
HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION USING NON-CONVEX
RELAXATION LOW RANK AND TOTAL VARIATION REGULARIZATION

Yue Yuan1, Qi Wang1, Xuelong Li1∗

1School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL),
Northwestern Polytechnical University, Xi’an 710072, Shaanxi, P. R. China

ABSTRACT

Hyperspectral (HS) and multispectral (MS) image fusion is
an important task to construct an HS image with high spatial
and spectral resolutions. In this paper, we present a novel HS
and MS fusion method using non-convex low rank tensor ap-
proximation and total variation regularization. In specific, the
Laplace based low-rank model is formed to exploit spatial-
spectral correlation and nonlocal similarity of the HS image,
and the second-order total variation is used to describe the lo-
cal smoothness structure in the spatial domain and adjacent
bands. Also, an effective optimization algorithm is designed
for the proposed model. In the experiments, we demonstrate
the superiority of the proposed method compared to several
state-of-the-art approaches.

Index Terms— Hyperspectral (HS) image, multispectral
(MS) image, image fusion, low-rank approximation, total
variation

1. INTRODUCTION

Hyperspectral (HS) image is famous for its abundant spec-
tral bands, and it has several remote sensing applications [1]
[2]. However, as the HS imaging system must maintain a
good signal-to-noise ratio (SNR) of images, and the gener-
ation of images with high spatial resolution or high spectral
resolution requires large amounts of data, resulting in limited
spatial resolution of HS images. Fortunately, compared to HS
images, multispectral (MS) images have fewer spectral bands
and hence achieve higher spatial resolution. Consequently, to
increase the spatial resolution of HS images, a popular way is
to fuse HS and MS images [3].

In recent years, a series of methods have been developed
to settle the fusion of HS and MS images. In particular, this
problem can be considered as an extension of pan-sharpening,
which fuses the HS image with a panchromatic image. As an
implementation, Selva et al. [4] use the linear combination of
MS bands to synthesize a high-resolution band for each HS
band. Also, HS and MS image fusion is a type of HS super-
resolution problem [5].
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Methods specifically for HS and MS image fusion has
been developed. In [6], Yokoya et al. first introduce spec-
tral unmixing technology in the multi-source image fusion,
and they unmix the two images crosswise using the nonneg-
ative matrix factorization. Considering the smoothing struc-
ture of HS images, the total variation is used to regularize
the model in [7]. Recently, tensors are utilized to preserve
the spatial structure information taking into account the three-
dimensional structure of the HS image [8] [9]. A fusion net is
proposed in [10] using the observation models and low-rank
prior.

Inspired by the above works, we propose a novel non-
convex relaxation low rank and total variation (NLRTV)
based image fusion method for HS and MS images. Its main
contributions are summarized below.

1) An effective fusion model for HS and MS images is
proposed in a novel point of view. Considering the nonlocal
similarity and the spatial-spectral correlation of HS images,
we add the non-convex low-rank constraint term. Meanwhile,
the second-order total variation constraint term is adopted to
describe the spatial and spectral smoothness.

2) An effective optimization strategy is presented for the
proposed model. Using Laplace based non-convex low-rank
minimization as an approximation of rank function, the iter-
atively reweighted nuclear norm algorithm [11] is utilized to
settle this problem.

2. PROPOSED METHOD

2.1. Problem Formulation

Let X ∈ RW×H×S be the desired high resolution HS
(HRHS) image, where W , H and S donate image width,
height and the number of spectral bands, respectively. Let
Y ∈ RW×H×s denote the high resolution MS (HSMS) image
and L ∈ Rw×h×S denote the low resolution HS (LRHS)
image, where s < S, w < W and h < H . The relationship
between them can be expressed by the following observation
model

L(3) = X(3)P +NL (1)

Y(3) = DX(3) +NY , (2)



where X(i) means the mode-i unfolding of tensor X . P is the
spatial down-sampling operator, D is the spectral response
matrix and NL and NY are noise. To estimate X and min-
imize the error, the following minimization problem is ob-
tained

min
X
||L(3) −X(3)P ||2F + λ||Y(3) −DX(3)||2F . (3)

Here, || · ||F is the Frobenius norm. The parameter λ is used
for trade-offs.

2.2. Non-convex Low Rank Tensor Approximation

To make effective use of global structure information, the
low-rank representation model which aims at describing the
correlation between matrix entries is utilizes in this part.

For an HS cube, its spatial adjacent pixels are correlated
and the adjacent bands are also usually highly correlated. Be-
sides, some scenes in the spatial domain are similar even if
they are not adjacent to each other, which means the HS cube
is nonlocal self-similar. To describe the correlation and the
non-local self-similarity of an HS image, it is divided into
several patches with size b × b × S at first. After clustering
similar patches, K clusters are obtained. We represent kth
cluster with Nk (k = 1, ...,K) patches as Ck ∈ Rb×b×S×Nk .
Since the spatial information of X is mainly obtained from Y ,
the above division and clustering operations are performed on
Y , and then the division and clustering results are matched to
X . Thus, taking into account the correlation of the first three
dimensions and the similarity of the fourth dimension, Ck is
low-rank in all four dimensions, which can be expressed by
the minimization problem below

min

4∑
i=1

αirank(Ck(i)). (4)

Since the optimization of the above problem is NP-hard,
we replace it by the general nonconvex low rank minimization
problem

min

4∑
j=1

m∑
i=1

αjg(σi(Ck(j))), (5)

where σi(Z) represents the ith singular values of matrix Z.
And we use Laplace penalty [12] as nonconvex surrogate
function, its form is

g(θ) = λ(1− exp(− θ
γ

)). (6)

Define the Laplace norm ||Z||L =
∑m
i=1 g(σi(Z)) for con-

venience. By exploring the low-rank property of all K ten-
sor {Ck}Kk=1, the non-convex relaxation low rank term is ex-
pressed as the following problem:

min

K∑
k=1

4∑
i=1

αi||Ck(i)||L. (7)

2.3. Second-order Total Variation Regularization

The total variation (TV), defined as the total magnitude of the
discrete gradients of an image, is popularly used to describe
the piecewise-smoothness structure of images. However,
second-order TV works better on image super-resolution. It
can be more sensitive to areas with large grayscale varia-
tions. For the three-dimension structure of HS images, the
second-order TV constraint can be modeled as

||Tω(X )||1 =
∑
i,j,k

ω1||xi−1,j,k + xi+1,j,k − 2xi,j,k||1

+ ω2||xi,j−1,k + xi,j+1,k − 2xi,j,k||1
+ ω3||xi,j,k−1 + xi,j,k+1 − 2xi,j,k||1,

(8)

where xi,j,k are elements of X . ωi(i = 1, 2, 3) are the weight
coefficient.

2.4. Proposed Model

Based on the foregoing, the final fusion model is as follows

min
X
||L(3) −X(3)P ||2F + λ||Y(3) −DX(3)||2F

+

K∑
k=1

4∑
i=1

αi||Ck(i)||L + λ2||Tω(X )||1.
(9)

3. OPTIMIZATION ALGORITHM

We detail the process of solving model (9) using ADMM in
this section. First, auxiliary variables {Mi}4i=1 and F are
introduced to obtain the following optimization problem

min
X ,{Mi}4i=1,F

||L(3) −X(3)P ||2F + λ||Y(3) −DX(3)||2F

+

K∑
k=1

4∑
i=1

αi||GkMi
||L + λ2||F ||1

s.t. X =Mi, F = Tω(X ), i = 1, ..., 4,

(10)

where GkX = Ck. After integrating the two penalty terms into
the objective function, problem (10) becomes

L(X ,Mi,Ui, F, V )

=||L(3) −X(3)P ||2F + λ||Y(3) −DX(3)||2F

+

4∑
i=1

(

K∑
k=1

αi||GkMi
||L +

µ

2
||X −Mi +

Ui
µ
||2F )

+ λ2||F ||1 +
ν

2
||F − Tω(X ) +

V

ν
||2F .

(11)

Here, Ui and V are Lagrange multipliers and µ and ν are
penalty parameters. For the update of each variable, we pro-
ceed by solving the corresponding sub-problem obtained by
fixing other variables.



1) Sub-problem of X :

min
X
||L(3) −X(3)P ||2F + λ||Y(3) −DX(3)||2F

+

4∑
i=1

µ

2
||X −Mi +

Ui
µ
||2F +

ν

2
||F − Tω(X ) +

V

ν
||2F .

(12)

It is easily settled by conjugate gradient (CG) method.
2) Sub-problem ofMi(i = 1, ..., 4):

min
Mi

K∑
k=1

αi||GkMi
||L +

µ

2
||X −Mi +

Ui
µ
||2F . (13)

It is a non-convex non-smooth low rank minimization prob-
lem, whose solution can be obtained by iteratively reweighted
nuclear norm algorithm [11], and the solution is:

GkMi
= Foldi(SoftSh(GkX(i)

+
GkUi(i)
µ

,
λ1αi
µ

,wi)) (14)

wi ∈ ∂g(σi(GkMi
)) =

λ

γ
exp(−

σi(GkMi
)

γ
). (15)

Here, SoftSh(Z, τ, w) = USτw(Σ)V T is the singular value
shrinkage operation, where Z = UΣV T is the singular value
decomposition of matrix Z and Sτw(Σ) = Diag{(Σii −
τwi)+}. Foldi(·) is the mode-i folding of a matrix. Mi is
obtained by rearranging patches in {GkMi

}Kk=1.
3) Sub-problem of F :

min
F

λ2||F ||1 +
ν

2
||F − Tω(X ) +

V

ν
||2F . (16)

It is efficiently solved by soft-thresholding operator:

F = SoftTh(Tω(X(i))−
V(i)

ν
,
λ2
ν

). (17)

Here, SoftTh(Z, τ) = USign(Σ)(|Σ| − τ)+V
T .

4) Updating Multipliers:

Ui = Ui + µ(X −Mi), i = 1, ..., 4, (18)

V = V + ν(F − Tω(X )). (19)

During each iteration, µ and ν increase by a smaller value. Al-
gorithm 1 summarizes the steps to solve the proposed model.

4. EXPERIMENTS

4.1. Experimental setup

Experiments are conducted on two public HS remote sensing
data sets, i.e., University of Pavia and Washington DC Mall.
The first one has a resolution of 610×610 pixels, with 224
bands. After disposing of bands with noise and water vapor
absorption, there are 93 bands left. We select a sub-image

Algorithm 1 NLRTV Fusion via ADMM
Input: L, Y , P , D, parameters λ, λ1, and λ2;

Acquire the division and clustering results of X .
for l = 1 to MaxIter do

Update X with CG on (12);
for i = 1 to 4 do

UpdateMi by (14) and update Ui by (18);
end for
Update F by (17) and update V by (19);

end for
Output: X (fused image).

of 128×128 pixels for experiments. The second one has a
spatial resolution of 1280×307, with 210 bands. We only use
a sub-image of 200×200 pixels, with 191 bands after getting
rid of the water absorption ones. These original images in
two data sets serve as ground truth. To obtain LRHS images
L, we down-sample original HS images by a factor of 4 and
5, respectively. Spectral response matrix D of a Nikon D700
camera is used to generate HRMS images Y . Moreover, we
add Gaussian noise with SNR = 35 dB to both LRHS and
HRMS images.

To objectively evaluate the performance, four quality met-
rics are adopted, including peak signal to noise ratio (PSNR),
spectral angle mapper (SAM) for evaluating spectral error,
relative dimensionless global error in synthesis (ERGAS) for
evaluating spatial quality, and Q2n. Besides, four state-of-
the-art methods are used for comparison, including CNMF
[6], HYSURE [7], CSTF [8] and LTTR [9].

The unknown variables of our method are initialized to
zero. By careful tuning in the experiment, the parameters λ,
λ1, and λ2 are set to 1, 0.05, and 10−7, respectively.

4.2. Experimental results

The fusion results at 771.67nm of University of Pavia data set
are shown in the first row of Fig. 1. For better visual compar-
ison, we introduce the difference image representing the dif-
ference between the fused image and ground truth. It can be
observed that the reconstruction error of NLRTV is the small-
est. The errors in the difference images of HYSURE and NL-
RTV are smooth, benefiting from their TV term. The second
row of Fig. 1 displays the difference images at 1025.75nm of
Washington DC Mall data set. LTTR and CSTF, which suffer
from processing the fusion on the segmented spatial blocks,
have many block errors in their difference images. Never-
theless, NLRTV has fewest distortions of roads and lands
than those of others. Table 1 lists the average objective re-
sults of two data sets, with the best results marked in bold.
Our method achieves the best quantitative evaluation results.
Moreover, Fig. 2 shows the PSNRs of LTTR and NLRTV
overall bands on two data sets. It is observed that NLRTV
achieves satisfactory results on almost all bands.
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Fig. 1. Comparisons of difference images. The first row: University of Pavia. The second row: Washington DC Mall.

Table 1. Experimental evaluation metrics among five com-
pared methods on two data sets.

Method University of Pavia Washington DC Mall

PSNR SAM ERGAS Q2n PSNR SAM ERGAS Q2n

CNMF 32.91 2.75 1.85 0.58 28.62 3.64 1.84 0.31
HYSURE 32.21 3.31 2.14 0.72 24.48 5.23 2.58 0.45
CSTF 32.96 2.44 1.84 0.65 26.73 3.81 1.94 0.42
LTTR 35.20 3.30 1.48 0.65 31.06 3.19 1.33 0.68
NLRTV 38.93 1.78 0.94 0.78 32.08 2.11 1.15 0.72
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Fig. 2. PSNRs for each band on two data sets.

5. CONCLUSION

In this paper, we propose a novel HS and MS image fusion
method, based on non-convex low rank tensor approxima-
tion and second-order total variation. It exploits the intrin-
sic spatial-spectral correlation, nonlocal similarity and the
smoothness structure of HS images. Besides, the optimiza-
tion strategy is proposed for this model. Experiments are
performed on two HS data sets, and the experimental results
show this method is superior to several advanced methods.
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