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Abstract—Dimensionality reduction has attracted many
research interest in the past decades. Existing dimension-
ality reduction methods like LDA and PCA have achieved
promising performance, but the single and linear projec-
tion properties limit the further improvements of perfor-
mance. A novel convolutional two-dimensional nonlinear
discriminant analysis (C2DNDA) method is proposed for
dimensionality reduction in this study. In order to handle
nonlinear data properly, we present a newly designed struc-
ture with Convolutional Neural Networks (CNN) to realize
an equivalent objective function with classical 2DLDA and
thus embed the original 2DLDA into an end-to-end network.
In this way, the proposed dimensionality reduction network
can utilize the nonlinearity of the CNN and benefit from
the learning ability. The results of experiment on different
image related applications demonstrate that our method
outperforms other comparable approaches, and its effec-
tiveness is proved.

Index Terms—2DLDA, convolutional neural networks,
classification, dimensionality reduction

I. INTRODUCTION

L INEAR discriminant analysis (LDA) is a classical method
for dimensionality reduction and classification, which is

commonly used in pattern recognition and machine learning
fields, and shows satisfactory results in face recognition [1]–
[4]. The classical LDA aims to find the optimal projection vec-
tors by maximizing the trace of between-class scatter matrices
and minimizing the trace of within-class scatter matrices.

The idea of maximizing the ratio of trace is effective and
intuitive. However, the effectiveness comes at a cost. The
data format required for classical LDA must be the vector
formation. This kind of constraint limits the application with
existing data. The image is hard to process with the vector
formation. In order to solve this problem, some methods
utilize matrix-vector transformation [5]–[7] and combine it
with classical LDA. However, this kind of transformation
costs more computational resources. Another shortcoming of
these methods is that the useful information hidden in the
spatial relationship of image is wiped out. In fact, the reason
why convolutional neural network gains huge success can be
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regarded as taking use of spatial relationship of the image
data. This kind of spatial relation can be extended in some
other machine learning fields such as nature language process
[8], [9]. Another way to address this problem is to process 2D
data directly without matrix-vector transformation [10], [11].
Typically, the two-dimensional linear discriminant analysis
(2DLDA) [10], [12], [13] is the commonly used method.
2DLDA can utilize more related spatial information by using
the original data without transformation, which leads to a
better performance [14].

With the development of the machine learning, many clas-
sical approaches are showing its power once again when
combined with deep learning. Recently, many methods derived
from classical PCA [15], [16] and LDA [17] achieve better
performance compared with its original version. The main idea
of these approaches is to embed the classical problem into the
deep neural networks. In this way, these deep version methods
can utilize the nonlinear representation ability of networks and
the more effective optimization methods, which are stochas-
tic gradient descent (SGD) and many derivations. But the
combination with the classical LDA and CNN always means
complex neural network structure and difficult optimization.

In this paper, a convolutional two-dimensional nonlinear dis-
criminant analysis (C2DNDA) method is proposed which aims
to tackle these problems for complex nonlinear dimensionality
reduction. In [17], the solution of deep LDA is derived from
eigenvalue based optimization. In this paper, however, we use
a specially designed CNN structure to optimize the classical
LDA objective functions instead of maximizing the eigen-
values of scatter matrix. The main novelty of the proposed
method is to utilize the novel CNN structure which makes
the optimization of the classical LDA easier and gains better
performance. Meanwhile, the whole networks can be seen as a
nonlinear 2D dimensionality reduction framework that solves
dimensionality reduction and classification tasks simultane-
ously. This paper is an extension of our previous work [18].
The major differences of this paper can be summarized in four
parts. First, the effectiveness of F-loss function is analyzed and
examined, which is the main novelty of our work. Second, the
effects of different types of labels are analyzed. Both of these
two factors form the theoretical analysis of the effectiveness
of this paper. Third, the converge performance is compared
with different experimental settings to prove the proposed
algorithm. At last, the background information, the analysis
of related work and the demonstration of our work are more
comprehensive and clear.

The rest of the paper is organized as follows. In Section II,
we review several related works and its merits and demerits.
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Section III presents the C2DNDA in detail. The experiments
on three datasets including traditional and deep learning based
methods are shown in Section IV. Section V summarizes this
work.

II. RELATED WORK

In the past few years, dimensionality reduction has attracted
a large number of researchers because of increasing demands
on various data applications in the machine learning fields.
There are two kinds of dimensionality reduction approaches
which are the supervised and the unsupervised methods.
Generally, the supervised methods gain a better performance.
The LDA class methods are the representative supervised
approaches. In this section we briefly review some LDA-
related methods about this topic.

A. Classical LDA

The linear discriminant analysis tries to transform the in-
put data into a low dimensional subspace and separate the
data in the transformed subspace [19]. Two kinds of scatter
matrices of transformed data are employed to measure the
effectiveness of separation in the lower-dimensional subspace.
Denote the input as X ∈ Rl×n, which belongs to c classes
π = [π1, π2, . . . , πc]. Suppose the projection is W ∈ Rl×c.
Then the transformation defined by the classical LDA is
yi = WTxi, where xi ∈ Rl×1 is the input. In order to find
the optimal transformation, we use the between-class Sb and
within-class scatter matrix Sw which are defined as:

Sb =

c∑
i=1

ni(Mi −M)(Mi −M)T , (1)

Sw =

c∑
i=1

∑
Xj∈πi

(Xj −Mi)(Xj −Mi)
T , (2)

where ni is the whole number of samples in the i− th class

πi, N is the number of input data, Mi =
1

ni

∑
Xj∈πi

Xj is the

mean value of i− th class πi and M =
1

N

∑c
i=1

∑
Xj∈πi

Xj

is the mean value of the entire input data.
In this way, the transformed class scatter matrices can be

formulated as:
S̃b =WTSbW, (3)

S̃w =WTSwW. (4)

According to the above equations, the optimal solution to W
can be:

max
W

∥∥∥S̃b∥∥∥∥∥∥S̃w∥∥∥ . (5)

In [20], the objective function can be formulated as the ratio
of trace:

max
W

Tr((S̃w)
−1S̃b), (6)

where Tr(·) denotes the trace of the matrix.

B. 2DLDA

Because the 2DLDA method can handle the 2D-data di-
rectly, data format is the major difference between the classical
LDA and 2DLDA. In order to make more use of spatial
information and handle 2D-data, the 2DLDA method employs
several projection matrices. Typically, We use U , V as the
projection matrices in 2DLDA and X = [X1, X2, . . . , Xn]
as the input data, where Xi ∈ Rm×n. As a result, the two
projected between-class and within-class scatter matrices are:

S̃b =

c∑
i=1

niU
T (Mi −M)V V T (Mi −M)TU, (7)

S̃w =

c∑
i=1

∑
Xj∈πi

UT (Xj −Mi)V V
T (Xj −Mi)

TU. (8)

Because the scatter matrices have the same meaning as the
classical LDA, the similar objective function can be calculated.
What makes the differences between the LDA and 2DLDA
is the number of the projection matrices. In this way, the
objective target is changed to two projection matrices:

max
U,V

∥∥∥S̃b∥∥∥∥∥∥S̃w∥∥∥ . (9)

As mentioned in [20], the objective function is defined as
follows:

max
U,V

Tr((S̃w)
−1S̃b). (10)

C. Regularized LDA

During the realization of the classical LDA problem, the
calculation of the inverse matrix is important. However, the
matrix S̃w doesn’t have the inverse counterpart when the
dataset is small. This property makes the dimensionality reduc-
tion unable to optimize. In order to avoid meaningless inverse
matrix, regularization terms are applied to the classical LDA
[21], [22]. Besides, these regularization terms can overcome
the over-fitting problem.

In [23], a method called MVLDA is proposed. The estima-
tions of scatter matrices are used for the regularization terms.
An iterative method is used to obtain the estimation of the
within-class scatter matrix.

SWL =
1

Nn

c∑
i=1

∑
Xj∈πi

(Xj −Mi)S
−1
WR(Xj −Mi)

T , (11)

SWR =
1

Nm

c∑
i=1

∑
Xj∈πi

(Xj −Mi)
TS−1WL(Xj −Mi). (12)

The estimations of between-class scatter matrix are defined as:

SBL =

c∑
i=1

ni(Mi −M)(Mi −M)T , (13)

SBR =
1

Tr(SBL)

c∑
i=1

ni(Mi −M)T (Mi −M). (14)
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Fig. 1. Different formulations of loss function. The CCE loss can be regarded as maximization of classification accuracy by minimizing entropy.
The DeepLDA method maximize the eigenvalues and our method maximize the trace of scatter matrix. Both methods convert the data into a
low-dimensional subspace.

According to these estimations, the iterative regularization
terms can be defined as:

Srw = (1− λw)Sw + λwS
s
w, (15)

Srb = (1− λb)Sb + λbS
s
b , (16)

where Ssw = SWR ⊗ SWL and Ssb = SBR ⊗ SBL.
Different from the above approaches, there is one simple

regularized method treat the identity matrix as the regulariza-
tion term to avoid singularity. The original optimization of the
classical LDA can be written in another unified way:

maxTr((S̃w)
−1S̃b). (17)

Adding an identity matrix to the within-class scatter matrix,
the term S̃w+λI is nonsingular matrix. Thus, the regularized
version can be written as:

maxTr((S̃w + λI)−1S̃b). (18)

D. Deep LDA
In [24], a deep version of the Canonical Correlation Anal-

ysis (DCCA) method is proposed in order to handle acoustic
and articulatory speech data. In [17], another version of deep
linear discriminant analysis is proposed.

The basic idea of deep linear discriminant analysis is
utilizing deep neural networks to solve the classical regularized
LDA eigenvalue problem, which is formulated as:

Sbei = vi(Sw + λI)ei, (19)

where e = [e1, ..., ec−1] are the resulting eigenvectors and
v = [v1, ..., vc−1] the corresponding eigenvalues.

The maximization of eigenvalues v = v1, ..., vc−1 equals
to the maximization of original trace ratio between scatter
matrices. In this way, two kinds of objective functions can
be written as:

max
θ

1

c− 1

c−1∑
i=1

vi (20)

and

max
θ

1

k

k∑
i=1

vi,

{v1, ..., vk} = {vj |vj < min{v1, ..., vc−1}+ ε}, (21)

in which the θ represents the model parameters of network.
The original Categorical Cross Entropy (CCE) is replaced

with the eigenvalue loss, which is another form of the classical
2DLDA.

The reason why deep linear discriminant analysis method
has two similar objective functions is that optimization of such
eigenvalue based method can be difficult. Further more, the
back propagation of summation of eigenvalues is complex.
Different from deep linear discriminant analysis method, we
intend to convert such optimization problem into an end-to-
end network which can be easily constructed and trained. The
comparison of our method, DeepLDA and CCE can be seen
in Figure 1.

III. CONVOLUTIONAL 2DLDA

In this section, we demonstrate the detailed proof of
C2DNDA and its corresponding CNN construction. The main
idea of the proposed method is to find an embedded structure
which has the equivalent optimal solution to the LDA objective
function.

A. LDA Based on Nonlinear Projection

Utilizing nonlinear projection to perform dimensionality
reduction is an obvious solution to the above problems. Our
target is to find a nonlinear projection which is able to perform
dimensionality reduction. We denotes g(·) as the projection
and D = [D1, D2, . . . , Dn] as the input. When the projected
data di = g(Di) meets the the classical LDA assumption, we
can treat this nonlinear method as a variant of the classical
LDA.
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It is obvious that nonlinear projection can obtain better
representative information compared with the classical LDA
or 2DLDA. However, the most difficult part of nonlinear LDA
is the effective optimization method. In order to tackle above
problems, a specially designed network structure is utilized to
optimize the nonlinear projection. The proposed optimization
method is an important novelty of this paper.

B. LDA in a Network

As mentioned in the above section, using CNN to real-
ize LDA-like nonlinear projection is our goal. Suppose the
transformation of CNN is x = f(A) ∈ Rm×1, in which x
is the results of dimensionality reduction, f(·) represents the
networks and A denotes the input. Denote the output of the
networks as X = [f(A1), f(A2), . . . , f(An)] ∈ Rm×n and
label as Y ∈ Rn×c. In order to prevent the singularity and
over-fitting problem, we use the regularized LDA as our target
objective function. The objective function of the regularized
LDA is defined as:

max
f

Tr((St + λI)−1Sb), (22)

where
St = XHXT , (23)

Sb = XHY (Y TY )−1Y THXT , (24)

H = I − 1

n
11T . (25)

It is tough to optimize the regularized LDA objective
function because of the complicated structure hiding in the
CNN projection f(·). Here, we propose another way based on
frobenius norm to optimize this function:

max
f

Tr((St + λI)−1Sb)

⇔ min
f,W,b

∥∥∥XTW + 1bT − Ŷ
∥∥∥2
F
+ λ ‖W‖2F , (26)

where

Ŷ = Y (Y TY )
−
1

2 . (27)

proof: We use Lagrange multiplier method to prove Eq.26.
If the optimized g in Eq.26 has the same solution with Eq.22,
we would be able to optimize the regularized LDA with Eq.26
in a network. Following Lagrange multiplier method, setting
the derivative of Eq.26 with respect to b to zero, we have:

b =
1

n
(Ŷ T1−WTX1). (28)

Then substitute the above b into Eq.26:

min
f,W,b

∥∥∥XTW + 1bT − Ŷ
∥∥∥2
F
+ λ ‖W‖2F

⇔ min
f,W

∥∥∥HXTW −HŶ
∥∥∥2
F
+ λ ‖W‖2F . (29)

Setting the derivative of Eq.III-B with respect to W to zero:

W = (XHXT + λI)−1XHŶ . (30)

Substituting W into Eq.III-B:

min
f,W

∥∥∥HXTW −HŶ
∥∥∥2
F
+ λ ‖W‖2F

⇔ min
f
Tr(Ŷ THŶ )−Tr(Ŷ THXT (XHXT +λI)−1XHŶ )

(31)
⇔ max

f
Tr((St + λI)−1Sb).

C. Singularity of Normalized Label Matrix
The normalized label used in the above proof could not be

constantly invertible. In this section, we discuss the singularity
of normalized label matrix.

proof: Suppose Y ∈ Rn×c is the one-hot label of n samples.
c denotes the class number. Then B = Y TY is the number
matrix of each class. To be more specific, B is a diagonal
matrix and the i-th diagonal element Bii is the sample number
of i-th class.

It is easy to know that Bij = Y Ti· Y·j . Suppose ni denotes
the sample number of i-th class. When i = j,

Bij =

n∑
k=1

Yki × Ykj = ni. (32)

If Bij 6= 0 and i 6= j, then there will be a k∗ which makes
Yk∗i × Yk∗j = 1. This property breaks the one-hot constraint.
Thus the number matrix B is a diagonal matrix and contains
the sample number of each class.

When we use the mini-batch stochastic gradient descent
algorithm to train our network, lack of certain class in the
mini-batch will make number matrix contains zero diagonal
elements. This phenomenon usually happens with a small
batch size. In this case, the number matrix will be singular
and the normalized label will not be solvable.

D. Network Construction
What we can see from the above theorem is that adding

an optimization layer in the networks f(·) can be used to
optimize the parameters W and b simultaneously, in which the
added layer inputs the dimensionality reduction representation
X and outputs the XTW + 1bT results. Besides, the optimal
network projection f(·) in Eq.22 can be obtained because
Eq.22 and Eq.26 have the same solution to f(·). In this way,
the dimensionality reduction network is obtained by the newly
added optimization layer. The newly added layer which is
composed of XTW +1bT can be seen as a kind of evaluation
metric of dimensionality reduction.

Because the optimization layer has no constraint to the
backbone networks, we can utilize different kinds of network
structure to test the effectiveness of our method. Considering
LeNet-5 [25] which has 5 layers and ResNet [26] that contains
more than 1000 layers, the depths of CNN networks are the
essential parameters to the network performance. We choose
two kinds of structures to construct our networks. The first
one is a simplified dimensionality reduction network which
has one fully connected (fc) layer and only two convolutional
layers. The purpose of this network is to compare the proposed
algorithm with the classical dimensionality reduction methods.
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Fig. 2. Different strategy in training and deploy stage. Only in the training stage the optimization layer is added.

Another one is a complex full functional network which has
the same structure with [17], including batch norm [27] and
dropout [28] layers. Similarly, the purpose of this network is
to compare the proposed algorithm with other deep methods.

As mentioned in Eq.26, the optimization layer is used for
the evaluation of the dimensionality reduction results. The
optimization layer converts the output results into the label
space. In fact, such evaluation metric is the classification
accuracy. It is noteworthy that the evaluation metric is derived
from the dimensionality reduction task instead of classifica-
tion. Meanwhile, the proposed optimization layer is in charge
of the optimization. Figure 2 illustrates how the network works
during the training and deploy stages. Only in the training
stage, the optimization layer is added to achieve the same goal
as the regularized LDA. After the network is converged, the
dimensionality reduction part is free to the optimization layer.

In this way, we have proposed a method which combines
the dimensionality reduction goal with the classification stage
into an end-to-end network, which has the same optimization
goal with the classical LDA. Because the proposed method
transforms the input data directly, it is obvious that the pro-
posed algorithm is a convolutional nonlinear 2DLDA method.

E. F-loss vs CCE
Different from other classification or regression networks,

the proposed network can achieve dimensionality reduction
goals. The reasons why such network structure can be used
for dimensionality reduction is shown in the formatting of loss
function. In order to achieve different goals, many different
losses are proposed. In [29] [30], the smooth L1 loss is
used for bounding box regression while traditional regression
method is mean square loss. The definition of smooth L1 loss
can be written as [31]:

L =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise.

(33)

In terms of classification, softmax function is the most widely
used method [32]. The corresponding cost function is cross

entropy function with softmax, which has many excellent
properties, such as simple realization and fast convergence
speed. The definition of cross entropy cost function is

L = − 1

N

N∑
n=1

(yn log ŷn + (1− yn) log(1− ŷn)). (34)

The loss function we used in C2DNDA is formed with
Frobenius norm, which can be written as:

L =
∥∥∥XTW + 1bT − Ŷ

∥∥∥2
F
+ λ ‖W‖2F (35)

and
L = −Tr((St + λI)−1Sb). (36)

From the formulation of Frobenius norm loss and cross en-
tropy loss we can see that the CCE method tends to reduce the
entropy of information difference between prediction and real
label, while the F-loss method tends to reduce the difference
in every position between the data after dimensionality reduc-
tion and normalized label. These two kinds of formulation
reflect the key difference of classification and dimensionality
reduction.

IV. EXPERIMENT

In this section, our method is named as C2DNDA. We com-
pare the proposed C2DNDA with eight classical dimension-
ality reduction algorithms, including LDA [1], 2DPCA [11],
2DLDA [12], S2DLDA [33], P2DLDA [33], Tensor LPP (T-
LPP) [34], [35], Bilinear SVM (B-SVM) [36] and CRP [37].
Due to the limited learning capacity of the classical methods,
we choose two relatively small handwritten digit datasets to
conduct our experiments. As for the deep learning algorithms,
several representative dimensionality reduction networks are
used for comparison, including NIN [38], Maxout [39], Deep-
CNet [40] and DeepLDA [17]. The detailed network structure
and hyper parameters are shown in this section.

Another part of experiments are carried out to examine the
effectiveness of proposed network structure. The experiments
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Fig. 3. Example handwritten images in CVL and USPS dataset.

are divided into two parts which are experiment about different
label formats and losses. The experiment setups are identical
to the classification experiments.

A. Experiment Setup and Datasets
Four datasets are used in our experiments.
MNIST: The MNIST dataset is a handwritten digits recog-

nition which contains 60,000 examples. Typically, 50,000
examples are used for training and the rest is used for testing.

CIFAR-10: The CIFAR-10 dataset consists of 60000 32×32
color images in 10 classes, with 6000 images per class. There
are 50000 training images and 10000 test images.

CVL: The CVL dataset [41] is generated for the IC-
DAR2013 Handwritten Digit Recognition Competition. Like
the MNIST dataset, the image size is 32× 32. The number of
images in the CVL dataset is 21,780.

USPS: This dataset is a small handwritten dataset which
contains 9,298 images with a size of 16× 16.

As mentioned in previous sections, two networks using
different number of convolutional layers are employed. Both
of them have the same structure of optimization layer. In Table
I we show the composition of the proposed network in detail.
We use momentum [42] and Adam [43] SGD optimizer in
TensorFlow [44] to train our network. In some rare cases,
small batch size can lead to loss of some classes in a batch,
which makes the normalized label Ŷ can’t be solved. In order
to give enough labels to the network, the batch size is set
to 100. The regularization item coefficient λ is set to 10−4

empirically.

B. Classification Accuracy
1) Comparison with Traditional Methods: In this exper-

iment, we choose classification accuracy as our evaluation
metric as described in the above section. The eight algorithms
used for comparison are LDA, 2DLDA, 2DPCA, B-SVM,
S2DLDA, P2DLDA, T-LPP and CRP. SVM and one nearest
neighbor (1NN) are used in these eight methods. The proposed
method uses the proposed layer to obtain classification results.
Because the B-SVM is a classification method, so we conduct
our experiment with it without extra classifier. Three kinds
of settings of training sets are employed to test the effect
of different training data sizes. Note that although different
numbers of training data are utilized, the testing set is the
same.

TABLE I
THE STRUCTURE COMPARISON OF THE PROPOSED C2DNDA

NETWORKS, IN WHICH C REPRESENTS THE CHANNEL NUMBER, B
REPRESENTS THE BATCH NORMALIZATION LAYER AND R REPRESENTS

THE RELU LAYER.

stage simplified complex

conv1
3x3, 32C, R
2x2 Pooling

3x3, 64C, B, R
3x3,64C, B, R

2x2 Polling

conv2
3x3, 64C, R
2x2 Pooling

3x3, 96C, B, R
3x3, 96C, B, R

2x2 Polling

conv3
3x3, 256C, B, R
1x1, 256C, B, R
1x1, 64C, B, R

fc1 64 64, Dropout
classification 10 10

In Table II, we show the results of experiment with 80%
training samples in every dataset. We can see that our method
outperforms all of the other methods, which demonstrates that
the proposed method benefits from the proposed network. As a
result, the effectiveness of the proposed optimization approach
can be verified. When compares with CVL dataset and SVM,
the C2DNDA outperforms the classical 2DLDA by 8.9%.

The second experimental results which use only 20 samples
are shown in Table III. No matter using which kind of
classifier, the CRP gains the best performance in the CVL
dataset. The proposed method achieves the second best results.
When compares in the USPS dataset, our method still gets the
best results. There is one thing we should notice is that the
proposed network structure starts to perform poorly because
of insufficient data.

The last experimental results which use only 10 samples are
shown in Table IV. As expected, all of the methods show a
relatively worse result with the decreasing number of samples.
The proposed method gains the 3rd place in the experimental
setting of CVL dataset and 1NN classifier. When compared
with SVM, we can say that the proposed approach obtains
good results. In the USPS dataset, the proposed method gains
the 2nd place. When the sample number is extremely small,
the proposed method still shows better results than the classical
2DLDA by 10.8%.

From these experiments we can see that our method could
achieve satisfying results with sufficient data. When dealing
with insufficient data like 20 samples, which is far from the
requirement of deep networks, our method could still rank
1st and 2nd places on different datasets. In this way, the
effectiveness of our method under various conditions can be
proved.

2) Comparison with Deep Learning Methods: In this part
of experiment, we still use the same evaluation metric to
conduct our experiment with deep learning methods. There are
four methods, including NIN, Maxout, DeepCNet, DeepLDA.
The experimental setting of DeepLDA is ”DeepLDA-60k”
[17]. Both of our two kinds of structures are compared in
this experiment. On the CIFAR-10 dataset, we keep the same
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TABLE II
CLASSIFICATION ACCURACY OF EIGHT CLASSICAL ALGORITHMS AND THE PROPOSED SIMPLIFIED C2DNDA NETWORK ON TESTING DATA. 80

PERCENT OF THE TRAINING DATA ARE USED FOR TRAINING.

Dataset 2DLDA LDA P2DLDA S2DLDA 2DPCA B-SVM CRP T-LPP
C2DNDA

(simplified)

CVL(SVM) 88.2±1.4 87.3±1.5 89.9±1.1 89.3±1.1 87.7±1.7 93.4±1.5 91.5±1.3 90.3±1.5 96.6

CVL(1NN) 91.1±1.4 90.2±1.6 92.8±1.3 92.4±1.5 90.6±1.5 93.4±1.5 94.7±1.3 93.1±1.3 96.6

USPS(SVM) 93.8±1.1 93.1±1.6 94.3±1.8 94.1±1.2 93.5±1.5 96.2±1.4 95.6±1.3 94.7±1.4 97.9

USPS(1NN) 95.6±1.2 94.8±1.3 94.5±1.2 96.4±1.4 95.2±1.1 96.2±1.4 96.8±0.9 95.1±1.1 97.9

TABLE III
CLASSIFICATION ACCURACY OF EIGHT CLASSICAL ALGORITHMS AND THE PROPOSED SIMPLIFIED C2DNDA NETWORK ON TESTING DATA. ONLY 20

SAMPLES OF THE TRAINING DATA ARE USED FOR TRAINING.

Dataset 2DLDA LDA P2DLDA S2DLDA 2DPCA B-SVM CRP T-LPP
C2DNDA

(simplified)

CVL(SVM) 69.2±1.6 67.9±1.3 58.3±1.7 68.6±1.7 68.3±1.4 70.9±1.6 79.2±1.5 69.1±1.4 72.1

CVL(1NN) 66.7±1.2 63.7±1.3 60.2±1.7 67.3±1.3 64.1±1.8 70.9±1.6 74.2±1.1 65.2±1.9 72.1

USPS(SVM) 85.8±1.5 83.8±1.8 80.8±1.3 86.8±1.9 84.2±1.9 86.6±1.8 88.4±1.4 81.8±1.6 90.2

USPS(1NN) 84.5±1.8 83.1±1.3 74.7±1.5 85.6±1.2 83.6±1.4 86.6±1.8 89.2±1.4 79.5±1.4 90.2

TABLE IV
CLASSIFICATION ACCURACY OF EIGHT CLASSICAL ALGORITHMS AND THE PROPOSED SIMPLIFIED NETWORK ON TESTING DATA. ONLY 10 SAMPLES

OF THE TRAINING DATA ARE USED FOR TRAINING.

Dataset 2DLDA LDA P2DLDA S2DLDA 2DPCA B-SVM CRP T-LPP
C2DNDA

(simplified)

CVL(SVM) 57.9±1.9 56.8±1.5 48.4±1.3 51.9±1.4 57.1±1.6 64.2±1.9 68.3±1.5 66.9±1.6 55.2

CVL(1NN) 50.3±1.8 47.3±1.4 46.9±1.4 51.9±1.5 47.9±1.5 64.2±1.9 67.3±1.3 55.1±1.6 55.2

USPS(SVM) 77.3±1.3 73.4±1.7 73.9±1.4 79.2±1.8 74.4±1.9 79.4±1.9 84.3±1.3 78.2±1.5 82.6

USPS(1NN) 71.8±1.4 68.5±1.7 64.8±1.9 71.2±1.6 69.2±1.5 79.4±1.9 84.4±1.5 76.7±1.6 82.6

network as DeepLDA [17]. So, the original versions of our
method are not tested.

From Table V, we can see that the proposed method gains
a satisfactory result. Our method gains better results on both
datasets when compared with DeepLDA. Although the simpli-
fied version shows a relatively bad performance compared with
other deep methods, we can say that our method performs not
that bad in consideration of its simple structure. The reason is
that the simplified version has only two convolutional layers,
while other methods have much more convolutional layers.

What we can see from these experiments is that our method
shows fairly good performance with enough data. The pro-
posed algorithm gains better performance compared with the
classical 2DLDA in every experimental setting. When training
with insufficient samples, our method gains a satisfactory
result. Taking into account all these experiments, we can see
that the proposed method is effective.

TABLE V
CLASSIFICATION ACCURACY OF DEEP METHODS.C2DNDA(DEEPLDA)

KEEPS THE SAME STRUCTURE AS DEEPLDA USED IN CIFAR-10.

Method MNIST CIFAR-10

C2DNDA(simplified) 99.20 -

Maxout 99.55 90.62

DeepLDA 99.68 92.71

NIN 99.53 89.59

DeepLDACCE 99.66 92.81

DeepCNet 99.69 93.72

C2DNDA(complex) 99.69 92.60

C2DNDA(DeepLDA) - 92.88
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C. The Effect of Normalized Label

There are two kinds of label format we can use in di-
mensionality reduction network. One kind of label is one-hot
encoding label. Another one is normalized label. According to
Eq. 26, the final optimization layer projects the original data
into a normalized one-hot label Ŷ instead of normal one-hot
label, which has the formation of:

Ŷ = Y (Y TY )
−
1

2 . (37)

Such kind of normalized label leads to two problems.
The first one is that the number matrix Y TY might be not

invertible when a data batch is small. Another problem is that
the normalized label might affects the classification accuracy.
The normalized label has the same form as one-hot label but
it is weighted by the sample number of its class. The detailed
proof of singularity of the number matrix Y TY is presented
in section III-C.

In order to compare two kinds of label, we use the simplified
network structure and MNIST dataset to test our method. All
of the other hyper parameters are identical.

0 2000 4000 6000 8000 10000 12000 14000
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Fig. 4. Training accuracy of one-hot label and normalized label.

The training accuracy is shown in Figure 4. It is difficult
to say which one is better. For both labels, two kinds of
training accuracy are very close to 100%. The training loss
is shown in Figure 5. The training loss of one-hot label is
much lower than normalized one. Classification accuracy in
test set of one-hot label form is 99.37%, while the accuracy
of normalized form is 99.20%. The reason why one-hot label
outperforms normalized one is that both of them are one-hot
format while the normalized is smaller. This property can be
a drawback when training a network because the difference
between predict and label is smaller. In this case, we use one-
hot label in our experiment. In fact, many LDA methods have
such property that the optimal solution to projection matrices
are not unique. If W is the optimal projection matrix, then
WQ would be the optimal projection matrix, in which Q is a
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Fig. 5. Training loss of one-hot label and normalized label.

diagonal matrix. Without consideration of regularization item

and suppose Q = (Y TY )

1

2 , then

min
f,W,b

∥∥∥XTW + 1bT − Ŷ
∥∥∥2
F

⇔ min
f,W,b

∥∥∥(XTW + 1bT − Ŷ )Q
∥∥∥2
F
, (38)

because Q is constant. Besides, we have Ŷ Q = Y . In this
way, the optimization can be:

min
f,W,b

∥∥XTWQ+ 1bTQ− Y
∥∥2
F
, (39)

which means when we use normal one-hot label Y , it is the
same as optimize WQ and bTQ from the corresponding W
and bT with normalized label. Although the optimization of
W and b is changed, the optimal solution to f, i.e. the network,
is the same.

D. Differences between F-loss and CCE
As mentioned in section about F-loss and CCE, the formu-

lation of different loss leads to diverse network application.
Because we use classification accuracy as our evaluation
criteria, it is necessary to compare our F-loss method with
CCE method.

We use the simplified network structure and MNIST dataset.
Learning rate is set to 0.001 and batch size is set to 200.

The compare results of training accuracy and loss are
presented in Figure 6 and Figure 7. We can observe that our
method has a faster convergence speed and even higher accu-
racy using the same learning rate. The classification accuracy
in test set of softmax is 99.27%. The classification accuracy
in test set of our method using one-hot label is 99.37%. Due
to the regularized term in the loss function, the generalization
ability of our network can be promoted. In some way, the
generalization ability makes the loss more smooth.

The classification accuracy for different losses and labels
is shown in Table VI. From Table VI we can observe that
the proposed method achieves a comparable performance with
Softmax method in terms of classification accuracy.
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TABLE VI
CLASSIFICATION ACCURACY WITH DIFFERENT LOSSES AND LABELS.

Method Classification accuracy

F-loss with normalized label 99.20

F-loss with one-hot label 99.37

Softmax 99.27

Fig. 6. Training accuracy of softmax method and F-loss method.

E. Discussion about the Classification Accuracy

What we can see from the above experiments is that the
proposed method shows better performance with more data.
This phenomenon can be explained in three aspects.

First, the insufficient data will make the optimization of
the objective function defined in Eq.26 converge into a bad
point. With insufficient samples, the proposed dimensionality
reduction network is optimized with non-optimal W and b.

Second, the over-fitting problem when training with small
sample size and deep networks would be serious. From Table
IV we can see that the overall training set contains 100
samples. The trained CNN would have bad generalization
ability.

The last aspect is about a training trick. All of the experi-
ments in different datasets use the same experimental settings.
Some important hyper parameters like learning rate can lead
to different performance especially with a small train set.
If the learning rates can be adjusted for insufficient data or
different datasets, the results would be better. In Table VII
and Table VIII, some hyper parameters are adjusted for better
performance. The experimental setting of the learning rate is
changed to overcome the over-fitting problem. The proposed
method with + in Table VII and VIII uses a higher learning
rate.

V. CONCLUSION

In this paper, we propose an extension of the C2DNDA
method for nonlinear dimensionality reduction. The difficult

TABLE VII
CLASSIFICATION ACCURACY WITH DIFFERENT PARAMETERS WITH 20

TRAINING SAMPLES. THE BEST RESULTS OF OTHER EIGHT
TRADITIONAL METHODS ARE SHOWN.

Dataset
C2DNDA

(simplified)
Best

C2DNDA +

(simplified)

CVL(SVM) 72.2 79.2 ± 1.5 75.3

CVL(1NN) 72.2 74.2 ± 1.1 75.3

USPS(SVM) 90.2 88.4± 1.4 91.4

USPS(1NN) 90.2 89.2 ± 1.4 91.4

TABLE VIII
CLASSIFICATION ACCURACY WITH DIFFERENT PARAMETERS WITH 10

TRAINING SAMPLES. THE BEST RESULTS OF OTHER EIGHT
TRADITIONAL METHODS ARE SHOWN.

Dataset
C2DNDA

(simplified)
Best

C2DNDA +

(simplified)

CVL(SVM) 55.1 68.3 ± 1.5 62.9

CVL(1NN) 55.1 67.3 ± 1.3 62.9

USPS(SVM) 82.6 84.3± 1.3 86.2

USPS(1NN) 82.6 84.4 ± 1.5 86.2

problem of embedding the classical LDA into a network is
solved by an F-loss function which is equal to the classical
LDA objective function. The proposed C2DNDA method uti-
lizes a two-stage networks to realize dimensionality reduction.
Effectiveness of this kind of structure is proved with various
backbone networks, losses and labels. Our C2DNDA method
outperforms the classical LDA and 2DLDA in every experi-
mental settings. Meanwhile, the proposed method outperforms
the DeepLDA due to an easier optimization approach. With
enough data, the C2DNDA method gains a state-of-the-art
classification and dimensionality reduction performance.

In the proposed C2DNDA framework, a more efficient
backbone network compared with plain networks we use can
be added. However, most of the proposed network structures
are aimed at classification or detection. Thus, we will focus on
more powerful backbone networks designed for dimensionality
reduction in the future.
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