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Abstract—The fusion of hyperspectral (HS) and multispectral
(MS) images designed to obtain high-resolution HS (HRHS)
images is a very challenging work. A series of solutions have been
proposed in recent years. However, the similarity structure of HS
image has not been fully utilized. In this paper, we present a novel
HS and MS image fusion method based on nonlocal low-rank
tensor approximation and sparse representation. Specifically, the
HS image and MS image are considered to be the spatially and
spectrally degraded versions of the HRHS image respectively.
Then, the nonlocal low-rank constraint term is adopted in
order to form the nonlocal similarity and the spatial-spectral
correlation. Meanwhile, we add the sparse constraint term to
describe the sparsity of abundance. Thus, the proposed fusion
model is established and its optimization is solved by alternative
direction method of multipliers (ADMM). The experimental
results on three synthetic data sets and one real data set show the
advantages of the proposed method over several state-of-the-art
competitors.

Index Terms—Hyperspectral (HS) Image, multispectral (MS)
image, image fusion, low-rank tensor approximation, sparse
representation.

I. INTRODUCTION

HYPERSPECTRAL (HS) imaging sensor is able to ac-
quire contiguous images with numerous narrow band-

width in a wide range of wavelength. For this reason, HS
images generally have high spectral resolution, which is sig-
nificant to a wide range of fields including band selection [1],
image classification [2], and change detection [3]. Owing to
hardware restrictions and actual signal-to-noise ratio, spatial
resolution and spectral resolution cannot achieve the desired
effect at the same time and there must be a reasonable trade-
off between them. Consequently, HS images have lower spatial
resolution compared to multispectral (MS) and panchromatic
(PAN) images with much less spectral bands. In order to get
high resolution HS (HRHS) images, a popular approach is to
fuse low resolution HS (LRHS) image with high resolution
MS (HRMS) image, called HS-MS fusion [4].

Image fusion is a way to effectively combine the advantages
of different images. According to the different images involved
in the fusion process, it is divided into HS-PAN fusion and
HS-MS fusion.

This work was supported by the National Natural Science Foundation of
China under Grant U1864204, U1801262, 61871470, and 61773316.

X. Li, Y. Yuan and Q. Wang are with the School of Computer Science
and with the Center for OPTical IMagery Analysis and Learning (OPTI-
MAL), Northwestern Polytechnical University, Xi’an 710072, China (e-mail:
li@nwpu.edu.cn; yuanyue1996@mail.nwpu.edu.cn; crabwq@gmail.com).

Qi Wang is the corresponding author.

1) HS-PAN fusion [5]. The fusion of LRHS image and high
resolution PAN image, also called HS pansharpening, has been
developed to increase the spatial resolution of HS images.
Similar to MS pansharpening [6], [7], it is the fusion of multi-
band images with single-band images. The MS pansharpening
methods can be directly used for this problem, and have been
successfully implemented in [8]. Also, there are some matrix
factorization-based methods designed for HS pansharpening
[9]. This kind of methods exploits the linear spectral mixture
model assuming that the image can be unmixed into a product
of endmembers and abundances.

2) HS-MS fusion [4], [10]. Many attempts have been taken
to use pansharpening to solve the HS-MS fusion problem.
Although it may get a high quantity fused image, it is not
entirely suitable for this problem. In recent years, approaches
specially designed for this problem have been investigated:
matrix factorization-based [11]–[17], Bayesian-based [18]–
[20], tensor-based [21]–[25], deep learning-based methods
[26]–[28]. Based on matrix factorization, some methods solve
the fusion problem using spectral unmixing techniques. Fur-
thermore, Bayesian-based methods are introduced and they
regularize the fusion problem by the maximum a posteriori
framework. More recently, considering the three-dimension
(3D) structure of HS images, tensor is adopted to preserve the
original spatial-spectral structure. Additionally, several deep
learning models are designed for this problem. Benefiting from
its learning ability to high-level features, these methods often
get high fusion quality but also high time complexity.

In this paper, we concentrate on tensor-based methods,
and present a novel nonlocal low rank tensor approximation
and sparse representation (NLRSR) based LRHS image and
HRMS image fusion method. The main contributions are
summarized as follows.

1) A novel HS-MS fusion model named NLRSR is pre-
sented to enhance the spatial resolution of HS image. Different
from previous methods, both matrix and tensor are introduced
to this model. Experiments show that this model can effec-
tively fuse the spectral and spatial information from HS and
MS images.

2) A novel low rank constraint criterion is developed to
further exploit the spatial correlation, spectral correlation and
nonlocal self-similarity of HS image. The former two physical
features are easy to form by 3D low rank, but the nonlocal
self-similarity is also significant to HS image. We incorporate
all these physical characteristics into the proposed model to
inherit structural information better. Different from other ap-
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proaches, a minmax concave plus (MCP) penalty is introduced
in this low rank constraint criterion.

3) The tensor-train (TT) [29] rank is introduced to improve
the low rank representation. It has been proved that the TT
rank works better than Tucker rank in some methods related
to the color image. It is used in the 4D low rank term and its
effectiveness has been shown in experiments.

The remainder of this paper is organized as follows. Section
II reviews related HS-MS fusion methods. The proposed
NLRSR method is described in detail in Section III. In Section
IV, the optimization algorithm for solving the proposed fusion
model is given. The experimental results and analysis of eight
comparison algorithms on four HS data sets are shown in
Section V. Finally, we conclude this paper in Section VI.

II. RELATED WORK

In recent years, a series of methods have been developed for
the problem of HS-MS fusion. As mentioned in the previous
section, there are four typical kind of methods to deal with the
problem: matrix factorization-based, Bayesian-based, tensor-
based and deep learning-based methods. In this section, we
will introduce some popular methods of these four categories.

A. Matrix Factorization-Based Methods

Methods based on matrix factorization or spectral unmixing
[30] rely on a basic hypothesis: the LRHS image is regarded
as the spatial degradation result of HRHS image, and the
HRMS image is considered to be the degradation of the
HRHS image in the spectral domain. These methods aim
to reconstruct HRHS image using endmember spectra matrix
which is estimated from LRHS image and abundance matrix
which is estimated from HRMS image. Different methods
propose different ways to estimate the two matrices.

Coupled nonnegative matrix factorization (CNMF) [11] is
a classical HS and MS fusion method. Based on the linear
mixture model, LRHS and HRMS data are alternately unmixed
by nonnegative matrix factorization (NMF) [31], which has
been widely used for HS unmixing. In [12], Akhtar et al. use
online dictionary learning to learn a dictionary from LRHS
image. And the corresponding sparse code is learned using
a generalization of simultaneous orthogonal matching pursuit
(GSOMP+) algorithm. Moreover, total variation regularization
is used to preserve the local spatial smoothness in [13], which
named HYSURE. Considering the spatial correlation of the
HS image, Veganzones et al. [14] decompose the HS image
with the locally low-rank prior, which conducted on each HS
image patch. Utilizing the similarity of adjacent band images
and the low rank structure of HS data, a method based on
group spectral embedding is presented in [16]. In [17], Wei et
al. design a sparse regularization for the HS fusion model to
take advantage of the self-similarity property of HS images.
Taking spatio-spectral sparsity of the HS image into account, a
clustering based non-negative structured sparse representation
(NSSR) [15] is developed to estimate the abundance matrix
from LRHS image. Similar to [12], the endmember spectra
matrix in [15] is acquired by dictionary learning algorithm
based on block coordinate descent algorithm.

B. Bayesian-Based Methods

Bayesian-based methods usually regularize the HS-MS fu-
sion problem by the maximum a posteriori framework. It
utilizes the priori probability distributions of various character-
istics in HS image to compute a posteriori probability which
is used to construct HRHS image. This kind of methods solve
the problem in a subspace.

Akhtar et al. first introduce a Bayesian based method in
[18]. They use a non-parametric Bayesian dictionary learning
to learn high resolution dictionary from LRHS image, and then
use the dictionary with the corresponding coefficient obtained
from HRMS image through Bayesian sparse coding so as to
construct HRHS image. Different from [18], a method called
fast fusion based on Sylvester equation (FUSE) [19] is devel-
oped. This method solves the Sylvester equation derived from
the HS-MS fusion model and can also be applied to HS-PAN
fusion. The Bayesian framework is easily generalized when
some prior conditions need to be considered. Subsequently, a
more robust algorithm R-FUSE [20] is proposed to enhance
the robustness and reduce the computational complexity of
FUSE.

C. Tensor-Based Methods

In the past years, tensor is adopted to represent images
to uncover the underlying data structure in image processing
[32], [33]. Different from matrix-based methods, tensor-based
methods form HS data as a 3D tensor rather than a 2D matrix
and add analysis of spatial dimensional structural features. For
a 3D HS tensor, the dimensions of the tensor represent its
width, height and band number, respectively.

In [21], the HRHS image is reconstructed by dictionary
matrices of three modes and a core tensor through sparse
coding and dictionary learning. It introduces the tensor fac-
torization to HS-MS fusion. Meanwhile, the HRHS image is
spatially partitioned into a number of cubes, and the similar
cubes are grouped to take advantage of the non-local spatial
similarities. Coupled sparse tensor factorization (CSTF) [22]
also utilizes the core tensor and three factor matrices to
obtain the HRHS image. Different from [21], it uses Tucker
decomposition [34] to estimate them. A low rank tensor
decomposition model which is regularized by spatial-spectral
graph for HS-MS fusion is proposed in [23]. In this model, two
graphs are built to characterize neighboring pixels similarity of
HRMS image and adjacent bands correlation of LRHS image,
respectively. Method in [24] uses nonlocal patch tensor to
preserve spatial and spectral similarities in the HRHS image.
Further, a novel tensor rank named low TT rank (LTTR) is
introduced in [25]. This method uses the LTTR prior, which
has been shown to perform better than Tucker rank in the color
image, to improve the resolution of HS image. Different from
approaches adopting 3D tensor, it uses 4D tensor to exploit
the prior. To be specific, the similar HS cubes are grouped to
constitute a 4D tensor.

D. Deep Learning-Based Methods

Different from traditional methods, deep learning-based
methods aim at learning a mapping between LRHS and HRHS
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TABLE I
NOTATIONS USED IN THIS PAPER.

Notation Description

X tensor
X matrix
a scalar
Unfoldn(X ) = X(n) mode-n unfolding of tensor X
Foldn(X(n)) = X mode-n folding of matrix X(n)

X〈n〉 mode-n canonical of tensor X
|| · ||F Frobenius norm

images.
Most of these methods are transformed from computer

vision tasks. In recent years, methods for LRHS and HRMS
images are proposed. Han et al. [26] propose a pre-upsampling
super-resolution method and the structures of which is based
on SRCNN. In [27], a fusion method with two branches is
proposed, which uses two branches to learning spatial and
spectral resolution from HRMS and LRHS, respectively. Due
to the high dimension of HS images, thus leads to high
computational cost. Differently, Dian et al. [28] propose a
method using traditional optimization as the basic framework
and using CNN to learning the priors. It is effective for HS-MS
fusion and takes lower time cost.

III. PROPOSED METHOD

The proposed NLRSR method will be elaborated in this
section. First, some preliminaries about tensor are introduced.
Then, we describe the problem formulation of HS-MS fusion.
Next, the nonlocal low-rank constraint and the sparse con-
straint criterions are described in detail. Finally, the proposed
model is explained.

A. Introduction to Tensor

Tensor is known as a N-dimensional generalization of a 2-
dimensional matrix. And tensor representation has been proved
to be stable in [32]. In this paper, we present tensors in Euler
script letters X ∈ RI1×I2×...×IN and matrices using bold
Greek script letters X ∈ RI1×I2 . Mode-n unfolding of tensor
X is a process of rearranging the tensor mode-n fibers, and it
is written as

X(n) ∈ RIn×(I1...In−1In+1...IN ). (1)

Besides, Unfoldn(X ) = X(n) and Foldn(X(n)) = X . Simi-
larly, mode-n canonical of tensor X also rearranges a tensor
element to obtain a matrix, and it is written as

X〈n〉 ∈ R(I1...In)×(In+1...IN ). (2)

Using the entry of tensor xi1i2...iN , the Frobenius norm

||X ||F =

√√√√ I1∑
i1=1

I2∑
i2=1

. . .

IN∑
iN=1

x2i1i2...iN . (3)

can be computed. Table I summarizes the notations used in
this paper.

B. Problem Formulation

We use Z ∈ RW×H×L to denote the desired HRHS image,
where W is the width, H is the height, and L is the number
of spectral bands. X ∈ Rw×h×L presents the LRHS image,
where w < W and h < H . Y ∈ RW×H×l denotes the HRMS
image, where l < L. To solve the image fusion problem, we
need to estimate Z using X and Y . Actually, it is reasonable
to assume that the HRMS image is the spectrally degraded
version of the HRHS image, so X can be modeled using Z
as

X(3) = Z(3)BS, (4)

where X(3) ∈ RL×wh and Z(3) ∈ RL×WH are the mode-3
unfolding of X and Z , respectively. B ∈ RWH×WH presents
the spatial blurring operator, and S ∈ RWH×wh presents the
spatial down-sampling operator. Similarly, the LRHS image
can be regarded as the spatially degraded version of the HRHS
image and Y can be modeled using Z as

Y(3) = RZ(3), (5)

where Y(3) ∈ Rl×WH . R ∈ Rl×L is the spectral response
function of Y . Therefore, the basic HS-MS fusion model can
be formulated as

min
Z(3)

||X(3) − Z(3)BS||2F + λ||Y(3) −RZ(3)||2F , (6)

where λ is a tradeoff parameter.

C. Nonlocal Low-Rank Tensor Approximation

To exploit the local structure information and the nonlocal
self-similarity of HS cube, we use nonlocal low rank tensor
approximation to regularize the basic fusion model. To do
that, Z is firstly divided into several overlap cubes. Using
the Euclidean distance to measure the similarity of HS image
pixels, the similar cubes are grouped together into K clusters
Ck = {Z(k,i) ∈ Rb×b×L}Nki=1 (k = 1, ...,K), where b is the
height or width of each cube and Nk is the quantity of cubes
in the kth cluster. Since Z is unknown at first and most of its
spatial information is acquired from Y , Z is grouped according
to the grouping of Y . It is worth noting that Ck ∈ Rb×b×L×K
is a 4D tensor. We define the operation from Z to Ck as GkZ ,
that is GkZ = Ck. Since each cluster Ck is composed of Nk HS
cubes, it owns the same structure and features of HS images.
First, its pixels are spatial correlation, so Ck

(1) (the mode-1
unfolding of the tensor Ck) and Ck

(2) are low-rank. Second, the
spectral information of its neighboring bands are redundant, so
Ck

(3) is low-rank. Considering Nk HS cubes in each cluster is
similar, the nonlocal self-similarity means Ck

(4) is low-rank.
Thus, for each cluster, the low-rank structure of Ck can be
expressed as

4∑
i=1

αirank(C
k
(i)), (7)

where αi is the weight coefficient and
∑4
i=1 αi = 1. It is

confirmed that the TT format can be used to effectively solve
high dimensional problems [29]. To be specific, TT format



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 4

is relatively stable and has a lower variance of ranks, which
makes it faster and easier to reach extreme value. The TT
low-rank structure of Ck can be formulated as

3∑
i=1

αirank(C
k
〈i〉), (8)

where Ck
〈i〉 is the mode-i canonical of the tensor Ck and∑3

i=1 αi = 1.
Since the tensor rank is usually non-convex and its op-

timization problem is NP-hard, the nuclear norm calculated
by summing the singular values of a matrix is often used to
replace it in practice. Also, authors in [25] use a logarithm
term as a solution to the problem. The special logarithm term
shrinks smaller singular value with noise, and this method
achieves high fusion performance. However, the logarithm
term may not approximate the rank function well when the
singular value is large. A folded-concave penalty, minimax
concave plus (MCP) penalty, is introduced in [35]. It not only
shrinks smaller singular values but also keeps other singular
values close to 1. Thus, it gives a better approximation than
the logarithm term. This penalty term is written as

Pλ(t) =

{
aλ2/2, if |t| ≥ aλ;
λ|t| − t2/2a, otherwise.

(9)

As in [36], we define the MCP norm as ||M||Pλ =∑r
i=1 Pλ(σi(M)), where σi(M) is the ith singular value and

r is the rank of matrix M. Then, using above MCP norm, the
low-rank structure of Ck can be rephrased as

||Ck||Pλ =

3∑
i=1

αi||Ck
〈i〉||Pλ . (10)

Finally, the nonlocal low-rank tensor approximation term is
written as

||Z||NLR =

K∑
k=1

||Ck||Pλ . (11)

D. Dictionary Learning and Sparse Coefficient Matrix

It has been proved that sparse prior can effectively solve
a variety of ill-posed inverse problems under the background
of HS image reconstruction. Before using the sparse prior,
the linear spectral mixing model is described. It assumes that
the image can be decomposed into the product of the spectral
dictionary and the corresponding coefficient. As to Z , it can
be modeled as

Z(3) = EA, (12)

where E is the spectral dictionary and A is the corresponding
coefficient. And the coefficient A which represents the propor-
tion of each endmember in the image may be sparse. Thus,
we use the element-wise l1 norm regularizer term ||A||1 to
describe the columns sparsity of A. After substituting equation
(12) into equation (4), the following expression is obtained

X(3) = EABS = EÃ, (13)

where Ã = ABS is the abundance coefficient of X(3). Then,
the spectral dictionary E can be learned from the minimization
problem below

min
E
||X(3) −EÃ||2 + λl||Ã||1, (14)

where λl is a penalty parameter. We use the online dictionary
learning algorithm which is proposed in [37] to solve it.

E. Proposed Model

Combined with the above discussion, the HS-MS fusion
problem can be expressed as the following minimization
problem:

min
Z(3)

||X(3) − Z(3)BS||2F + λ||Y(3) −RZ(3)||2F

+

K∑
k=1

3∑
i=1

αi||Ck
〈i〉||Pλ1 + λ2||A||1

s.t. Z(3) = EA,

(15)

where λ1 and λ2 are regularization parameters.

IV. OPTIMIZATION ALGORITHM

The optimization algorithm for solving the proposed
NLRSR model is presented in this section. Since (15) is a
nonconvex optimization problem, we use alternative direction
method of multipliers (ADMM) to find the optimal structure.
First, we introduce auxiliary variables {Mi}3i=1, so (15) can
be rewritten as

min
Z(3)

||X(3) − Z(3)BS||2F + λ||Y(3) −RZ(3)||2F

+

K∑
k=1

3∑
i=1

αi||GkMi 〈i〉||Pλ1 + λ2||A||1

s.t. Z =Mi,Z(3) = EA, i = 1, ..., 3.

(16)

Then, the augmented Lagrangian expression for (16) is

L(Z,Mi,U i,A,V)

=||X(3) − Z(3)BS||2F + λ||Y(3) −RZ(3)||2F

+

3∑
i=1

K∑
k=1

αi||GkMi 〈i〉||Pλ1 + λ2||A||1

+

3∑
i=1

(〈Z −Mi,Ui〉+
µ

2
||Z −Mi||2F )

+ 〈EA− Z(3),V〉+
ν

2
||Z(3) −EA||2F ,

(17)

where µ and ν are penalty parameters. {Ui}3i=1 and V are the
Lagrange multipliers. By extracting the terms that is related to
a variable, (17) can be split into the following sub-problems.

1) Optimization of Z: By fixing {Mi}3i=1, {Ui}3i=1, A, V,
the sub-problem of Z can be written as

min
Z(3)

||X(3) − Z(3)BS||2F + λ||Y(3) −RZ(3)||2F

+

3∑
i=1

(〈Z −Mi,Ui〉+
µ

2
||Z −Mi||2F )

+ 〈EA− Z(3),V〉+
ν

2
||Z(3) −EA||2F .

(18)
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The minimization problem (18) has a closed-form solution,
which is able to obtain by taking its derivative and setting it
to zero. The optimal solution of Z is equivalent to a solution
to the equation as follows

RTRZ(3)+Z(3)BS(BS)
T
+ 3µZ(3) + νZ(3)

=X(3)(BS)
T
+ RTY(3)

+

3∑
i=1

µ(Mi(3) −
Ui(3)

µ
) + ν(EA− V

ν
).

(19)

Equation (19) is a Sylvester matrix equation. And it can be
written as

H1Z(3) + Z(3)H2 = H3, (20)

where

H1 =RTR + 3µI + νI, (21)

H2 =BS(BS)
T
, (22)

H3 =X(3)(BS)
T
+ RTY(3)

+

3∑
i=1

µ(Mi(3) −
Ui(3)

µ
) + ν(EA− V

ν
).

(23)

For the Sylvester equation (20), we use R-FUSE [20] to solve
it.

2) Optimization of Mi(i = 1, ..., 3): By fixing Z , {Ui}3i=1,
A, V, the sub-problem of {Mi}3i=1 can be written as

min
Mi

K∑
k=1

αi||GkMi 〈i〉||Pλ1 + 〈Z −Mi,Ui〉+
µ

2
||Z −Mi||2F .

(24)
Considering the first term, the linear proximal is first con-
ducted on (24). After that, it can be solved by the weighted
singular value thresholding as in [38]. For the singular value
decomposition of a matrix Z = UZΣZVT

Z , the corresponding
weighted singular value thresholding operator is calculated by

SoftTh(Z, τ, w) = UZSign(ΣZ)(|ΣZ| −
τ

2
w)+VT

Z , (25)

where Sign(·) is the sign function and w = Diag((λ −
(σ(Z)/a))+). Thus, the optimization of Mi(i = 1, ..., 3) can
be computed by

Mi =

K∑
k=1

Foldi(SoftTh(GkZ〈i〉 +
GkUi 〈i〉
µ

,
λ1αi
µ

)), (26)

where Foldi(·) is the mode-i folding of a tensor.
3) Optimization of A: By fixing Z , {Mi}3i=1, {Ui}3i=1, V,

the sub-problem of A can be written as

min
A

λ2||A||1 + 〈EA− Z(3),V〉+
ν

2
||Z(3) −EA||2F . (27)

Problem (27) can be written as the following form

min
A
||EA−B||22 + λ||A||1. (28)

After expanding function (28) and deriving, the distribution of
its minimum value is obtained by

SoftExp(B,E, λ) = (ETE)−1Sign(ETB)(|ETB| − λ

2
)+.

(29)

Thus, we can directly update A by

A = SoftExp(Z(3) −
V

ν
,E,

2λ2
ν

). (30)

4) Updating Multipliers: The multipliers {Ui}3i=1 and V are
updated by equations as follows

Ui = Ui + µ(Z −Mi), i = 1, ..., 3, (31)
V = V + ν(EA− Z(3)). (32)

In each iteration, µ and ν increase with a small value.

µ = γµ, (33)
ν = γν, (34)

where γ is a little larger than 1. The steps of the proposed
NLRSR are summarized in Algorithm 1.

Algorithm 1 ADMM for Solving NLRSR Fusion
Input: LRHS image X , HRMS image Y , spatial blurring
operator B, spatial down-sampling matrix S, spectral response
matrix R, parameters K, λ, λ1, and λ2;
Initialization: M1 = 0, M2 = 0, M3 = 0, U1 = 0, U2 = 0,
U3 = 0, V = 0, A = 1/m, µ = 10−3, ν = 10−6, γ = 1.05,
l = 1, maxIter = 100;

1: Divide Z into several overlapping blocks;
2: Group overlapping blocks into K clusters;
3: Learn E from Y by online dictionary learning;
4: while not converged and l < maxIter do
5: Update Z with R-FUSE on (18);
6: for i = 1 to 3 do
7: Update Mi by (26);
8: Update Ui by (31);
9: end for

10: Update A by (30);
11: Update V by (32);
12: Update µ by (33) and update ν (34);
13: Check the convergence conditions;
14: l = l + 1;
15: end while
Output: fused image Z .

V. EXPERIMENTS

To evaluate the performance of our algorithm, adequate
experiments are conducted in this section. Firstly, four data
sets and four quality metrics are introduced. Then, we show
the experimental results of eight comparison methods. Finally,
we analyze the parameter selection of our method.

A. Experiment Data Sets

We use three synthetic HS remote sensing data sets and one
real HS remote sensing data set for experiments, and details
of them are described below.

1) University of Pavia Data Set1: This data set was col-
lected by the Reflective Optics System Imaging Spectrometer

1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote
Sensing Scenes

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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Fig. 1. HS-MS Fusion results among the compared methods on University of Pavia data set. (a) LRHS. (b) CNMF. (c) GSOMP+. (d) HYSURE. (e) SpaBayes.
(f) NSSR. (g) CSTF. (h) LTTR. (i) NLRSR. (j) Reference.

(ROSIS) sensor over Pavia, Italy in 2003. After removal of
the water vapor absorption and noise bands, the original 224
spectral bands between 0.43 and 0.84 µm remains 103 bands.
The full spatial resolution of this image is 610×610 pixels with
a ground sampling distance (GSD) of 1.3 m and we select a
128×128-pixels-size image in the experiment.

2) Washington DC Mall Data Set2: The Hyperspectral Digi-
tal Imagery Collection Experiment (HYDICE) sensor acquired

2https://engineering.purdue.edu/∼biehl/MultiSpec/hyperspectral.html

the data set over the National Mall in Washington, DC in 1995.
The HS image consists of 1280×307 pixels with 210 bands
within a wavelength range of 0.4 to 2.5 µm. Its GSD is 2.5
m. After removal of the water vapor absorption bands between
0.9 and 1.4 µm, the image reduces to 191 bands. We select a
200×200-pixels-size image for the experiment.

3) Chikusei Data Set3: This image was captured by
Headwall Hyperspec-VNIR-C imaging sensor over Chikusei,

3https://webpark1587.sakura.ne.jp/hyperdata/

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://webpark1587.sakura.ne.jp/hyperdata/
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Fig. 2. HS-MS Fusion results among the compared methods on Washington DC Mall data set. (a) LRHS. (b) CNMF. (c) GSOMP+. (d) HYSURE. (e)
SpaBayes. (f) NSSR. (g) CSTF. (h) LTTR. (i) NLRSR. (j) Reference.

Ibaraki, Japan in 2014. This HS image has 128 bands between
0.36 and 1.02 µm and the spatial resolution of 2517×2335
pixels with a GSD of 2.5 m. In the experiment, we choose a
240×240-pixels-size image.

For each of the first three synthetic HS data sets, the original
HS image is treated as a reference image for comparing to the
fused image. The LRHS image can be obtained by bluing the
original HS image using a 5×5 Gaussian filter, and down-
sampling in a certain ratio. For three different HS data sets,
the ratios are 4, 5 and 6, respectively. Similarly, the HRMS

image is acquired by down-sampling the original HS image
using the IKONOS2 spectral response function4. In addition,
Gaussian noise is added to LRHS bands (SNR = 35 dB) and
HRMS bands (SNR = 30 dB).

4) Real Data Set5: The data set consists of an HS image
and an MS image. The HS image was acquired by Hyperion
instrument on board the Earth-Observing One (EO-1) satellite
over Paris, France on July 29, 2002. It has 242 spectral

4https://fsf.nerc.ac.uk/user group/bands/IKONOS2.xml
5http://eo1.usgs.gov and http://eo1.gsfc.nasa.gov

https://fsf.nerc.ac.uk/user_group/bands/IKONOS2.xml
http://eo1.usgs.gov
http://eo1.gsfc.nasa.gov
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TABLE II
EXPERIMENTAL EVALUATION METRICS AMONG EIGHT COMPARED

METHODS ON UNIVERSITY OF PAVIA DATA SET.

Method University of Pavia Data Set

PSNR SAM ERGAS Q2n

CNMF 31.224 3.225 2.254 0.557
GSOMP 34.175 3.021 1.601 0.700
HYSURE 31.674 3.709 2.253 0.694
SpaBayes 35.114 2.479 1.442 0.480
NSSR 28.837 3.992 2.948 0.519
CSTF 32.640 2.578 1.903 0.652
LTTR 34.673 3.313 1.522 0.651
NLRSR 38.275 1.942 1.009 0.821

450 500 550 600 650 700 750
Wavelength(nm)

0

0.02

0.04

0.06

0.08

0.1

R
M

SE

CNMF
GSOMP+
HYSURE
SpaBayes
NSSR
CSTF
LTTR
NLRSR

Fig. 3. RMSEs among the compared methods on University of Pavia data
set.

bands between 0.36 and 2.58 µm with a GSD of 30 m. After
removal of bands with low signal-to-noise ratio, the HS image
remains 166 available bands. The MS image was collected by
Advanced Land Imager (ALI) instrument on board the EO-1
satellite over Paris, France on the same day of the HS image.
It consists of 9 spectral bands (0.4 to 2.5 µm) with a GSD
of 30 m and we choose the 3rd, 6th and 8th bands from it.
In the experiment, we select 150×150-pixels-size sub-images
for both images.

For the real data set, we treat the HS image as the reference
image and the MS image as the HRMS image. To obtain the
LRHS image, the HS image is down-sampled at a ratio of 3.

B. Experiment Setup

In the experiments, a detailed comparison is made be-
tween the proposed approach and seven selected state-of-
art approaches, which include CNMF [11], GSOMP+ [12],
HYSURE [13], SpaBayes [17], NSSR [15], CSTF [22] and
LTTR [25]. The parameters of CNMF, GSOMP, HYSURE and
SpaBayes are setting according to the original code. In this
case, these algorithms are stable and have good performance
in all data sets. As to NSSR, the parameter K which represents
the number of atoms in dictionary is set to 40, and the
regularization parameters η1 and η2 are both set to 10−4.
For CSTF, its key parameters nw, nh and ns represent the
number of atoms of dictionary of spatial modes and spectral
mode, respectively. We set nw = 260, nh = 260 and ns = 15
for all three data sets. The sparsity regularization parameter

TABLE III
EXPERIMENTAL EVALUATION METRICS AMONG EIGHT COMPARED

METHODS ON WASHINGTON DC MALL DATA SET.

Method Washington DC Mall Data Set

PSNR SAM ERGAS Q2n

CNMF 27.166 3.304 1.929 0.269
GSOMP 26.081 3.999 2.176 0.488
HYSURE 24.419 5.593 2.722 0.438
SpaBayes 29.956 3.183 1.364 0.347
NSSR 24.288 5.200 2.672 0.290
CSTF 26.534 3.863 1.980 0.438
LTTR 29.741 3.268 1.414 0.626
NLRSR 30.084 2.794 1.403 0.671
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Wavelength(nm)
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Fig. 4. RMSEs among the compared methods on Washington DC Mall data
set.

λ is set to 10−5. For LTTR, there are two key parameters.
One is the parameter K which is the number of clusters and
is set to 450, the other is the parameter λ which is used to
adjust the weight of LTTR regularization term and is set to
10−2. Additionally, the parameter setting of our approach is
as follows: the regularization parameters λ = 1, λ1 = 10−2

and λ2 = 10−4, the spatial size of HS cube is 8× 8, and the
overlap between neighboring cubes is 2.

To assess the difference in performance between the pro-
posed method and the competitors, the following four quan-
titative metrics are adopt: peak signal to noise ratio (PSNR),
spectral angle mapping (SAM), erreur relative globale adimen-
sionnelle desynthese (ERGAS), and Q2n. To define PSNR, we
use Zi (i = 1, ..., L) to represent the ith band fused image Z
and use Ri to represent the ith band reference image R. Then,
the first metric PSNR is defined as

PSNR(Zi,Ri) = 20 log10(
max(Zi)√

P · RMSE(Zi,Ri)
), (35)

where root-mean-square error (RMSE) is defined as

RMSE(Zi,Ri) =
1

P

√
||Zi −Ri||22. (36)

Let Vj
Z (j = 1, ..., P , P = W × H) denote the jth pixel

spectral signature in Z and Vj
R denote the jth pixel spectral

signature in R. The second metric SAM, which is used to
evaluate the spectral distortion, is defined as

SAM(Vj
Z,V

j
R) = arccos(

(Vj
Z)
TVj

R

||Vj
Z||2 · ||V

j
R||2

), (37)
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Fig. 5. HS-MS Fusion results among the compared methods on Chikusei data set. (a) LRHS. (b) CNMF. (c) GSOMP+. (d) HYSURE. (e) SpaBayes. (f)
NSSR. (g) CSTF. (h) LTTR. (i) NLRSR. (j) Reference.

ERGAS is adopt to estimate the image quality in spatial
domain, which is defined as

ERGAS(Zi,Ri) =
100

r

√√√√ 1

B

B∑
i=1

(
||Zi −Ri||22
1
P

∑P
i=1 Ri

)2, (38)

where r means the down-sampling rate between HRMS and
LRHS images in the spatial domain. Q2n is the general
definition of universal image quality index (UIQI) and its

calculation formula is

Q(Zi,Ri) =
4σZi,RiZi ·Ri

(σ2
Zi + σ2

Ri)(Zi
2
+ Ri

2
)
, (39)

where σZi,Ri is the covariance of Zi and Ri. σZi and σRi

are their standard deviations, and Zi and Ri are their mean
value, respectively.
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Fig. 6. HS-MS Fusion results among the compared methods on real data set. (a) LRHS. (b) CNMF. (c) GSOMP+. (d) HYSURE. (e) SpaBayes. (f) NSSR.
(g) CSTF. (h) LTTR. (i) NLRSR. (j) Reference.

C. Experiment Results

1) University of Pavia Data Set: Table II gives the fusion
performance of compared methods on University of Pavia
data set. The best values are marked in bold. Among all
four quantitative indicators, the NLRSR achieves the best
results. Fig. 1 shows a further visual comparison of these eight
methods. And the difference image obtained by subtracting
the reference image from the fused image is introduced to
make the result more intuitive. In Fig. 1, pseudocolor images
constructed by the 20th, 31st and 48th bands of fused images

are displayed in the first row. The sub-images marked with
red boxes in the first row are magnified in the second row.
The third row displays the difference images corresponding to
the 48th band of fused images. In the fused images of CNMF
and HYSURE, trees are fuzzy. There are some differences in
the color of the grass in the color image of SpaBayes. After
dividing the HS image into several disjoint blocks, the fusion
operation of CSTF is conducted on HS blocks, thus there
are some block errors in the difference image of Fig. 1(g).
The difference image of our proposed method is the darkest,
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TABLE IV
EXPERIMENTAL EVALUATION METRICS AMONG EIGHT COMPARED

METHODS ON CHIKUSEI DATA SET.

Method Chikusei Data Set

PSNR SAM ERGAS Q2n

CNMF 28.676 3.531 1.601 0.591
GSOMP 29.919 3.644 1.412 0.646
HYSURE 28.675 3.604 1.618 0.628
SpaBayes 32.877 2.381 1.015 0.629
NSSR 27.490 4.204 1.813 0.530
CSTF 31.386 2.728 1.203 0.628
LTTR 33.629 2.809 0.930 0.743
NLRSR 34.163 2.640 0.877 0.755
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Fig. 7. RMSEs among the compared methods on Chikusei data set.

which demonstrates that the fused image obtained by NLRSR
is closest to the reference. Fig. 3 shows RMSEs overall bands
on University of Pavia data set. As can be observed in Fig. 3,
the proposed method obtains the smallest RMSE values overall
bands compared to seven competitors.

2) Washington DC Mall Data Set: Table III reports the
average of the PSNR, SAM, ERGAS and Q2n results of
compared methods on Washington DC Mall data set. For the
NLRSR, only ERGAS is just above the minimum, and all
other indicators achieve the best results. In general, NLRSR
achieves the most satisfying results. The pseudocolor images
composed of fused HS images at the 29th, 44th and 51st
bands and difference images at the 44th band of all the
competing methods are displayed in Fig. 2. There is an obvious
color error in the fused image of GSOMP+ compared to
the reference image. We can see that the proposed method
achieves the smallest difference between the reference image
and the reconstructed HS image. In Fig. 4, a comparison of
RMSEs among these eight methods for Washington DC Mall
data set is shown. The proposed NLRSR method gets the
smallest RMSE values at the visible spectrum and slightly
higher than NSSR and SpaBayes at the near-infrared spectrum
(0.78-2.53 µm).

3) Chikusei Data Set: Table IV shows the four quantitative
assessment results of the fused HS images on Chikusei data
set. Overall, our method still gets the best fusion results com-
pared to other methods. For visual comparison, pseudocolor
images composed of fused images at 18th, 32nd, and 49th
bands and difference images at the chosen 49th band are shown

TABLE V
EXPERIMENTAL EVALUATION METRICS AMONG EIGHT COMPARED

METHODS ON REAL DATA SET.

Method Real Data Set

PSNR SAM ERGAS Q2n

CNMF 32.969 2.260 3.707 0.759
GSOMP 30.903 3.383 4.375 0.693
HYSURE 31.987 2.710 4.137 0.733
SpaBayes 32.502 2.956 3.613 0.680
NSSR 30.164 2.627 4.610 0.623
CSTF 32.114 2.735 4.084 0.706
LTTR 30.723 2.659 4.470 0.610
NLRSR 33.836 2.004 3.401 0.762
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Fig. 8. RMSEs among the compared methods on real data set.

in Fig. 5. For the marked sub-images, there are obvious noise
points in Fig. 5(b) and 5(c). Besides, several white spots appear
in Fig. 5(d). Though SpaBayes gets the lowest SAM value, the
fusion quality in the village is worse than our method. In the
difference images, LTTR and NLRSR get the smallest errors.
But there are fewer bright spots in the proposed NLRSR than
that in LTTR. Fig. 7 shows the RMSEs plot overall HS bands
on Chikusei data set. It is observed that NLRSR achieves
optimal values on almost all bands.

4) Real Data Set: Table V shows the quality measures on
real data set. It can be observed that NLRSR achieves the most
satisfying result. Fig. 6 displays the fusion results for eight
methods. In this figure, pseudocolor images consist of fused
HS images at the 28th, 40th and 51st bands and difference
images are calculated by the 40th band. The fused image of
NSSR has obvious errors at the boundary of different fields in
the farmland. Several block errors appear on the fused images
of CSTF and LTTR. In Fig. 8, the RMSEs overall bands are
plotted and our method gets the lowest RMSE in almost all
bands. Thus, our NLRSR has better fusion performance than
the other seven methods.

D. Parameter Selection

To assess the proposed method sensitivity of three key
parameters, i.e. the number of clusters K, the regularization
parameters λ1 and λ2, we change their values to observe
the effect on fusion results. In our algorithm, K uses to
determine the number of clusters of self-similarity cubes.
And the larger it is, the more clusters of HS cubes are
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Fig. 9. Performance curves as a function of parameter K. (a) PSNR. (b) SAM. (c) ERGAS. (d) Q2n.
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Fig. 10. Performance curves as a function of parameters λ1 and λ2. (a) PSNR. (b) SAM. (c) ERGAS. (d) Q2n.

grouped, which implies similar scenes with more classes in
the HS image. Fig. 9 plots four quality measures of fused
images on University of Pavia data set as a function of K,
which varies from 50 to 600 with step 50. According to the
experimental results shown, the performance of the proposed
method is relatively high when K > 450. Thus, we set
K = 550 for this data set considering the values of all metrics.
There are two parameters λ1 and λ2 in (15). The fusion
performance as a function of λ1 and λ2 are plotted in Fig. 10.
λ1 is chosen from {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100}.
As can be observed from this figure, it achieves optimal
overall performance at λ1 = 10−2. λ2 is chosen from
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100}. When λ2 is no
bigger than 10−4, the overall performance is relatively high.
Thus, we set λ1 = 10−2 and λ2 = 10−4 for University
of Pavia data set. Besides, we analyze the parameter set-
tings of the other three data sets. Finally, we set K =
450, λ1 = 10−2, λ2 = 10−4 for Washington DC Mall data
set, K = 500, λ1 = 10−2, λ2 = 10−3 for Chikusei data set
and K = 550, λ1 = 5× 10−2, λ2 = 10−4 for real data set.

VI. CONCLUSION

A novel NLRSR is proposed for HS and MS fusion in
this paper. For better preservation of spatial and spectral
information, the nonlocal low-rank tensor approximation is
designed to regularize the HS image. In the prior, MCP penalty
is used to formulate the low-rank structure of four-dimensional
tensor which is composed of two spatial dimensions, one spec-
tral dimension, and one non-local self-similarity dimension.
Meanwhile, dictionary learning and sparse representation are
used to describe the sparsity of spectral coefficient. Finally,
an optimization algorithm based on ADMM for solving the
NLRSR fusion model is presented. Experiments are performed

on three HS data sets and one real data set, and the fusion
results indicate our method is superior to several state-of-art
methods. Since the similar cubes clustering leads to high time
complexity, we will try to accelerate the algorithm with as
little loss of accuracy as possible in the future work.

REFERENCES

[1] Q. Wang, F. Zhang, and X. Li, “Optimal clustering framework for
hyperspectral band selection,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 56, no. 10, pp. 5910–5922, Oct 2018.

[2] Q. Wang, X. He, and X. Li, “Locality and structure regularized low rank
representation for hyperspectral image classification,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 57, no. 2, pp. 911–923, Feb
2019.

[3] Q. Wang, Z. Yuan, Q. Du, and X. Li, “GETNET: A general end-to-end
2-D CNN framework for hyperspectral image change detection,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 57, no. 1, pp.
3–13, Jan 2019.

[4] N. Yokoya, C. Grohnfeldt, and J. Chanussot, “Hyperspectral and mul-
tispectral data fusion: A comparative review of the recent literature,”
IEEE Geoscience and Remote Sensing Magazine, vol. 5, no. 2, pp. 29–
56, June 2017.

[5] L. Loncan, L. B. de Almeida, J. M. Bioucas-Dias, X. Briottet, J. Chanus-
sot, N. Dobigeon, S. Fabre, W. Liao, G. A. Licciardi, M. Simoes,
J. Tourneret, M. A. Veganzones, G. Vivone, Q. Wei, and N. Yokoya,
“Hyperspectral pansharpening: A review,” IEEE Geoscience and Remote
Sensing Magazine, vol. 3, no. 3, pp. 27–46, Sep. 2015.

[6] G. Vivone, L. Alparone, J. Chanussot, M. D. Mura, A. Garzelli,
G. Licciardi, R. Restaino, and L. Wald, “A critical comparison of
pansharpening algorithms,” in 2014 IEEE Geoscience and Remote
Sensing Symposium, July 2014, pp. 191–194.

[7] L. Alparone, L. Wald, J. Chanussot, C. Thomas, P. Gamba, and L. M.
Bruce, “Comparison of pansharpening algorithms: Outcome of the 2006
GRS-S data-fusion contest,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 45, no. 10, pp. 3012–3021, Oct 2007.

[8] M. Selva, B. Aiazzi, F. Butera, L. Chiarantini, and S. Baronti, “Hyper-
sharpening: A first approach on SIM-GA data,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 6,
pp. 3008–3024, June 2015.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 13

[9] R. Kawakami, Y. Matsushita, J. Wright, M. Ben-Ezra, Y. Tai, and
K. Ikeuchi, “High-resolution hyperspectral imaging via matrix factor-
ization,” in CVPR 2011, June 2011, pp. 2329–2336.

[10] X. Li, Y. Yuan, and Q. Wang, “Hyperspectral and multispectral image
fusion based on band simulation,” IEEE Geoscience and Remote Sensing
Letters, vol. 17, no. 3, pp. 479–483, 2020.

[11] N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled nonnegative matrix
factorization unmixing for hyperspectral and multispectral data fusion,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 2,
pp. 528–537, Feb 2012.

[12] N. Akhtar, F. Shafait, and A. Mian, “Sparse spatio-spectral representa-
tion for hyperspectral image super-resolution,” in European Conference
on Computer Vision. Springer, 2014, pp. 63–78.

[13] M. Simoes, J. Bioucas-Dias, L. B. Almeida, and J. Chanussot, “A convex
formulation for hyperspectral image superresolution via subspace-based
regularization,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 53, no. 6, pp. 3373–3388, June 2015.

[14] M. A. Veganzones, M. Simoes, G. Licciardi, N. Yokoya, J. M. Bioucas-
Dias, and J. Chanussot, “Hyperspectral super-resolution of locally low
rank images from complementary multisource data,” IEEE Transactions
on Image Processing, vol. 25, no. 1, pp. 274–288, Jan 2016.

[15] W. Dong, F. Fu, G. Shi, X. Cao, J. Wu, G. Li, and X. Li, “Hyperspectral
image super-resolution via non-negative structured sparse representa-
tion,” IEEE Transactions on Image Processing, vol. 25, no. 5, pp. 2337–
2352, May 2016.

[16] K. Zhang, M. Wang, and S. Yang, “Multispectral and hyperspectral
image fusion based on group spectral embedding and low-rank factor-
ization,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55,
no. 3, pp. 1363–1371, March 2017.

[17] Q. Wei, J. Bioucas-Dias, N. Dobigeon, and J. Tourneret, “Hyperspectral
and multispectral image fusion based on a sparse representation,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 53, no. 7, pp.
3658–3668, July 2015.

[18] N. Akhtar, F. Shafait, and A. Mian, “Bayesian sparse representation
for hyperspectral image super resolution,” in 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2015, pp.
3631–3640.

[19] Q. Wei, N. Dobigeon, and J. Tourneret, “Fast fusion of multi-band
images based on solving a sylvester equation,” IEEE Transactions on
Image Processing, vol. 24, no. 11, pp. 4109–4121, Nov 2015.

[20] Q. Wei, N. Dobigeon, J. Tourneret, J. Bioucas-Dias, and S. Godsill,
“R-FUSE: Robust fast fusion of multiband images based on solving a
sylvester equation,” IEEE Signal Processing Letters, vol. 23, no. 11, pp.
1632–1636, Nov 2016.

[21] R. Dian, L. Fang, and S. Li, “Hyperspectral image super-resolution
via non-local sparse tensor factorization,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017, pp.
3862–3871.

[22] S. Li, R. Dian, L. Fang, and J. M. Bioucas-Dias, “Fusing hyperspectral
and multispectral images via coupled sparse tensor factorization,” IEEE
Transactions on Image Processing, vol. 27, no. 8, pp. 4118–4130, Aug
2018.

[23] K. Zhang, M. Wang, S. Yang, and L. Jiao, “Spatial-spectral-graph-
regularized low-rank tensor decomposition for multispectral and hyper-
spectral image fusion,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 11, no. 4, pp. 1030–1040, April
2018.

[24] Y. Xu, Z. Wu, J. Chanussot, and Z. Wei, “Nonlocal patch tensor
sparse representation for hyperspectral image super-resolution,” IEEE
Transactions on Image Processing, vol. 28, no. 6, pp. 3034–3047, June
2019.

[25] R. Dian, S. Li, and L. Fang, “Learning a low tensor-train rank represen-
tation for hyperspectral image super-resolution,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 30, no. 9, pp. 2672–2683,
Sep. 2019.

[26] X. Han, B. Shi, and Y. Zheng, “SSF-CNN: Spatial and spectral fusion
with cnn for hyperspectral image super-resolution,” in 2018 25th IEEE
International Conference on Image Processing (ICIP), Oct 2018, pp.
2506–2510.

[27] J. Yang, Y.-Q. Zhao, and J. C.-W. Chan, “Hyperspectral and
multispectral image fusion via deep two-branches convolutional neural
network,” Remote Sensing, vol. 10, no. 5, 2018. [Online]. Available:
https://www.mdpi.com/2072-4292/10/5/800

[28] R. Dian, S. Li, A. Guo, and L. Fang, “Deep hyperspectral image
sharpening,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, no. 11, pp. 5345–5355, Nov 2018.

[29] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scien-
tific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[30] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE signal
processing magazine, vol. 19, no. 1, pp. 44–57, 2002.

[31] X. Liu, W. Xia, B. Wang, and L. Zhang, “An approach based on
constrained nonnegative matrix factorization to unmix hyperspectral
data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49,
no. 2, pp. 757–772, Feb 2011.

[32] D. Tao, S. Maybank, W. Hu, and X. Li, “Stable third-order tensor repre-
sentation for colour image classification,” in The 2005 IEEE/WIC/ACM
International Conference on Web Intelligence (WI’05). IEEE, 2005,
pp. 641–644.

[33] S. Aja-Fernández, R. de Luis Garcia, D. Tao, and X. Li, Tensors in
image processing and computer vision. Springer Science & Business
Media, 2009.

[34] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[35] J. Fan, L. Xue, and H. Zou, “Strong oracle optimality of folded concave
penalized estimation,” Annals of statistics, vol. 42, no. 3, pp. 819–849,
2014.

[36] W. Cao, Y. Wang, C. Yang, X. Chang, Z. Han, and Z. Xu, “Folded-
concave penalization approaches to tensor completion,” Neurocomput-
ing, vol. 152, pp. 261–273, 2015.

[37] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” in Proceedings of the 26th annual international
conference on machine learning. ACM, 2009, pp. 689–696.

[38] Y. Wang, X. Chen, Z. Han, and S. He, “Hyperspectral image
super-resolution via nonlocal low-rank tensor approximation and total
variation regularization,” Remote Sensing, vol. 9, no. 12, 2017. [Online].
Available: https://www.mdpi.com/2072-4292/9/12/1286

Xuelong Li (M’02-SM’07-F’12) is a full professor with the School of
Computer Science and the Center for OPTical IMagery Analysis and Learning
(OPTIMAL), Northwestern Polytechnical University, Xi’an 710072, Shaanxi,
P. R. China.

Yue Yuan received the B.E. degree in software engineering from the
Northwestern Polytechnical University, Xi’an, China, in 2018. She is currently
working toward the M.S. degree in computer science in the Center for OPTical
IMagery Analysis and Learning (OPTIMAL), School of Computer Science,
Northwestern Polytechnical University, Xi’an, China. Her research interests
include hyperspectral image fusion and computer vision.

Qi Wang (M’15-SM’15) received the B.E. degree in
automation and the Ph.D. degree in pattern recog-
nition and intelligent systems from the University
of Science and Technology of China, Hefei, China,
in 2005 and 2010, respectively. He is currently a
Professor with the School of Computer Science and
with the Center for OPTical IMagery Analysis and
Learning (OPTIMAL), Northwestern Polytechnical
University, Xi’an, China. His research interests in-
clude computer vision and pattern recognition.

https://www.mdpi.com/2072-4292/10/5/800
https://www.mdpi.com/2072-4292/9/12/1286

	Introduction
	Related Work
	Matrix Factorization-Based Methods
	Bayesian-Based Methods
	Tensor-Based Methods
	Deep Learning-Based Methods

	Proposed Method
	Introduction to Tensor
	Problem Formulation
	Nonlocal Low-Rank Tensor Approximation
	Dictionary Learning and Sparse Coefficient Matrix
	Proposed Model

	Optimization Algorithm
	Experiments
	Experiment Data Sets
	Experiment Setup
	Experiment Results
	Parameter Selection

	Conclusion
	References
	Biographies
	Xuelong Li
	Yue Yuan
	Qi Wang


