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ABSTRACT
License plate recognition (LPR) has attracted considerable at-
tention due to its widespread applications in real life. Al-
though numerous approaches based on image processing have
been presented in the past few years, it is still an urgent is-
sue to perform the LPR task efficiently in complex and un-
constrained scenarios. To remedy this problem, an efficient
quality-aware license plate recognition algorithm is proposed
by introducing the siamese networks for plate stream recogni-
tion and quality awareness in the traffic videos. Moreover, we
explore three progressive architectures for efficient and accu-
rate recognition. Knowledge distillation is adopted to com-
press the quality awareness network and make it lightweight.
Extensive experiments have demonstrated the impressive per-
formance and efficiency of the proposed method.

Index Terms— License Plate Recognition, Siamese Net-
works, Quality Awareness, Knowledge Distillation

1. INTRODUCTION
Recently, license plate recognition (LPR) has received con-
siderable research attention in the fields of image process-
ing and computer vision. LPR system plays a vital role in
the maintenance of intelligent transportation systems (ITS),
which has been widely utilized in numerous real-world ap-
plications such as traffic law enforcement, access control,
and automatic highway toll collections [1, 2, 3]. In gen-
eral, license plates are specially designed for the vehicle
identification in traffic management systems, each of which
involves several diverse numbers and characters. An avail-
able LPR system can accurately recognize each character of
the localized license plates with various fonts, colors, and
backgrounds in different administrative regions. Therefore,
considering these properties, it is reasonable to implement
LPR systems based on image processing algorithms.

In the past few decades, considerable academic researches
on LPR have been published in the community, which can
be roughly divided into traditional methods [4, 5] and deep
learning-based methods [6, 7]. Thanks to the development
of deep learning in object detection, the performance of li-
cense plate detection has been dramatically improved yet
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Fig. 1. There are six frames involved with the same license
plate but at different times in a traffic video. The red charac-
ters of the single-frame recognition results indicate incorrect
recognition that can be avoided by the proposed EQ-LPR.

robust and efficient plate recognition is still an urgent task
to be solved [8, 9, 10]. Regarding plate recognition, there
are two different approaches, i.e., segmentation-based meth-
ods [7] and segmentation-free methods [6], where the latter
generally consider plates as text sequences without charac-
ter segmentation. Then they exploit convolutional neural
networks (CNNs) followed by recurrent neural networks
(RNNs) to build the encoder-decoder model for sequence
recognition. In practice, license plate segmentation is really
a challenging task that is extremely sensitive to character
distortion, occlusion, and illumination variation [6]. Conse-
quently, segmentation-free plate recognition algorithms have
achieved better performance, attracting tremendous research
interests in recent years [6, 11, 12].

These previous works contribute to the development of
LPR systems, some of which have been applied in several
explicit conditions. However, there are the following signif-
icant application limitations in these methods. (1) Most ex-
isting LPR algorithms perform on individual images captured
by the sophisticated camera equipment in strictly specific en-
vironments like parking lot entrances. Nevertheless, motion
blur, defocus, and perspective distortion usually occur in real-
life unconstrained traffic scenarios, e.g., intelligent driving,
where many algorithms may not work well. (2) Despite con-
siderable academic study on LPR systems, there are only a
few video-based approaches to model temporal information
explicitly [13]. Thanks to the development of video capture
devices such as dashboard cameras, it is convenient and low-
cost to acquire real-life traffic videos that involve more valu-
able information for LPR than single images. (3) Previous



existing video-based LPR techniques mainly focus on license
plate super-resolution [14] and majority voting-based recog-
nition [10], which introduce additional computational com-
plexity and reduce efficiency. However, it is reasonable to
evaluate each frame quality in license plate videos. As the
prior knowledge, plate quality implies the degree of distor-
tion that can be employed to guide recognition. As illustrated
in Fig. 1, for a joint frame stream composed of the same
plate but at different times, clearer plate frames enable higher
recognition accuracy. Thus introducing plate quality estima-
tion and temporal contextual information from videos may
improve the robustness and effectiveness of the LPR system
especially in complex unconstrained scenarios.

Against the above issues, an online efficient quality-aware
license plate recognition (EQ-LPR) algorithm is proposed in
this paper. With a plate stream based on the tracklet, it first
automatically evaluates the image quality of each plate frame
and then recommends the recognition result of the current
highest quality frame as the final decision. It is noteworthy
that EQ-LPR works online without video future information
that can be simply embedded as an efficient and robust recog-
nition module in the real-life video-based systems.

The main contributions of this paper are as follows: (1)
The siamese architecture is developed for quality-aware plate
recognition, one subnetwork towards online plate stream
quality awareness while the other for sequence recognition
based on the selected frames by the former. (2) The quality
awareness network is further compressed for algorithm effi-
ciency via knowledge distillation. (3) Extensive experiments
have presented the competitive performance of the proposed
method and also demonstrate its effectiveness and efficiency.

2. METHODOLOGY

In this section, we first give the overview of the proposed al-
gorithm and then introduce its implementation details.

2.1. Overview

Generally speaking, an LPR system available in real-life com-
plex traffic scenarios can be divided into three steps or com-
ponents: license plate detection, tracking, and recognition
[13]. As mentioned above, there are several existing detec-
tion and tracking approaches for video-based LPR systems,
which have shown their impressive performance in uncon-
strained and harsh environments [7, 10, 15, 16, 17]. How-
ever, previous video-based methods usually ignore the impact
of plate quality on recognition, some of which introduce ex-
cessive temporal redundancy in neighboring frames, leading
to efficiency loss. To remedy these problems, we focus on
efficient plate stream recognition where the potential plate
regions have been favorably localized and linked with their
assigned identities by the well-trained detector and tracker,
respectively. The lightweight quality awareness network is
developed for efficient stream quality estimation and plate

Algorithm 1 Efficient Quality-aware LPR (EQ-LPR)
Input: The detected, linked and cropped license plate re-

gions with their respective identities from the videos, for-
mulated by P = {P(j)

i : i ∈ [1, I], j ∈ [1, δ(i)]}
1: Obtain the i-th plate stream Pi = {P(j)

i : j ∈ [1, δ(i)]}
2: Set ãi as the highest quality awareness score for Pi

3: Set r̃(j)i as the final recognition result for each P(j)
i

4: for i = 1 to I do
5: for j = 1 to δ(i) do
6: if j = 1 then
7: Produce the quality awareness score a(1)i

8: Produce the plate recognition results r(1)i

9: Initialize ãi ← a
(1)
i , r̃

(j)
i ← r

(1)
i

10: else
11: Produce the quality awareness score a(j)i

12: if a(j)i > ãi then
13: Produce the plate recognition results r(j)i

14: Update ãi ← a
(j)
i , r̃

(j)
i ← r

(j)
i

15: else
16: Assign r̃

(j)
i ← r̃

(j−1)
i

17: end if
18: end if
19: end for
20: end for
21: Get ã = (ã1, ã2, · · · , ãI)T , R = {r̃(j)i }
Output: The final plate recognition results r̃(j)i for eachP(j)

i

frame recommendation. Moreover, motivated by [6, 12], we
perform segmentation-free plate recognition controlled by the
quality awareness network, which avoids segmentation errors
caused by distortion and blur in low-quality frames. For a
clear illustration, denote the cropped plate regions as P while
I and δ(i) represent the maximum identity and the total frame
number of the plate stream with the current identity i, respec-
tively. Then the process of EQ-LPR is summarized in Algo-
rithm 1. To implement EQ-LPR, we explore three different
but progressive frameworks depicted in Fig. 2, whose design
patterns and training strategies will be described in detail.

2.2. Siamese Networks for Quality-Aware LPR

As shown in Fig. 2 (a), the pseudo-siamese neural network
is first developed for quality-aware plate stream recogni-
tion, named EQ-LPR-P. To be specific, there are two sep-
arate networks without parameter sharing, one perceiving
the grayscale image quality of each frame in the stream and
the other recognizing the RGB plate image with the best
quality. These two networks have the same structure CNN
models to extract deep discriminative features which will be
fed into their target-specific subnetworks for quality aware-
ness and sequence recognition, respectively. However, the
pseudo-siamese architecture EQ-LPR-P requires more com-
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Fig. 2. Overview of three different but progressive architectures for EQ-LPR, which involve the pseudo-siamese network,
siamese network and compressed lightweight network respectively. All convolutional layers are configured with 3× 3 kernels.

puting resources without the shared CNN feature extractor.
Therefore, we also introduce the common siamese network
to perform the proposed EQ-LPR, as depicted in Fig. 2 (b).
Compared to EQ-LPR-P, EQ-LPR-S shares all parameters
for the two tasks during the feature extraction phase. More
importantly, both of EQ-LPR-P and EQ-LPR-S are developed
in this work to explore two fundamental issues: (1) The plate
recognition performance improvement by sharing discrimi-
native features with plate quality estimation. (2) The model
compression effectiveness of EQ-LPR-S for higher running
speed and lower computational complexity. Formally, given
the plate stream P(j)

i ∈ Pi with the same identity i, the deep
feature maps are generated by

P̂(j)
i = G(P(j)

i ), F (j)
q = Nq(P̂(j)

i ), F (j)
r = Nr(P(j)

i ), (1)

where P̂(j)
i represents the grayscale image of P(j)

i that has
been resized to the fixed size to avoid color interference.

As illustrated in Fig. 2, with the discriminative features
encoded by the siamese network, F (j)

q will be processed by
the fully connected networkN ′q while F (j)

r is also further en-
coded as the feature sequences by RNNs. In practice, the
LSTMs are exploited as the encoder to alleviate gradient van-
ishing or exploring. After that, the visual attention mecha-
nism is introduced during the decoding phase which generates
recognition results. This process can be formulated as

a
(j)
i = N ′q(F (j)

q ), r
(j)
i = N ′r(F (j)

r ), (2)

where a(j)i and r(j)i denote the produced quality awareness
score and recognition results, respectively. Both EQ-LPR-P
and EQ-LPR-S can be automatically trained via the alternate
and adaptive learning strategy. Concretely, the minimum soft-
max prediction is regarded as the ground truth of a(j)i , i.e.,

α
(j)
i = min

k∈[1,K]

{
softmax(y

(j)
i,k )|y

(j)
i,k ∈ {y

(j)
i,1 , · · · , y

(j)
i,K}

}
,

(3)

where K means the plate sequence length and y(j)i,k is the soft-
max input for the k-th character prediction. With the recogni-
tion labels θ(j)i , the loss functions can be formulated as

Lr = −
∑K

k=1
lnP (θ

(j)
i,k |θ

(j)
i,1:k−1), Lq = |α(j)

i −a
(j)
i |. (4)

It should be noted that the optimizations for Lr and Lq are
performed separately and alternately rather than joint training
since α(j)

i is generated based on the recognition results r(j)i .

2.3. Efficient Lightweight Quality Awareness Network
Both EQ-LPR-P and EQ-LPR-S can achieve quality-aware
plate recognition based on the siamese architectures. How-
ever, considering efficiency and real-life applications of LPR,
we innovatively explore the model compression for the qual-
ity awareness network, as shown in Fig.2 (c). Intuitively, the
lightweight Ñq can efficiently perform online plate quality
awareness in a short period of time. Furthermore, observing
that the inference of Ñq is more frequent than the recognition
network, it is reasonable to compress the quality awareness
module. Thus knowledge distillation [18] is exploited to com-
press Nq into the lightweight N ∗q and F∗(j)q = N ∗q (P̂

(j)
i ).

Specifically, based on EQ-LPR-S, we modify the loss func-
tion Lq to L∗q by introducing additional constraints, given by

L∗q = |α(j)
i − a

(j)
i |+ ‖F

∗(j)
q −F (j)

r ‖2, (5)

where `2 norm is employed to minimize the element-wise dis-
tance betweenF∗(j)q andF (j)

r . In the formulation, F∗(j)q aims
to fit the feature representation inF (j)

r via supervised learning
and the training strategy follows the description above.

3. EXPERIMENTS

Extensive experiments are conducted in this section to evalu-
ate the performance of the proposed algorithm. Moreover, we
present and analyze its effectiveness and efficiency by com-
parison with other methods based on the quantitative results.
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Fig. 3. The distribution of quality awareness scores in two
different datasets, which are normalized to the range of [0, 1].
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Fig. 4. Exemplar recognition results of the proposed algo-
rithm EQ-LPR-E on different datasets and the red values in-
dicate the final awareness scores of the plate streams.

3.1. Datasets and Implementation Details
To comprehensively evaluate the proposed LPR algorithm,
two different datasets are exploited in the experiments. The
first one is UFPR-ALPR dataset released in [10], which con-
sists of 4, 500 license plate images captured inside the driving
vehicles. All images in this dataset are obtained from 150
real-life traffic videos, corresponding to 150 license plates
and each plate involving 30 frames at different times. More-
over, they are acquired with three different cameras, which
ensures the diversity of plate images. In practice, for the fair
competition, we follow the protocol division proposed in [10],
i.e., 60% for training and 40% for testing. Note that data aug-
mentation is adopted in both the training and testing phases to
avoid overfitting and expand the dataset. The second dataset,
namely NWPU-LPR, is composed of 8, 500 images after data
augmentation, corresponding to 1, 700 different plates and
each plate involving 5 frames. With various distortions like
noise, these images are acquired in harsh environments in dif-
ferent provinces of China. In the evaluation, 6, 000 images
are utilized for training and others for testing.

3.2. Performance Evaluation and Effectiveness Analysis
Extensive experiments are conducted to evaluate the perfor-
mance of the proposed three different architectures. Note that
only accurately predicting the entire plate sequence means the
correct recognition. As shown in Table 1, the proposed ar-
chitectures outperform these existing methods on the UFPR-
ALPR dataset. Furthermore, the third architecture EQ-LPR-

Table 1. Recognition performance and speed comparison of
different methods on UFPR-ALPR dataset.

Methods Recognition Accuracy (%) Time (ms)
Sighthound [19] 47.39 –
OpenALPR [20] 50.94 –
Laroca et. al [10] 78.33 28

EQ-LPR-P (Ours) 88.58 96
EQ-LPR-S (Ours) 90.31 66
EQ-LPR-E (Ours) 90.14 43

Table 2. Recognition performance and speed comparison of
different methods on NWPU-LPR dataset.

Methods
Recognition Accuracy (%) Overall Time

Per Frame
(ms)

Excluding
Chinese Characters

Including
Chinese Characters

EasyPR [21] 77.14 70.60 –
BaiduLPR [22] 92.33 87.25 –

EQ-LPR-P (Ours) 93.09 91.21 106
EQ-LPR-S (Ours) 96.07 93.86 81
EQ-LPR-E (Ours) 95.27 92.91 49

E takes only 43 ms per frame (23.26 fps) yet its recogni-
tion accuracy is 11.81% higher than the method in [10] with
only additional 15 ms. It makes sense even for some real-
time applications. However, since most images in the UFPR-
ALPR dataset are captured in the driving scenarios with slow
speeds, we specifically build the NWPU-LPR dataset to better
demonstrate the effectiveness of the proposed efficient qual-
ity awareness network. In this dataset, image distortions such
as motion blur and illumination variance usually occur, mak-
ing it more challenging than the first one. As illustrated in
Fig. 3, poor-quality images occupy a higher proportion in the
dataset, leading to difficult recognition tasks. For the NWPU-
LPR dataset, we take two public APIs toward Chinese LPR as
comparison methods [21, 22] and our algorithms also achieve
better recognition accuracy in Table 2. Concretely, all archi-
tectures of EQ-LPR outperform the comparison methods in
recognition accuracy, which demonstrates the effectiveness of
the quality awareness network for video-based LPR systems.
Moreover, the lightweight EQ-LPR-E architecture shows its
efficiency and speed benefits with the acceptable reduction
in recognition performance, which is of constructive value to
the real-life applications. The exemplar recognition results on
the two different datasets are exhibited in Figure. 4, the first
two rows and the last one corresponding to the UFPR-ALPR
dataset and NWPU-LPR dataset, respectively.

4. CONCLUSIONS

In this work, an efficient quality-aware license plate recog-
nition algorithm is proposed for online and fast LPR sys-
tems especially in complex scenarios, which integrates qual-
ity awareness and plate sequence recognition into one net-
work. Moreover, it involves three different but progressive
architectures based on the siamese networks or knowledge
distillation. Competitive experimental results on two datasets
demonstrate the efficiency and effectiveness of EQ-LPR.
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