cases. Based
on whether the labeled samples are utilized, band selection
can be further divided into supervised [9], semi-supervised
[10], and unsupervised [11–13] methods. For supervised and
semi-supervised methods, the label information can benefit the
feature evaluation process [14], and hence helps to achieve
better performance. Nevertheless, since HSI data are always
hard to be labeled, these two methods are not very practical in
real applications. As a result, the unsupervised methods, which
are not restricted by labeled samples, have broader prospects
for applications.

As a specialization of feature selection, band selection prob-
lem has some unique characteristics, including the following
ones.

• Some features in HSI are contaminated by noises. Owing
to atmospheric condition, sensor noise and other factors
[15], noises are often unavoidable. And in some cases,
the noises do not evenly distribute into all the bands
but accumulate on a few of them, forming the so called
noisy bands. So how to deal with this kind of noises and
minimize the negative effect becomes an important issue
for HSI band selection.

• There is a correlated neighborhood property (CNP)
among the features, i.e., neighboring bands usually have
stronger correlation. With the increase of band number,
the signal curves of the ground objects are getting more
and more smooth, which means samples drawn from the
same ground object have similar characteristic on two
neighboring bands, and hence will increase the similarity
or correlation between them. Previous works that have
utilized this property include [16], where a hierarchy of
groups of adjacent bands are built, and [17], where a
piece-wise constant function is optimized to separate the
whole bands into multiple intervals.

In this paper, we take into consideration the above charac-
teristics and propose an optimal neighborhood reconstruction
(ONR) algorithm to tackle the band selection problem. The
contributions of it are listed as follows.

1) We model the relationship between the selected bands
and the entire data set from the perspective of linear recon-
struction. By exploiting the correlated neighborhood property
and introducing a noise reduction mechanism, a better charac-
terization and interpretation of HSI data can be achieved with
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respect to their spectral correlation and noise distribution.
2) We propose an efficient optimization approach to search

for the optimal band subset. Different from the previous opti-
mization techniques that are based on approximate algorithms,
the proposed approach can achieve an exact solution in a more
efficient way.

3) We label and publish a new HSI data set named Leaves
for testing1. Compared to the current public data sets, Leaves
has larger spatial size and higher spectral dimensionality.

II. RELATED WORK

Some representative unsupervised band selection methods
will be discussed in this part. According to the employed
selection strategy, unsupervised band selection can be divided
into group-wise and point-wise methods.

A. Group-wise Method

Group-wise methods first separate the bands into groups,
and select one band in each group to form the band subset. For
this kind of method, two important issues must be resolved.
One is how to separate the bands, and another is how to
select the representative bands in each group. For the first
issue, various kinds of clustering algorithms have been adopted
to separate the bands, such as hierarchical clustering [18],
spectral clustering [19, 20], low-rank representation [21–23]
and affinity propagation [24]. As for the second issue, some
of the clustering algorithms [24] can naturally determine the
cluster centers and select them. For the others, a common
approach is to select the bands that are closest to the centers
of each group [21]. Apart from it, [18] proposes to select the
bands that have the largest similarities with the others in the
same group, and [25] selects the bands that have the largest
information entropy.

Group-wise selection focuses on the reduction of the cor-
relation among bands. Through the separation process, the
selected bands are distributed to different groups and so can
carry more distinctive information. Nevertheless, though many
strategies have been proposed to select the representative bands
in each group, the selection process is still individual, without
considering the interaction among bands explicitly. Hence
group-wise methods can usually provide a plausible and stable,
but hardly outstanding result.

B. Point-wise Method

In point-wise methods, band selection task is considered
as a combinatorial optimization problem, where the indexes
of the desired bands are considered as a series of discrete
optimization variable and some searching strategies are used
to seek the optimal solution. According to the type of the ob-
jective function and the searching strategy, point-wise selection
can be further divided into ranking-based, greedy-based and
evolutionary-based methods.

Ranking-based methods first score the bands according
to some ranking criterion such as band variance [26] and
minimum constrained energy [27]. Since the solution is to

1The data set and code of this paper can be found on http://crabwq.github.io.

simply select the bands with higher scores, ranking-based
methods neglect the interaction among them and hence usually
provide a band set with high dependency.

Greedy-based methods first design an objective function
such like maximum ellipsoid volume [28] and minimum esti-
mated abundance covariance [29], and search for the desired
band subset via some greedy strategies, e.g., sequential for-
ward selection (SFS) [29] and sequential backward selection
(SBS) [28]. Greedy-based methods are rather efficient at the
expense of insufficient search and calculation towards the
optimum.

Evolutionary-based methods apply some evolutionary algo-
rithms to search for the optimal solution. These algorithms
include immune clone [30–32], particle swarm [29] and firefly
algorithm [33], etc. Compared to greedy-based methods, these
methods are more effective in searching the optimum but also
take more computational cost and are hard to be tuned.

Compared to group-wise methods, the directive searching
for the desired band subset encourages point-wise methods to
capture the relationship among bands more exactly. However,
without the preliminary grouping procedure, it is difficult to
design an objective function which can make sure the selected
band subset are always with low correlation.

III. OPTIMAL NEIGHBORHOOD RECONSTRUCTION

This section presents the motivation and some implemen-
tation details of optimal neighborhood reconstruction (ONR)
method. First, the band selection problem is formulated and the
objective function of ONR is proposed. Second, the algorithm
to optimize the objective function is introduced. Third, a
parameter selection strategy is given to adaptively set the
parameter of ONR. Finally, the computational complexity of
ONR is analysed.

A. Objective Function
We first define some notations that will be used throughout

the paper. To distinguish different variables, we represent ma-
trices, vectors and scalars by bold uppercase, bold lowercase
and non-bold italic font (lowercase or uppercase) of characters
respectively. A HSI can be defined as X = [x1,x2, ...,xd] ∈
Rn×d, where xj is the jth band vector whose l2 norm is scaled
to 1, d is the number of bands and n is the number of pixels
in each band. Suppose the finally selected bands are specified
by xb1 ,xb2 , ...,xbm where b = (b1, b2, ..., bm)T denotes the
index vector. We assume there is 1 ≤ b1 < b2 < ... < bm ≤ d,
in which m denotes the number of bands.

One rational criterion to examine the discrimination of a
band subset is to assess its ability in reconstructing the whole
bands. From this perspective, a prototype of our objective
function is given as follows:

min
b,W

L(E) s.t. X = [xb1 ,xb2 , ...xbm ]W +E. (1)

Here W = [w1,w2, ...,wd] ∈ Rm×d is the weight matrix,
E = [e1, e2, ..., ed] ∈ Rd×n is the error matrix and L is a
function to evaluate the reconstruction error. According to Eq.
(1), each column of X can be represented by:

xj = [xb1 ,xb2 , ...,xbm ]wj + ej .
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That means each xj is considered to be correlated with all
the selected bands, where the weight vector wj characterizes
this kind of correlation. However, this modeling strategy is too
complex since too much bands are involved to reconstruct a
single band, neglecting the sparsity among data set [34, 35].
As stated in Section I, xj should have higher probability to be
correlated with its neighborhood, rather than those which are
distant to it. Hence, there are only a few of the selected bands
having correlation with xj , and mostly are its neighborhoods.
As an extreme case, we assume xj is only correlated with two
of its nearest neighborhoods, one is on its left side, and another
is on its right side. Formally, for all 1 ≤ j ≤ d, there exists a
k which satisfies bk ≤ j < bk+1 so that xj is correlated with
xbk and xbk+1

. With the above consideration, Eq. (1) can be
rewritten as:

min
b,Z

L(E) ,

s.t. xj = [xbk ,xbk+1
]zj + ej ,

for bk ≤ j < bk+1,

(2)

where Z = [z1, z2, ...,zd] ∈ R2×d is a simplified weight
matrix. To make Eq. (2) meaningful for the cases that j < b1
and j > bm, we stipulate b0 = 0, bm+1 = d + 1 and x0 =
xd+1 = 0.

The above analysis exploits the CNP to characterize the
relationship between the selected bands and the entire HSI.
Now the remaining problem is how to quantify the recon-
struction error, i.e., how to choose L. Since the number of the
selected bands is limited and sometimes much less than d, to
reconstruct the whole data set precisely is almost impossible.
For arbitrary band combinations, there will always be bands
that cannot be well reconstructed. They may be contaminated
by noises or just have low correlation with the selected bands.
What we suppose to evaluate via L, however, is how many
bands can be well reconstructed and in which extent they are
reconstructed. If a large loss ej is found when reconstructing
band xj , it means xj is inexactly reconstructed, and we are
not willing to see this kind of inexactness greatly influence
the searching for the optimal band subset. Hence with ej
increasing, the value of L shouldn’t be increased endlessly.
Based on the above consideration, the definition of L is given
as:

L(E) =

d∑
j=1

gτ (‖ej‖2),

where ‖·‖2 is the l2 norm, gτ : R → R is a noise reducer to
limit the growth of L:

gτ (x) =

{
x, x ≤ τ,
τ, x > τ,

and τ is a threshold to distinguish “exact” reconstruction from
“inexact” reconstruction.

In summary, the final objective function turns to be:

min
b,Z

d∑
j=1

gτ (‖ej‖2),

s.t. xj = [xbk ,xbk+1
]zj + ej ,

for bk ≤ j < bk+1.

(3)

B. Optimization

By assigning each xj to its belonging band interval which
is determined by b, Eq. (3) is equivalent into:

min
b,Z

m∑
k=0

bk+1−1∑
j=bk+1

gτ (‖xj − [xbk ,xbk+1
]zj‖2). (4)

Noting that each column of Z is independently optimized, Eq.
(4) can be further reformulated as:

min
b

m∑
k=0

bk+1−1∑
j=bk+1

min
zj

gτ (‖xj − [xbk ,xbk+1
]zj‖2). (5)

Since gτ is monotonically non-decreasing, the solution of the
following equation must be the solution of Eq. (5) (this can
be easily demonstrated via reduction to absurdity).

min
b

m∑
k=0

bk+1−1∑
j=bk+1

gτ (min
zj
‖xj − [xbk ,xbk+1

]zj‖2). (6)

Here we define two auxiliary variables L ∈ Rd×d×d and S ∈
Rd×d as:

Ll,r,j = min
z
‖xj − [xl,xr] z‖2, (7)

Sl,r =

r−1∑
j=l+1

gτ (Ll,r,j), (8)

where Ll,r,j is an element in L, evaluating the loss to
reconstruct xj with xl and xr as the bases. Sl,r is the loss
to reconstruct band interval {xl+1, ...,xr−1}. With the above
definition, Eq. (6) can be rewritten as:

min
b

m∑
k=0

Sbk,bk+1
. (9)

Until now, the original optimization problem has been con-
verted to two subproblems as described in Eq. (7) and (9)
respectively.

1) Solution to Eq. (7): Eq. (7) is actually a least square
problem, whose solution is given by:

z∗ = ([xl,xr]
T [xl,xr])

−1[xl,xr]
Txj . (10)

2) Solution to Eq. (9): We first define two matrices D ∈
R(d+1)×(m+1) and Q ∈ R(d+1)×(m+1) as follows.

Di,j = min
b1<...<bj

j−1∑
k=0

Sbk,bk+1
, s.t. bj = i, (11)

Qi,j = arg min
j−1≤k≤i

Dk,j−1 + Sk,i. (12)

Note that there should be j ≤ i since bj = i. To solve Eq. (9),
we present two theorems as follows:

Theorem 1. The following equation holds for 1 ≤ i ≤ d+ 1
and 1 ≤ j ≤ i:

Di,j = min
j−1≤k≤i

Dk,j−1 + Sk,i. (13)

Theorem 2. If we set b∗ = [b∗1, b
∗
2, ..., b

∗
m]T according to Eq.

(14), b∗ should be one of the solution to Eq. (9).

b∗j = Qb∗j+1,j+1. (14)



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. X, APRIL 2020 4

The proof of Theorem 1 and 2 is given in appendix.
According to Theorem 1, the jth column ofD only depends

on the (j − 1)th column of D. In other words, once we have
known the (j − 1)th column of D, we can achieve its jth
column by enumerating all the possible values of k according
to Eq. (13). Besides, since it is easy to know there is Di,1 =
S0,i according to the definition of D, the first column of D
can be calculated in advance, which means the whole matrix
D is solvable. Furthermore, since D is solvable, Q can be
known as well, which indicates b∗ can be obtained according
to Eq. (14).

The pseudo code for the optimization of Eq. (9) is shown
in Algorithm 1. Note that the algorithm we introduce here
assumes S is already achieved. Since the calculation of S is
correlated with the selection of τ , we will leave it to Section
III-C.

Algorithm 1 Optimization of Eq. (9)
Input: All bands X = [x1,x2, ...,xd], number of bands m,

auxiliary variable S.
1: Set Di,1 ← S0,i for each 1 ≤ i ≤ m+ 1.
2: Set Di,j ←∞ for each 1 ≤ i ≤ d+1 and 1 < j ≤ m+1.
3: for j ← 2 to m+ 1 do
4: for i← j to d+ 1 do
5: for k ← j − 1 to i− 1 do
6: if Dk,j−1 + Sk,i < Di,j then
7: Di,j ← Dk,j−1 + Sk,i.
8: Qi,j ← k.
9: end if

10: end for
11: end for
12: end for
13: b∗m+1 ← d+ 1.
14: for j ← m to 1 do
15: b∗j ← Qb∗j+1,j+1.
16: end for
Output: The indexes of m selected bands b∗1, b

∗
2, ..., b

∗
m.

C. Parameter Selection

This subsection discusses about the selection of the param-
eter τ . First, the motivation to develop the parameter selection
approach is given. Then the detailed procedure to set τ is
provided. In the last, short analysis is made to help interpret
the approach.

About parameter τ , it should be pointed out that it largely
influences the performance of ONR. When τ is too small,
only bands which have very low reconstruction errors will
contribute to the objective function. So to deal with it, ONR
will select a series of bands which are highly correlated to
ensure some of the bands meet the required condition. When
τ is too large, ONR tends to select the noisy bands, since
once they are selected, their own reconstruction errors will be
reduced to 0 directly, which leads to a large decrease to the
objective function. However, both of the above two situations
are not desired to be seen, so how to adaptively find a feasible
τ is very important.

The proposed parameter selection approach is inspired by
two concerns. The first one is that we should first distinguish
noisy bands from clean bands. Since this task seems easier
than to directly determine τ , and once accomplished, it helps to
find the feasible τ , e.g., we can just simply set τ to the minimal
possible reconstruction error of noisy bands to reduce the risk
to select them. The second concern is that τ should be adjusted
according to the band selection result. If τ is just determined
based on some prior information but without feedback on how
it influences the algorithm, there will be too much uncertainty
in the approach. In consideration of these, two steps will be
conducted to set τ .

1) Recognition of noisy bands: This step finds out the noisy
bands according to the below procedure:
• Calculate the minimal possible reconstruction error (ex-

clude self-reconstruction) J ∈ Rd of each band:

Ji = min
j<i<k

Lj,k,i. (15)

Then sort J in ascending order to get J̃ .
• Calculate the histogram H ∈ Rh of J̃ . Here h is

the number of bins. Generally, clean bands have lower
reconstruction errors, so they tend to accumulate on the
first several bins of H .

• Define a window size w, and find the minimal index i∗

of H which satisfies:∑2w+1
k=1 Hk −

∑i∗+w
k=i∗−wHk∑2w+1

k=1 Hk

> ε. (16)

Here w defines a sliding window to smooth H . ε iden-
tifies the threshold of the decreasing ratio of H . When
Eq. (16) is satisfied, the number of bands contained in the
current bin (Hi∗ ) are considered much lesser than the first
bin, which means these bands and bands in succeeding
bins are probably noisy bands. So, the bands contained
in the first i∗−1 bins of H are identified as clean bands,
while the others are noisy bands. We name the indexes
of clean bands as ξ = (ξ1, ξ2, ...)

T .
2) Grid search: After the noisy bands are recognized, the

parameter τ will be set according to the following procedures.
• Solve Eq. (6) with τ = ∞, and set τmax to the largest

reconstruction error in this case:

τmax = max
1≤j≤d

Lb∞k ,b∞k+1,j
, s.t. b∞k ≤ j < b∞k+1. (17)

Here b∞ corresponds to the solution of Eq. (6) when
τ =∞.

• Evenly split (0, τmax] into t sub-intervals (0, τ1], (τ1, τ2],
...,(τt−1, τt] (τmax = τt).

• Solve Eq. (6) with τ = τ1, τ2, ..., τt sequentially, and
check the reconstruction error for each clean band ξi:

Eξi = Lbτk,bτk+1,ξi
, s.t. bτk ≤ ξi < bτk+1. (18)

Once more than a percentage γ of clean bands has
reconstruction error lower than τ , stop searching. The
current τ is just the desired one, and the current bτ is the
indexes of the final selected bands.
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Intuitively, the first step aims to find an index of J̃ that
indicates the rapid growth of it (some examples are shown in
Fig. 2). Since we assume that noisy bands have much larger
reconstruction errors than clean bands, this phenomenon may
indicate the occurrence of noisy bands. The second step aims
to find the minimal value of τ such that most of the clean
bands can be well reconstructed, so this τ is not too strict for
the clean bands and also not too loose for the noisy bands. It
is worth noting that when τ > τmax, the solution of Eq. (6)
will remain unchanged even if τ is changed.

The overall procedure of selecting τ involves 5 parameters:
h,w, ε, t and γ as described above. After slightly parameter
tuning, they are set as h = 0.6d,w = 5, ε = 0.6, t = 100 and
γ = 95%. Specifically, h,w and ε are tuned according to the
curve of J̃ so that the results agree with our intuition (like what
is shown in Fig. (2)). t and γ are tuned according to ONR’s
experimental performance. We want to highlight here is that
these parameters will be fixed under different experimental
settings so that the performance gain obtained by parameter
tuning will be minimized.

The pseudo code of ONR with adaptive parameter selection
is given in Algorithm 2.

Algorithm 2 Optimal Neighborhood Reconstruction
Input: All bands X = [x1,x2, ...,xd], number of bands m.

1: Set parameter w = 5, h = 0.6 · d, ε = 0.6, t = 100,
2: Get L according to Eq. (7) and Eq. (10).
3: Get J according to Eq. (15) and sort it to get J̃ .
4: Compute the histogram H of J̃ .
5: Find the index i according to Eq. (16) and achieve the

indexes of clean bands ξ.
6: Get S∞ with τ =∞ according to Eq. (8).
7: Conduct Algorithm 1 with S∞, and get τmax according

to Eq. (17).
8: for τ = τmax

t , 2τmax
t , ..., τmax do

9: Get Sτ using the current τ .
10: Conduct Algorithm 1 with Sτ , and get bτ .
11: Calculate Eξi for each ξi in ξ using Eq. (18).
12: if more than 95% of the elements of Eξi < τ then
13: b∗ = bτ .
14: Break.
15: end if
16: end for
Output: The indexes of m selected bands b∗.

D. Complexity of ONR

This section discuss about some issues concerning the time
complexity of ONR. The first part presents a trick to accelerate
ONR, and the second part gives detailed analyses toward the
time complexity. Note that the acceleration trick only improves
the efficiency, but does not affect the band selection result.

1) Acceleration Trick: This trick is to accelerate the cal-
culation of each element in L. We first define a covariance
matrix Σ = XTX ∈ Rd×d, and a notation ∆(l,r) =

([xl xr]
T

[xl xr])
−1 ∈ R2×2. Then Eq. (10) can be rewritten

as:

z∗ =

[
Σl,l Σl,r
Σr,l Σr,r

]−1 [
Σl,j
Σr,j

]
= ∆(l,r)

[
Σl,j
Σr,j

]
.

(19)

Here Σi,j is the i-row j-column element of Σ. By substituting
Eq. (19) into Eq. (7), we get:

L2
l,r,j = ‖xj − [xl xr] z

∗‖22

= Σj,j −
[

Σl,r Σr,j
]

∆(l,r)

[
Σl,j
Σr,j

]
.

(20)

Eq. (20) implies that once Σ and ∆(l,r) are obtained, each
element of L can be achieved with only a fixed number of
scalar computations.

2) Complexity Analysis: As can be seen from Algorithm 2,
the most time consuming part of ONR is the calculation of L
in line 2 and the main iteration from line 8 to 16. The other
procedures like the computation of J̃ or H are instead with
little costs, so they are not considered here.

a) The complexity to calculate L. Originally, we need
to calculate each element of L according to Eq. (10) and
substitute the result to Eq. (7) in order to achieve L. Eq. (10)
actually involves dot product of vectors for four times, scalar
product of vectors for four times and matrix inversion (of a
2 × 2 matrix) for one time. The corresponding complexity is
O(8n+ 23) = O(n). Similarly, substituting the result into Eq.
(7) also costs O(n). So computing L directly costs O(d3n).
If the above trick is used, Σ should be achieved at first, which
costs O(d2n). Once Σ is attained, ∆(l,r) for 1 ≤ l < r ≤ d
can be calculated within O(d2) (∆(l,r) is only a 2×2 matrix).
Then since the second line of Eq. (20) only involves a fixed
number of scalar computations, each element of L can be
computed within O(1) . Consequently, the complexity to attain
L can be reduced from O(d3n) to O(d2n+ d3) owing to the
acceleration trick.

b) The complexity of main iteration. The most time-
consuming part in main iteration is the calculation of S in
line 9 and the conduction of Algorithm 1 in line 10. It is easy
to see the computational cost of Algorithm 1 is O(d2m), so
iterating over line 9 for t times costs O(td2m) in total. When
referring to S, O(td3) is needed if we directly calculate it
according to Eq. (8). However, the complexity can be reduced
to O(td2m + d3log(d)) because the value of τ increases
progressively. The key idea to achieve this reduction is to
decide how the S obtained in the last iteration should be
updated in the current iteration. To accomplish this, we need
to find the elements in L whose values are between the last τ
and the current τ and adjust S according to each of them. We
will not list all the details here because they are too tedious
and somehow trifling. One can refer to our code to find more
information2.

Summarizing the above two procedures, the total complexity
of ONR is O(d2n + td2m + d3log(d)). Generally there are
n� tm and n� dlog(d), so the complexity is approximate

2If this paper is finally accepted, we will publish our code.
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to O(d2n). Moreover, the O(d2n) here refers to the naive
algorithm to compute matrix product when we calculate Σ.
So if faster algorithms like [36] can be used, the efficiency of
ONR can be further improved.

IV. EXPERIMENT

To examine the effectiveness of ONR, experiments are
conducted on several real-world HSI data sets. First, the
experimental settings are introduced. Then the results of classi-
fication experiments are shown to see whether ONR is superior
to the other state-of-the-art methods. Finally the computational
efficiency of different methods is compared and analysed.

A. Experimental Setup

The subsection includes description of data sets, introduc-
tion of comparison methods and parameter settings.

1) Data Set: Six real-world HSI data sets are used in the
experiments, namely Indian Pines, Pavia University, Salinas,
Kennedy Space Center (KSC), Botswana and Leaves.
• Indian Pines is captured by AVIRIS sensor in North-

western Indiana in 1992. It contains 145 × 145 pixels,
224 bands and 16 classes of interest. The wavelengths
of bands range from 0.4 µm to 2.5 µm. 24 bands are
removed due to water absorption, and 200 bands are used
in the experiments.

• Pavia University is acquired by ROSIS sensor in Pavia,
northern Italy, in 2002. It contains 610 × 340 pixels, 9
classes of interest and 103 bands, with wavelengths range
from 0.43 µm to 0.86 µm.

• Salinas is collected by AVIRIS over Salinas Valley,
California in 1998. It has 512×217 pixels, 224 bands and
16 classes of interest. The wavelengths of bands range
from 0.4 µm to 2.5 µm. 20 water absorption bands are
discarded and 204 bands are used in the experiments.

• KSC is acquired by AVIRIS over the Kennedy Space
Center, Florida in 1996. It has 512 × 614 pixels, 224
bands and 13 classes of interest. The wavelengths of
bands range from 0.4 µm to 2.5 µm. 48 absorption bands
are removed and 176 bands are used in the experiments.

• Botswana is captured by NASA EO-1 satellite over Oka-
vango Delta, Botswana in 2001. It consists of 1476×256
pixels, 242 bands and 14 classes of interest. The wave-
lengths of bands range from 0.4 µm to 2.5 µm. 97 water
absorption bands are removed and 145 bands are used in
the experiments.

• Leaves, as shown in Fig. 1, was a test image captured by
GaiaField - an portable hyperspectral imager on May 30,
2018. It is a close shot of 10 different classes of leaves
(see details in Table I). It has 1168× 696 pixels and 520
bands, with wavelength range from 0.4µm to 1.0µm.

2) Comparison Method: There are a total of 7 band selec-
tion methods included as competitors. They are:
• Uniform band selection (UBS) [26] just simply selects

the bands uniformly.
• Ward’s Linkage strategy Using Mutual Information

(WaLuDi) [18] first separates the bands into clusters

(a) (b)

Fig. 1. The true color image of Leaves data set and the ground truth. (a)
True color image. (b) Ground truth.

TABLE I
CLASS NAME AND SAMPLE NUMBER FOR EACH CLASS OF LEAVES

Index Class Name # of Samples

1 Platanus acerifolia 165973
2 Duchesnea indica 29915
3 Shamrock 34746
4 Rugosa rose 31782
5 Creeping oxalis 4793
6 Ligustrum lucidum 73658
7 Ligustrum quihoui 21600
8 Sweet-scented osmanthus 32868
9 Ophiopogon japonicus 11843
10 Paederia foetida 38017

via hierarchical clustering, where Kullback-Leibler diver-
gence is adopted to capture the feature-level similarity.
Then in each cluster, the band that has the highest
similarity to the others is selected.

• Enhanced fast density-peak-based clustering (E-
FDPC) [37] aims to find the potential clustering centers,
which usually have two properties: large local density and
large inter-cluster distance. The former one means there
should be lots of data points surrounding the clustering
centers, while the later one means the two clustering
centers should be far from each other. E-FDPC then
weights these two factors to rank the bands.

• Normalized Cut based Optimal Clustering (NC-OC)
[38] is a group-wise selection method. It proposes a dy-
namic programming based optimization method to search
for the optimal clustering result, and a rank on clusters
strategy to select the representative bands in each cluster.
Here we adopt the normalized cut (NC) as the clustering
criterion and MVPCA as the ranking criterion.

• Rank minimization band selection (RMBS) [21]
searches for the low-rank structure among bands via low-
rank representation. Then it clusters the bands into groups
and select one in each group to constitute the band subset.

• Orthogonal projection-based band selection (OPBS)
[39] begins with a one-band subset which contains the
band with maximum variance. Then it select the band
which can maximize the orthogonal projection to the
subspace spanned by the subset, and add it to the subset.

3) Parameter Setting: For the parameter settings about the
comparative methods, most of them are free of parameter. For
RMBS, as an exception, its parameter is tuned via a grid search
in {10−4, 10−3, ..., 103, 104} on Indian Pines, and fixed for the
other data sets.

For ONR, we have discussed about the selection of τ in
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Section III-C. Here Fig. 2 and Fig. 3 illustrate the procedure
to find τ more intuitively. In Fig. 2, it seems there is always
a state that J̃ starts to increase rapidly for all the data sets.
This is agree with the assumption that the noisy bands are
more unlikely to be well reconstructed and will have much
larger reconstruction errors. In Fig. 3, it can be observed that
when τ is too small (as the case in (a)), the distribution of
the selected bands are over-concentrated. Most of the bands
still have large reconstruction errors. When τ is too large (as
the case in (b)), many bands with indexes at around 130 are
selected. However, these bands contribute little to the overall
reconstruction results since two contiguous bands of them
only help one band between them to have error lower than
τ . Besides, spectral curves of different classes are hard to be
distinguished in this interval. It seems that (c) gives a proper
estimation of τ , because most of the bands have errors lower
than τ , and contribute a lot to the overall reconstruction.

B. Classification Experiment

To examine the effectiveness of ONR, classification exper-
iments are conducted on the above mentioned 6 data sets.
Support vector machine (SVM) [40] and k-nearest neighbor-
hood (KNN) [41] are adopted as classifiers to examine the
classification performance. For each data set, 10% of the
samples are randomly selected to train the classifier, while the
remaining 90% are used in testing. We run all the experiments
10 times individually to reduce the randomness. Fig. 4 and 5
plot the overall accuracy (OA) curves produced by SVM and
KNN for all the data sets, where m varies from 3 to 30 each
3 interval. Table II and III list the OA values averaged over
the cases when m = 3, 6, ..., 30 on different data sets, where
the best results are in bold and the second best are underlined.
Table IV lists the indexes of 15 bands selected by ONR for
each data set.

As is shown in Fig. 4 and 5, in most of the time, the
performance of ONR is superior to the others. Although some
competitors achieve comparative results with ONR on some
data sets, they are not very robust in all the cases. For example,
OPBS achieves a satisfactory performance on Pavia University
and Salinas data sets when SVM is employed. But it fails on
KSC data set, worse than the lower bound of the figures. E-
FDPC performs well on Indian Pines and Salinas data sets,
but it still inferior to most of the competitors when referring
to KSC or Botswana. As for ONR, it attains a much more
robust performance, and even dominates all the other methods
on some data sets such as Botswana and Leaves.

C. Statistical Test

In order to find whether the proposed ONR has significant
differences with the comparative methods among various con-
ditions, we conduct Wilcoxon signed-rank test [42] between
ONR and the other methods. The data we consider here is av-
eraged overall accuracies on different data sets using different
classifiers, i.e., each method is represented by 12 data items
collected from Table II and III. The null hypothesis is that
ONR has no significant differences with the other methods.
The level of significance considered here is α = 0.05. Table

V shows the p-values when comparing ONR to the other
5 methods. Since all the p-values are less than α, we can
conclude that ONR has significant differences with all the
other methods.

D. Efficiency Test

To verify the efficiency of ONR, we record the time costs
for different methods to select 30 bands on all the data sets.
The times reported here include all the necessary steps like
pre-processing, e.g., for ONR, its time cost includes all the
steps listed in Algorithm 2. We also report the running times
to perform SVM classification using 30 bands and all bands
as references.

All the methods are implemented by MATLAB R2016a, and
are conducted using an Intel Core i7-6800k 3.40-GHZ CPU
with 64-GB RAM,

According to the results shown in Table VI, though ONR
is not as efficient as E-FDPC, it is faster than the other
competitors in most of the times. Moreover, since ONR is still
efficient on data sets with large n such as Pavia University,
KSC and Botswana, it seems that it is less sensitive to the
growth of the spatial dimension, and so can be applied to
applications that involve images with large spatial sizes.

E. Discussion

According to the above experimental results, we would like
to discuss about some interesting phenomena, and try to give
some constructive suggestions to the design of band selection
algorithm.

1) The influence of the uniformity of the selected bands. In
the previous studies, a good band subset is supposed to has
some degrees of uniformity, i.e., the indexes of the selected
bands should have a uniform distribution to some extent. This
is true to some extent, since we can see the performance of
UBS is pretty stable. However, the performance of ONR leads
to some different conclusions. As is illustrated in Table IV,
the bands selected by ONR are not very uniform. For Leaves,
the selected bands only cover about 3

5 of the spectrum, (the
indexes of selected bands range from 26 to 324 as shown
in Table IV, and there are 520 bands in total), while for
KSC, this ratio is reduced to 2

5 . Nevertheless, with such an
uneven distribution of band indexes, ONR still achieves a
good performance on those two data sets when 15 bands
are selected. So we can learn that the optimal band subset
may not be distributed very uniformly, since the ground
objects may be undistinguishable with respect to some specific
electromagnetic waves.

2) The reason why ONR works. There are two main
reasons why ONR can achieve a promising performance.
First, ONR assembles band decorrelation and noise reduction
into a unified optimization procedure. Through optimizing a
reconstruction-based criterion, it offers strong resistance when
two highly correlated bands are selected simultaneously. By
introducing a noise reducer gτ , the influence of noisy bands
is minimized, which makes ONR have robust performance on
seriously polluted data sets. Second, the optimization method
utilized in ONR can ensure the global optimality of the
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Fig. 2. The illustration to find the noisy bands for different data sets. (a)-(f) are the results for Indian Pines, Pavia University, Salinas, KSC, Botswana and
Leaves data sets, respectively. The blue curve is the sorted minimal possible reconstruction error J̃ , and the red line indicates the threshold to separate the
noisy and clean bands in accordance with the approach in Section III-C. When Ji is larger than the threshold, Xi will be considered as a noisy band.
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Fig. 3. The relationship between τ and the band selection results for Botswana data set. Spectral curves of 14 different classes are also plotted for comparison.
(a)-(c) are the reconstruction errors of all the bands when τ = 0.0115, 0.0441 and 0.0278 respectively. Each band is linearly reconstructed by two of the
selected bands on its left and right. (c) is just the result produced by Algorithm 2. Once the reconstruction error of a band is 0, it means that band is one of
the selected bands. The SVM classification accuracies concerning (a), (b) and (c) are 0.8573, 0.8840 and 0.9085 respectively.

TABLE II
OVERALL ACCURACY BY SVM WITH STANDARD VARIANCE AVERAGED OVER DIFFERENT m.

Indian Pines Pavia University Salinas KSC Botswana Leaves
UBS 70.33± 0.40% 89.29± 0.12% 88.34± 0.14% 75.11± 0.64% 85.04± 0.47% 78.93± 0.01%

E-FDPC 73.55± 0.40% 88.54± 0.13% 90.81± 0.11% 72.62± 0.61% 86.43± 0.48% 82.30± 0.02%
WaLuDi 70.83± 0.40% 89.21± 0.10% 89.93± 0.10% 74.96± 0.59% 85.58± 0.44% 79.44± 0.04%
NC-OC 74.73± 0.36% 89.38± 0.12% 91.29± 0.15% 75.25± 0.65% 86.80± 0.65% 82.52± 0.01%
RMBS 72.86± 0.56% 88.61± 0.08% 90.89± 0.16% 73.35± 0.57% 85.59± 0.77% 84.41± 0.01%
OPBS 67.48± 0.67% 88.99± 0.12% 91.08± 0.13% 51.12± 0.35% 87.51± 0.51% 82.28± 0.03%
ONR 74.74± 0.40% 89.51± 0.13% 91.13± 0.16% 75.34± 0.61% 87.17± 0.61% 86.74± 0.01%
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Fig. 4. Overall accuracy curves produced by SVM classifier. (a)-(f) OA curves for Indian Pines, Pavia University, Salinas, KSC, Botswana and Leaves data
sets, respectively.

TABLE III
OVERALL ACCURACY BY KNN WITH STANDARD VARIANCE AVERAGED OVER DIFFERENT m

Indian Pines Pavia University Salinas KSC Botswana Leaves
UBS 61.17± 0.53% 83.81± 0.11% 85.65± 0.17% 80.63± 0.68% 81.34± 0.62% 74.37± 0.01%

E-FDPC 67.46± 0.37% 85.62± 0.13% 88.28± 0.15% 81.29± 0.87% 83.56± 0.66% 79.40± 0.07%
WaLuDi 64.67± 0.37% 83.93± 0.08% 87.52± 0.14% 81.02± 0.70% 81.79± 0.62% 75.47± 0.01%
NC-OC 66.03± 0.35% 85.44± 0.15% 88.18± 0.15% 81.21± 0.76% 83.09± 0.73% 79.40± 0.06%
RMBS 66.48± 0.35% 84.31± 0.11% 87.93± 0.11% 76.74± 0.61% 81.43± 0.77% 80.83± 0.06%
OPBS 62.52± 0.55% 83.37± 0.12% 87.19± 0.16% 54.90± 0.45% 82.99± 0.57% 79.41± 0.02%
ONR 65.69± 0.27% 86.76± 0.14% 88.29± 0.13% 81.99± 0.77% 83.90± 0.69% 84.30± 0.03%

TABLE IV
INDEXES OF 15 BANDS SELECTED BY ONR FOR ALL THE DATA SETS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Indian Pines 3 10 16 44 67 72 77 99 114 131 149 162 172 182 188

Pavia University 15 18 22 28 33 40 47 54 62 68 72 76 81 90 100
Salinas 6 14 19 30 44 56 70 103 113 118 133 162 173 185 194
KSC 6 10 15 18 24 28 30 32 34 37 42 52 63 72 77

Botswana 4 12 23 27 33 45 48 50 60 78 82 84 88 98 108
Leaves 26 40 61 98 115 146 172 219 238 251 261 269 281 300 324

TABLE V
THE P-VALUES WHEN COMPARING ONR TO THE OTHER METHODS.

ONR→UBS ONR→E-FDPC ONR→WaLuDi ONR→NC-OC ONR→OPBS ONR→RMBS
p-values 0.0005 0.0122 0.0005 0.0093 0.0049 0.0005
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Fig. 5. Overall accuracy curves produced by KNN classifier. (a)-(f) OA curves for Indian Pines, Pavia University, Salinas, KSC, Botswana and Leaves data
sets, respectively.

TABLE VI
RUNNING TIME (S) OF DIFFERENT BAND SELECTION METHODS WHEN 30 BANDS ARE SELECTED.

THE LAST TWO COLUMNS ARE THE RUNNING TIMES TO PERFORM SVM CLASSIFICATION USING 30 BANDS AND ALL BANDS.

E-FDPC WaLuDi NC-OC RMBS OPBS ONR 30 Bands SVM All Bands SVM
Indian Pines 0.06 0.76 0.52 34.14 0.69 0.77 2.12 4.84

Pavia University 0.21 0.60 0.53 104.52 1.62 0.32 34.10 35.29
Salinas 0.24 1.15 0.92 118.96 2.19 0.85 23.10 49.53
KSC 0.53 1.68 1.58 324.50 5.49 0.63 10.61 17.18

Botswana 0.56 1.58 1.46 217.86 6.39 0.62 5.65 11.73
Leaves 5.02 14.64 15.92 4811.20 67.34 8.70 2980.21 9381.37

selection results, which may also improve the robustness of
ONR.

3) Drawback of ONR. Although ONR performs well in
the experiments, its main drawback is that it can not give
a precise measurement towards the information implied in
noisy bands. Noisy bands are not always useless, they may
also be beneficial in some cases. But since they usually have
little linear relation with the clean bands, ONR will refuse
to select them in most of the time. With the growth of m,
when we are allowed to select some of the noisy bands to
improve the performance, ONR will lose its advantages since
it can not distinguish which noisy band is more discriminative.
Nevertheless, since the main purpose of band selection is to
reduce the size of HSI data as much as possible, ONR is still

very useful in related research topics.

V. CONCLUSION

This paper analyses the specificity of band selection com-
pared to traditional feature selection problem, and presents
a novel band selection method named ONR. ONR exploits
the CNP of HSI data and applies an effective optimization
method to achieve the exact solution of a reconstruction-based
objective function.

ONR involves an noise identification mechanism to avoid
the selection of noisy bands so it can achieve a more stable
performance. However, since it cannot measure the informa-
tion of noisy bands accurately, it will ignore some useful
information hidden in them. The experiments demonstrate the



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. X, APRIL 2020 11

proposed algorithm has superior performance on various data
sets compared to the state-of-the-art methods.

In the future, we will focus on how to model the non-linear
relationship between noisy and clean bands, and better exploit
the useful information.

APPENDIX

Proof to Theroem 1.

Di,j = min
b1<...<bj

j−1∑
k=0

Sbk,bk+1
, s.t. bj = i

= min
b1<...<bj−1<i

j−2∑
k=0

Sbk,bk+1
+ Sbj−1,i

= min
j−1≤bj−1<i

min
b1<...<bj−1

j−2∑
k=0

Sbk,bk+1
+ Sbj−1,i

= min
j−1≤bj−1<i

Dbj−1,j−1 + Sbj−1,i.

= min
j−1≤k<i

Dk,j−1 + Sk,i.

(21)

Intuitively, Di,j can be interpreted as the minimal loss to
reconstruct the first i bands using j selected bands, satisfying
that the ith band is selected. Theorem 1 reveals a recurrence
relation that by enumerating all the possible values of bj−1,
Di,j can be converted to a series of simpler subproblems,
which are to optimally reconstruct the first k bands using j−1
selected bands. The basic idea here is dynamic programming
[17, 38].

Proof to Theroem 2. To prove Theorem 2, we will show that
the following equation holds for 0 ≤ j ≤ m:

Db∗j+1,j+1 =

j∑
k=0

Sb∗k,b∗k+1
. (22)

If this is true, we can verify that b∗ is the solution to Eq. (9) by
simply substituting j = m to Eq. (22) (note that bm+1 = d+1
and Dd+1,m+1 is equivalent to Eq. (9)).

The proof is based on mathematical induction. When j = 0,
Eq. (22) holds according to the definition of D. When we
assume Eq. (22) holds for j = i − 1, for its successor j = i,
we have Eq. (23) according to Theorem 1:

Db∗i+1,i+1 = min
i≤k<b∗i+1

Dk,i + Sk,b∗i+1
. (23)

Considering the definition of Q and Eq. (14), b∗i should be
one of the optimal arguments to Eq. (23), which means:

Db∗i+1,i+1 = Db∗i ,i
+ Sb∗i ,b∗i+1

. (24)

According to the induction assumption, there is:

Db∗i ,i
=

i−1∑
k=0

Sb∗k,b∗k+1
. (25)

Substituting Eq. (25) to Eq. (24), we get Eq. (22).
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