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Abstract—Semantic segmentation, a pixel-level vision task,
is developed rapidly by using convolutional neural networks
(CNNs). Training CNNs requires a large amount of labeled
data, but manually annotating data is difficult. For emancipating
manpower, in recent years, some synthetic datasets are released.
However, they are still different from real scenes, which causes
that training a model on the synthetic data (source domain)
cannot achieve a good performance on real urban scenes (target
domain). In this paper, we propose a weakly supervised adversar-
ial domain adaptation to improve the segmentation performance
from synthetic data to real scenes, which consists of three deep
neural networks. To be specific, a detection and segmentation
(“DS” for short) model focuses on detecting objects and predict-
ing segmentation map; a pixel-level domain classifier (“PDC” for
short) tries to distinguish the image features from which domains;
an object-level domain classifier (“ODC” for short) discriminates
the objects from which domains and predicts the objects classes.
PDC and ODC are treated as the discriminators, and DS is
consider as the generator. By the adversarial learning, DS is
supposed to learn domain-invariant features. In experiments, our
proposed method yields the new record of mIoU metric in the
same problem.

I. INTRODUCTION

Semantic segmentation is a fundamental task in computer
vision, which is viewed as a union of image segmentation,
object localization and multi-object recognition. For the spe-
cific scenes (such as urban and indoor scenes), the task can
be named as fully scene labeling/parsing, which requires to
predict the label for each pixel. This paper will focus on the
fully urban scenes labeling.

Recently, convolutional neural networks (CNNs) have ob-
tained the amazing performances in the three fundamental
vision tasks: image classification [1], [2], [3], object detection
[4], [5], and semantic segmentation [6]. However, training
CNNs requires a large amount of labeled data. Especially,
for the scene labeling, annotating images for each pixel is
more difficult and expensive than the other two tasks. Thus,
the current pixel-wise urban datasets (such as CamVid [7] and
Cityscapes [8]) contain no more than 10,000 images, which
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is insufficient for some practical applications (e.g. self-driving
cars).

In order to address the data shortage problem, some weakly
supervised methods [9], [10] try to segment the image by ex-
ploiting some weak labels (image-level or object-level labels).
However, they only focus on the salient foreground objects
segmentation in simple scenes. In the urban scenes, the above
methods cannot effectively learn discriminative features from
the weakly labels because of many objects with different scales
and occlusion, especially background objects (such as road,
sky, building and so on). To the best of our knowledge, no
algorithm tackles the labeling of full scenes via the weakly
supervised learning.

In addition to the strategy at the methodology level, a
potential idea is to exploit the synthetic data to prompt
the performance in the real world. In recent years, some
large-scale synthetic datasets [11], [12] are released, which
are generated by computer graphics or crawled from some
computer games. The emergence of synthetic datasets greatly
emancipates manpower. Unfortunately, there exist significant
domain gaps between the synthetic images and real images,
including image textures, architectural styles, road materials
and so on. As a result, it leads to poor performances when
applying the model trained on synthetic images to real scenes.
This phenomenon shows that existing supervised strategies
may over learn the local discriminative features in the given
training data space.

The above cross-domain (from the synthetic data to the
real-world scenes) semantic segmentation attracts many re-
searchers’ attentions. There are two unsupervised FCN-based
domain adaptation methods [13], [14] to address the cross-
domain problem. However, they only focus on the local pixel-
level features while ignore structured object-level features in
the scenes. As a matter of fact, some object-level features in
the synthetic scenes are similar to that in real urban scenes,
which are more robust than the pixel-level features for the
cross-domain task. In general, the cross-domain generalization
ability of object detection model are stronger than that of
segmentation models.

Motivated by the above observation and some recen-
t adversarial learning works and unsupervised methods
[15], [16], [17], [18], in this paper, a weakly supervised ad-
versarial domain adaptation approach is proposed to improve
the segmentation performance from synthetic data (source
domain) to real scenes (target domain). Figure 1 briefly shows
the problem setting: the source domain needs to provide the
pixel-level and object-level labels, and the target domain only
provides the object-level labels.
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Source Domain: labeled synthetic data

Target Domain:
 weakly-labeled real-world data

How to learn domain-invariant features from  
source domain to predict target domain labels?

Target Domain:
 predicted labels

Fig. 1: Weakly supervised domain adaptation approach for
semantic segmentation in real urban scenes. Given a source
domain (synthetic data) with pixel/object- level labels, and a
target domain (real-world scenes) with only object-level labels,
our goal is train a segmentation model to predict the per-pixel
labels of the target domain.

Figure 2 illustrates the entire framework. To be specific,
the proposed method consists of three deep neural networks,
a multi-task model for object Detection and semantic Seg-
mentation (DS), a Pixel-level Domain Classifier (PDC) and
an Object-level Domain Classifier (ODC). DS integrates a
detection network and a segmentation network into one archi-
tecture. The former focuses on learning object-level features
to localize the objects’ bounding boxes, and the latter aims
to learn local features to classify each pixel. PDC is fed with
the feature maps of the segmentation network, and outputs
their domain (source or target domain) for each pixel. ODC
is fed with the objects features of detection network, then
outputs objects category and domain class. Similar to the
generative adversarial learning [19], DS model can be treated
as a generator, and PDC/ODC models are regarded as two
discriminators. After the adversarial training, DS model can
learn domain-invariant features at the pixel and object levels
to confuse PDC and ODC.

In summary, the main contributions of this paper are:

1) To our best knowledge, this paper is one of the first at-
tempts to propose a weakly supervised method for fully
urban scenes labeling, which employs the cross-domain
problem. It can extract more robust domain-invariant
features than the traditional FCN-based methods.

2) This paper designs two domain classifiers at the pix-
el/object levels to distinguish which domain the image
features come from. By adversarial training, the domain
gap can be effectively reduced.

3) The proposed method yields a new record of mIoU ac-
curacy on the cross-domain fully urban scenes labeling.

II. RELATED WORK

In this section, we briefly review the important works about
the two most related tasks: fully/weakly supervised semantic
segmentation, domain adaptation with deep leaning.

Semantic segmentation. In 2014, fully convolutional net-
work (FCN) proposed by Long et al. [6] achieves a significant
improvement in the field of some pixel-wise tasks (such
as semantic segmentation, saliency detection, crowd density
estimation and so on), which is a fully supervised method.
After that, more and more methods [20], [21], [22], [23], [24],
[25] based on FCNs are presented. Zheng et al. [20] propose an
interpretation of dense conditional random fields as recurrent
neural networks, which is appended to the top of FCN.
Seg-net [21] and U-net [22] develop a symmetrical encoder-
decoder architecture to prompt the performance output maps.
Yu and Loltum [23] propose a dilated convolution operation
to aggregate multi-scale contextual information. Zhao et al.
[24] design a pyramid pooling module in FCN to exploit the
capability of global context information. He et al. [26] propose
a supervised multi-task learning for instance segmentation,
which does not segment the background objects. Wang et
al. [25] present a FCN to combine RGB images and contour
information for road region segmentation.

Recently, some weakly-supervised methods [9], [27], [28],
[29], [10] are presented to save the costs of annotating ground
truth. Papandreou et al. [9] adopt on-line EM (Expectation-
Maximization) methods training segmentation model from
image-level and bounding-box labels. [27], [28] apply a pro-
gressively learning strategy to train DCNN from the image-
level images. Souly et al. [29] apply a Generative Adversarial
Networks (GANs) in which a generator network provides extra
training data to a classifier. Oh et al. [10] exploit the saliency
features as additional knowledge and mine prior information
on the object extent and image statistics to segment the
object regions. It is noted that the above mentioned weakly-
supervised methods do not focus on labeling of full scenes.
They aim to segment the salient foreground objects in the
simple scenes.

Domain adaptation. There are two main streams to study
domain adaptation. Some methods [30], [31], [32], [33], [15]
attempt to minimize the domain gap via adversarial train-
ing. [30], [31], [32] propose a Domain-Adversarial Neural
Network, which minimizes the domain classification loss.
Muhammad et al. [33] propose an DRCN to reconstruct
target domain images by optimizing a domain classifier. Tzeng
et al. [15] present a generalized framework for adversarial
adaptation, which help us understand the benefits and key ideas
from GANs-based methods.

Other methods [34], [35], [36], [16] adopt the Maximum
Mean Discrepancy (MMD) [37] to alleviate domain shift.
MMD measures the difference between features extracted
from each domain. Tzeng et al. [34] computes the MMD
loss at one layer and Long et al. [35] minimizing MMD
losses at multi-layer Deep Adaptation Network. Bousmalis
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Fig. 2: The flowchart of the proposed weakly supervised adversarial domain adaptation. On the top, the asymmetric multi-task
model is depicted, which consists of a detection model and a segmentation model (DS). During the training stage, a pair of
images from two domains are fed to the DS model. The magenta and green curve arrows represent the input/output of source
and target domain, respectively. Further, the two-way arrow shows that the data flow is involved in the training process. From
this figure, source images take part in the object- and pixel- level training, while target images only participate in the object-
level training. On the bottom, the two domain classifiers (PDC and ODC) at the object- and pixel- levels are demonstrated. The
feature maps of two streams in DS are respectively fed to PDC and ODC, respectively. By alternately adversarial optimizing
DS and two domain classifiers, the final DS will be obtained. During the testing phase, the test images are only fed to the
segmentation stream in DS to predict the pixel-level score map.

et al. [36] propose a Domain Separation Networks (DSN) to
learn domain-invariant features by explicitly separating repre-
sentations private to each domain. Further, Long et al. [16]
combines Joint Adaptation Networks (JAN) with adversarial
training strategy.

Domain adaptation for semantic segmentation. Hoffman
et al. [13] firstly propose an unsupervised domain adapta-
tion for segmentation, which combines global and category
adaptation in the adversarial learning. It effectively reduces
the domain gap at the pixel level. Zhang et al. [14] adopt a
curriculum-style domain adaption and predict global and local
label distributions at image and superpixel levels, respectively.

III. APPROACH

This section describes the detailed methodology of the
proposed weakly supervised adversarial domain adaptation for
semantic segmentation. In order to reduce the domain gap, the
inter- and intra- object features are considered in the neural
network. In addition, by alternately adversarial optimizing DS
and two domain classifiers (PDC and ODC), the domain gap

of learned features by DS can be alleviated effectively. Figure
2 illustrates the entire framework.

Before the detailed description, it is necessary to recall our
faced cross-domain semantic segmentation by mathematical
notations. A source domain S from a synthetic urban dataset
provides images IS , pixel-level annotations ApixS , and object-
level annotations AobjS ; and a target domain T from real world
provides images IT , only object-level annotations AobjT . Note
that S and T share the same label space RC , where C is the
number of categories. In a word, given IS , ApixS , AobjS , IT
and AobjT , the goal is to train a segmentation model to predict
pixel-wise score map of T .

Under the above definitions, the purpose of this paper is
that how to reduce the domain gap between S and T .

A. Weak supervision for segmentation
Almost all of deep methods for semantic segmentation are

based on FCN owing to its powerful learning ability. However,
FCN-based methods perform not well for our faced cross-
domain problems. The main reasons are that semantic segmen-
tation is considered as a pixel-wise classification problem, and
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many FCN-based methods focus on the local features (texture,
color and so on) and ignore large-scale structured features.
Unfortunately, the differences of texture, color or other local
features are obvious in the different domains. On the contrary,
the structured features and the contextual information are con-
sistent with different domains, for instance, pedestrian posture,
vehicle appearance and the position relation of objects. Thus,
it is important to extract object-level features for cross-domain
semantic segmentation.

Previous works [38], [26] tackle object detection and seg-
mentation simultaneously in a single framework. However,
as for the target domain with only bounding-box labels, the
above supervised methods are impracticable. In this work, we
propose an asymmetric multi-task learning to handle it, which
consists of Detection and Segmentation streams (DS). During
the training stage, a pair of images from two domains are
fed to the neural network: the source images are involved in
the entire model’s training; the target images only participate
in the detection stream’s training. At the testing phase, the
test images are only fed to the segmentation stream in DS
to predict the pixel-wise score map. Compared with Mask
RCNN [26], our model consists of two streams (shown in
Fig. 2), which is an asymmetric multi-task learning on the
two domains. But Mask RCNN [26] must detect the objects
first and then segment them. In other word, the detection result
of Mask RCNN is essential while ours is auxiliary in the test
stage.

To be specific, an FCN-8s [6] is combined with a simple
SSD-512 [5] into one architecture, in which the first four
groups of convolutional layers are shared (named as Base
Net). The FCN-8s aims to localize the objects’ boundaries and
per-pixel segmentation, and the SSD-512 focuses on learning
object-level features to localize the objects’ bounding boxes.
Unlike the traditional detection methods, our SSD-512 can
learn not only the structured objects (such as pedestrian, car,
bicycle, and so on) but also some unstructured objects (e.g.,
road, sky, building, etc.). For the structured feature, it is an
internal feature of a single object. For example, usually, the
pedestrian has one head, two arms, two legs and so on, and
these parts present a certain position distribution. Similarly,
other objects (cars, truck, traffic sign/light) have specific
structured features.About the these large unstructured objects,
they contain more contextual information, which is a type
of intra-object features. For example, the building is usually
located under the sky in urban images, and the rectangular road
region may cover the part of vehicles, pedestrians, sidewalks.
Similar object relations can be regarded as a type of inter-
object feature.

The proposed DS model is trained through following loss:

LDS =Lseg(IS , ApixS )

+ Ldet(IS , AobjS ) + Ldet(IT , A
obj
T ),

(1)

where Lseg(IS , ApixS ) is 2D Cross Entropy Loss, the standard
supervised pixel-wise classification objective. Ldet(IS , AobjS )

and Ldet(IT , A
obj
T ) are MultiBox objective loss functions

[5] for the detection task, which is a weighted sum of the
localization loss and the confidence loss.

B. Adversarial domain adaptation

Although the proposed weak supervision learns some
domain-invariant features (including the structured intra-object
feature and the contextual inter-object feature), other domain
gap (such as texture, color and so on) is still not alleviated.
These differences between synthetic and real-world domains
are inherent. For the traditional supervised deep learning, the
trained model only learns the discriminative features according
to given labeled synthetic data. However, there is a problem
that the learned discriminative features are not universal for
real-world data.

Adversarial learning [15] provides a good framework to
tackle the above problem, which pits two networks against
each other. On the one hand, a domain classifier is trained to
distinguish which domain the learned features are from. On
the other hand, the original main model is supposed to learn
not only the discriminative features to label scenes but also
the domain-invariant features to confuse the domain classifier.
By alternately training the two models, the extracted features
from main model are invariant with respect to the domain gap.

In this paper, the Pixel-level and Object-level Domain Clas-
sifiers (PDC and ODC) are designed as the discriminators, and
DS is treated as the generator in the GAN theory. Through the
adversarial training, DS is supposed to learn domain-invariant
features to confuse PDC and ODC.

C. Pixel-level adaptation

Since basic labeling unit of semantic segmentation is the
pixel, correspondingly, a pixel-level domain classifier (PDC)
is built to distinguish domain source (source domain or target
domain) for each pixel. It receives the feature inputs from
the segmentation stream in DS and outputs 2-channel score
map with the original image’s size to represent the confidence
scores of per-pixel domain classes. To be specific, it consists
of a convolutional layer and two de-convolutional layers.
The bottom-right sub figure in Fig. 2 shows the network
architecture of PDC.

Given the feature input, the PDC loss is computed as
follows:

LPDC =−
∑

Oseg
S ∈S

∑
h∈H

∑
w∈W

log(p(OPDCS ))

−
∑

Oseg
T ∈T

∑
h∈H

∑
w∈W

log(1− p(OPDCT )),
(2)

where OPDCS and OPDCT are pixel-wise 2D-channel score map
with size of H ×W for source and target feature inputs, H
and W denote the height and width of the original image, and
p(·) is the soft-max operation for each pixel.

At the same time, here, the inverse of PDC loss, LPDCinv

is defined as:

LPDCinv
=−

∑
Oseg

S ∈S

∑
h∈H

∑
w∈W

log(1− p(OPDCS ))

−
∑

Oseg
T ∈T

∑
h∈H

∑
w∈W

log(p(OPDCT )).
(3)
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However, optimizing Eq. (2) and Eq. (3) are prone to
oscillation. In fact, during the practical training phase, a
domain confusion objective [30] is adopted to replace Eq. (3),
which is defined as below:

L̂PDCinv
=

1

2
(LPDC + LPDCinv

). (4)

Finally, the objectives are written as follows:

min
θPDC

LPDC , (5)

min
θDS

LDS + L̂PDCinv , (6)

where θPDC and θDS denote the network parameters of PDC
and DS, respectively. During the training stage, the parameters
of the two models are updated in turns by minimizing Eq. (5)
and Eq. (6). To be specific, a) fix θDS , and update θPDC by
optimizing Eq. (5); b) fix θPDC , and update θDS by optimizing
Eq. (6).

D. Object-level adaptation

In Section III-A, the object detection task is introduced in
the segmentation network. Naturally, we also think modeling
an object-level domain classifier (ODC) is important to extract
domain-invariant features. The goal of ODC is distinguishing
the object features belong to which category and come from
which domain. As for some traditional domain classifiers, they
only need to distinguish the data source. Here, the proposed
ODC can classify the objects class, which also guides the SSD-
512 can more easily learn discriminative object features.

For getting the accurately object features from the feature
maps of input images, the ROI (region of interest) pooling
operation [39] is a good choice. Note that the location in-
formation in ROI pooling is provided by the ground truth.
In SSD-512, the filters of different layers are sensitive to the
objects with different scales. Especially, the several top layers’
spatial outputs are very small (16×16, 8×8, 4×4 and 2×2) so
that ROI pooling cannot accurately extract the object features.
Thus, we select the feature map with H ×W of 32 × 32 to
extract the object features.

After the ROI pooling, object features with the same size
are fed to ODC, which is a simple classification network. In
order to classify the category and domain simultaneously, the
last feature vector is mapped into a 2×N -D confidence vector
by the linear operation. N is the number of object classes. The
items of 1 ∼ N and (N + 1) ∼ N ∗ 2 in the confidence vector
represent the scores of N classes in source domain and target
domain, respectively. The bottom-left sub figure in Figure 2
describes the network design of ODC.

In ODC, each label is a one-hot vector. For the clearer
expression of each label, it is necessary to formulate the
one-hot vector. As for the N -D one-hot vector YN (c) =
[y1, y2, ..., yN ], each component is defined as follows:

yi =

{
1, if i = c
0, otherwise

. (7)

Then, the labels definitions are reported in ODC as below.
To be specific, for an object with class c from the source

domain, a one-hot vector AcS = Y2N (c) is generated as the
label. Similarly, the label of target domain is AcT = Y2N (N +
c). Finally, our goal is optimizing the ODC loss as below:

LODC =CEL(p(OODCS ), AcS)

+ CEL(p(OODCT ), AcT ),
(8)

where OODCS and OODCT denote the score vector for each
object feature, p(·) is the soft-max operation for each pixel,
CEL function is the standard Cross Entropy Loss.

At the same time, the inverse of ODC loss should be com-
puted to guide SSD-512 to learn domain-invariant features.
To be specific, the inverse labels of the both are defined as
follows: AcSinv

= Y2N (N + c) and AcTinv
= Y2N (c), and the

inverse of ODC loss, LODCinv
is defined as:

LODCinv
=CEL(p(OODCS ), AcSinv

)

+ CEL(p(OODCT ), AcTinv
).

(9)

In order to avoid the oscillation, the domain confusion objec-
tive similar to Eq. (4) are used:

L̂ODCinv =
1

2
(LODC + LODCinv

). (10)

Given Eq. (8) and Eq. (10), similar to Section III-C, by
iteratively optimizing ODC and DS, the final DS is obtained.

Overall, for the full models (including DS, PDC and ODC)
training, the objectives are written as follows:

min
θPDC

LPDC , (11)

min
θODC

LODC , (12)

min
θDS

LDS + L̂PDCinv
+ L̂ODCinv

, (13)

where θPDC , θODC and θDS denote the network parameters
of PDC, ODC and DS, respectively. During the training
stage, the parameters of the three models are updated in
turns by minimizing Eq. (11), Eq. (12) and Eq. (13). To be
specific, a) fix θDS , simultaneously update θPDC and θODC
by optimizing Eq. (11) and (12); b) fix θPDC and θODC ,
simultaneously update θDS by optimizing Eq. (13).

E. Network Architecture

In this section, the connections of the three models (DS,
PDC and ODC) and data flow are described in Full Model.
In DS, SSD-512 is attach to the 12-th convolutional layer
(namely “conv4 4∗” layer) of VGG-19. It receives the 512-
channel feature map with the 1/16 size of the original input.
FCN-8s integrates the outputs of conv3 4∗, conv4 4∗ and
conv5 4∗ layers to predict the final segmentation map. In
order to obtain a better performance for segmentation, some
feature maps from two streams in DS are concatenated at the
channel axis, which have the same height and width size. To
be specific, the conv5 4∗’s output and conv6 2†’s output are
concatenated together. Note that “*” represents the layer name
is from VGG-19 Network 1, and “†” denotes the layer name

1https://gist.github.com/ksimonyan/3785162f95cd2d5fee77
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comes from SSD Network 2.
As for two discriminators, PDC’s input is from the feature

map of conv5 4∗ layer, and ODC receives the pooled features
by ROI pooling operation.

IV. EXPERIMENTS

In this section, we respectively report the experimental
details and the results of our proposed models, and compare
with some existing methods for the same problem.

A. Datasets

In order to evaluate our methods, the two popular synthetic
datasets are selected: GTA5 [11] and SYNTHIA [12] as the
source domain and choose the Cityscapes [8] as the target
domain.

GTA5 is collected from Grand Theft Auto V, which is
a realistic open-world computer game developed by Rock-
star Games. It contains 24,996 scenes with image size of
1914×1052 (other abnormal resolution is 1914×1046) pixels.
All scenes are generated from a fictional city of Los Santos
in the game, which are based on Los Angeles in Southern
California. The annotation classes are compatible with two
main datasets: Cityscapes and CamVid [7]. In the experiments,
the target domain is Cityscapes, so we choose the 19-class
ground truth.

SYNTHIA is SYNTHetic collection of Imagery and An-
notations, a large-scale collection of photo-realistic frames
rendered from some virtual cities, which contains 2 image
datasets and 7 video sequences, with a resolution 1280× 760.
In this paper, we use a subnet of SYNTHIA, called SYNTHIA-
RAND-CITYSCAPES as the source domain, of which label
space is compatible with the Cityscapes. To be specific, the
subnet contains 9,400 images with 13-class categories.

Cityscapes is a real-world urban scenes dataset, which are
collected from 50 European cities. In the dataset, about 5,000
images, with high resolution 2018×1024, are fine annotated at
pixel level, which are divided into three subnets with numbers
2,975, 500 and 1,525 for training, validation and testing. It
defines 19 common object categories in urban scenes for
semantic segmentation. In this paper, all models are tested
on the Cityscapes val dataset.

Bounding-box labels The above three datasets do not
provide the object-level annotations. Thus, we need to generate
them for DS and ODC. To be specific, the bounding boxes
of background objects (sky, building, road, etc.) are collected
by transforming from the pixel-wise ground truth. As for the
foreground objects (such as pedestrian, bike, car, and so on),
only from the per-pixel labels, the bounding boxes of some
occluded objects cannot be accurately generated. Therefore,
a powerful detection model is adopted, DSOD-300 [40] to
detect the foreground objects, which is trained on PASCAL
VOC 2007 detection dataset.

2https://github.com/weiliu89/caffe/blob/ssd/examples/ssd/ssd pascal.py

B. Evaluation and experimental setup

1) Evaluation: In the semantic segmentation field, a main
metric is Intersection-over-Union (IoU), which is firstly pro-
posed in PASCAL VOC [41]. Concretely,

IoU =
TP

TP + FP + FN
,. (14)

where TP, FP and FN are the numbers of true positive, false
positive, and false negative pixels, respectively.

2) Experimental setup: Implementation Details: In DS
model, the VGG-19 net [2] is adopted as the basic neural
network. Base on it, the segmentation model is built like the
FCN-8s [6], and the detection model is similar to SSD-512
[5]. The DS network input is the RGB image with size of
512 × 512 px. During the training stage, the learning rate of
basic network is set as 10−4, and those of the segmentation and
detection streams are set as 10−2. PDC and ODC’s learning
rates are initialized at 10−4. DS, PDC and ODC are optimized
by SGD, Adam and Adam, respectively.
Our stepwise experiments.
• DS: DS is directly trained without domain adaptation

from the source domain to the target domain.
• DS + PDC: Based on DS model, PDC is added to the

training process by the adversarial learning.
• Full (DS + PDC + ODC): In addition to PDC, ODC

is also added to the training process by the adversarial
learning.

• Full†: Furthermore, the resnet-152 [3] is used to initial-
ize the Base Net to verify the proposed method. Other
settings are the same as Full.

Other comparison experiments.
• FCNs in the wild (FCN Wld) [13]: This work is the

first to tackle the same problem as ours. The authors of
FCN Wld propose an unsupervised adversarial domain
adaptation. Note that the pre-trained model is the dilated
VGG-16 [23].

• CDA [14]: This work is the other existing one to the
best of our knowledge. The authors of CDA propose
a curriculum-style domain adaptation approach to this
problem. For a higher performance, the authors exploit
the additional data to train an SVM for superpixel classi-
fication. Note that the pre-trained model is the VGG-19,
which is the same as ours.

In the experiments, their no adaptation and final results are
listed for comparison with our stepwise experiments.

C. GTA5 → Cityscapes

Table I lists the qualitative results of some methods for the
shift from GTA5 to Cityscapes, including FCN Wld [13], CDA
[14] and our stepwise experiments: DS, DS+PDC, Full and
Full†. The bold fonts represent the best of the corresponding
column.

From the final results, we can see Full† model achieves
the best result: mean IoU of 37.4%. Based on the pre-trained
models with the similar learning ability, the mean IoU of Full
model (33.1%) also outperforms that of FCN Wld (27.1%) and
CDA (28.9%). As for the results of the three methods with no
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TABLE I: Domain adaptation from GTA5 to the Cityscapes val dataset: the comparison results of the mainstream methods
and ours.
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NoAdapt [13] 31.9 18.9 47.7 7.4 3.1 16.0 10.4 1.0 76.5 13.0 58.9 36.0 1.0 67.1 9.5 3.7 0.0 0.0 0.0 21.1

FCN Wld [13] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

NoAdapt [14] 18.1 6.8 64.1 7.3 8.7 21.0 14.9 16.8 45.9 2.4 64.4 41.6 17.5 55.3 8.4 5.0 6.9 4.3 13.8 22.3

CDA [14] 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 28.9

Our methods:

DS (NoAdapt) 65.4 32.4 68.1 14.5 24.8 10.5 4.1 2.0 81.4 34.6 76.5 31.1 0.8 51.6 16.3 8.7 0.0 2.6 0.0 27.7

DS+PDC 71.4 32.6 76.4 28.0 24.9 10.5 4.4 3.8 80.6 29.2 77.4 33.7 1.8 53.6 19.6 18.5 0.0 3.5 0.0 30.0

Full 85.3 43.6 78.5 28.3 25.2 10.5 10.5 6.7 81.4 33.6 74.3 36.7 3.0 73.0 20.2 13.4 0.0 4.7 0.0 33.1

Full† 89.4 46.4 78.7 34.0 26.9 15.6 11.8 8.5 81.8 40.5 78.6 36.4 7.3 77.9 31.9 33.9 0.0 8.4 2.4 37.4

Input image Ground Truth DS DS + PDC
Full 

(DS+PDC+ODC)
Full 

Fig. 3: Exemplar results of the Cityscapes val dataset. (Source domain: GTA5)

adaptation, DS improves the mean IoU (from 21.1/22.3% to
27.7%, increasing by 31.3/24.2%, respectively) significantly.
Concretely, the performances for almost all of the categories
increase remarkably, which shows the effectiveness of exploit-
ing the bounding-box labels for semantic segmentation. At the
same time, it also confirms our observation that object-level
features are more robust than local pixel-level features in the
cross-domain problem. According to the results of DS+PDC
and Full, ODC plays a more important role in learning domain-
invariant features than PDC (improvement of 3.1% versus
2.3%).

In order to analyze the semantic segmentation performance
further and intuitively, Figure 3 shows the visualization results

of our step-by-step methods. The images in the first column are
selected from the Cityscapes val dataset. The second column
shows the ground truth, and the remaining columns illustrate
the predicted labels of DS, DS+ODC, Full and Full† in turns.
On the whole, After considering PDC, some segmentation
mistakes are removed effectively. From the image in the
2-nd row, introducing the object-level adversarial learning,
objects (such as the pedestrian) can be elaborately segmented.
Based on the ResNet-152, a better segmentation result can be
obtained, which shows the powerful feature learning ability of
the residual network.
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TABLE II: Domain adaptation from SYNTHIA to the Cityscapes val dataset: the comparison results of the mainstream methods
and ours.
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NoAdapt [13] 6.4 17.7 29.7 1.2 0.0 15.1 0.0 7.2 30.3 66.8 51.1 1.5 47.3 3.9 0.1 0.0 17.4

FCN Wld [13] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.2

NoAdapt [14] 5.6 11.2 59.6 0.8 0.5 21.5 8.0 5.3 72.4 75.6 35.1 9.0 0.0 0.0 0.5 18.0 22.0

CDA [14] 65.2 26.1 74.9 0.1 0.5 10.7 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0

Our methods:

DS (NoAdapt) 52.8 24.2 66.9 6.2 0.0 7.5 0.0 0.0 79.5 75.8 37.8 4.7 64.2 19.2 0.6 16.3 28.5

DS+PDC 71.7 34.6 74.6 11.0 0.2 11.6 0.0 2.9 79.9 78.6 39.7 8.6 55.3 20.5 0.9 13.7 31.4

Full 87.4 43.4 78.0 16.8 1.8 11.7 0.0 2.9 80.1 80.5 38.1 8.1 0.0 26.2 1.4 19.7 35.7

Full† 90.2 50.2 76.6 15.9 0.1 8.6 0.0 1.2 76.8 82.6 36.9 7.1 76.7 30.2 0.0 8.3 35.2

Input image Ground Truth DS DS + PDC
Full 

(DS+PDC+ODC)
Full 

Fig. 4: Exemplar results of the Cityscapes val dataset. (Source domain: SYNTHIA)

D. SYNTHIA → Cityscapes

The results of FCN Wld [13], CDA [14] and our stepwise
experiments (DS, DS+PDC, Full and Full†) are listed in Table
II, which are adapted from SYNTHIA to the Cityscapes. The
bold fonts represent the best of the corresponding column.
For a fair comparison with CDA [14], it is noted that the IoU
performances of the three items (terrain, truck and train) are
removed. This is because the three kinds of objects are not
annotated in the source domain: SYNTHIA.

Similar to Section IV-C, the proposed method obtains the
best performance (35.7%). Compared with the previous best
method CDA (29.0%), the result of Full contributes 6.7% raw
and 23.1% relative mean IoU improvement. For the three

no adaptation methods, our method prompt many objects’
results greatly. In particularly, sky’s segmentation IoU achieves
the improvement from ∼ 6% to ∼ 53%. According to the
mean IoU of DS+PDC and Full, ODC’s contribution (4.3%)
is greater than PDC’s (2.9%). Compared with Full, we find
that the result of Full† has the slight reduction (from 35.7%
to 35.2%) . The main reason may be the domain gap between
SYNTHIA and Cityscapes is larger than that between GTA5
and Cityscapes. Although Full† is initialized at ResNet-152,
some domain gaps cannot be reduced effectively.

For reporting the advantages of our algorithms, Figure 4
shows three typical exemplar labeling results. From the visu-
alization results of Column 5 and 6, there is little difference
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Input Image and 
Bounding-box Labels

  

Pixel-wise Coarse Map

19/16 channels

Coarse Map of Car Channel

Fig. 5: The demonstration of the coarse map.

between Full and Full†. Some objects’ performances of Full†
are worse than that of Full, such as the bus in Row 1 and
the bicycle in Row 3. The other columns show the similar
phenomenon to Figure 3.

E. Ablation Study for Bounding-box Labels

In this paper, the proposed approach exploits the bounding-
box labels to train an object detector. Another treatment is:
bounding-box labels can be mapped into a coarse segmentation
mask, which will also promote to train a coarse semantic seg-
mentor. For a further comparison between the object detector
and the coarse segmentor, three groups of experiments with
single FCN model (FCN-8s) are conducted:
• 1) training with only bounding-box labels on Cityscapes

training set;
• 2) training with only per-pixel labels on GTA5 and

bounding-box labels on Cityscapes;
• 3) training with only per-pixel labels on SYNTHIA and

bounding-box labels on Cityscapes.
The evaluation of the above experiments is on the val set

of Cityscapes. In the three experiments, it is noted that the
bounding-box labels represent the coarse maps generated by
the bounding-box labels. Specifically, the generation process
of coarse maps is explained as below: it is a 19- or 16-
channel tensor corresponding to the number of categories in
two adaptation experiments (namely GTA5 → Cityscapes and
SYNTHIA → Cityscapes). Each channel with size of input
image is a mask for the corresponding category. Figure 5
illustrates the generation process.

For the first experiment, semantic segmentation is a single-
label task (each pixel only has a single label), which outputs
the exclusive result. However, because of the overlapped
bounding-box labels, the generated rough labels are over-
lapped. Thus, the above experiments are treated as a multi-
label task (each pixel has multiple labels) during the training
phase. For comparison with proposed method, the best score
from the multi-label outputs are selected as single-label pre-
diction. As for the last two experiments, the FCN has two
prediction operations, namely single label on source domain
and multi labels on target domain.

Table III reports the results of the above three groups
experiments and the proposed DS model. The DS and Full
are our proposed method, which are explained in Section
IV-B2. “City” is shortened form of Cityscapes dataset. From
the results of single FCN #1-x, given the bounding-box labels,
the FCN model can learn coarse features to classify each.
However, the performance is poor because of some noises in

the labels. In the second group of experiment, the DS and Full
model respectively outperform the single FCN #2-1 and #2-2.
Compared with the single FCN, DS exploits the bounding-box
labels to train a detector on the two domains. Thus, DS can
extract the structured inter- and inter-object features, which
are more domain-invariant than local features via the single
FCN. Besides, in the adaptation experiments, Full model is
trained by the hierarchical (pixel- and object- level) adversarial
leaning, which is more robust than only pixel-level adversarial
learning in the single FCN. The same phenomenon is shown
as in the third experiments.

In summary, the proposed method that trains a detector is
more effective than the single FCN in the domain adaption.

F. DS vs. Mask RCNN

From the aspect of the two paper’s purpose, Mask RCNN
[26] is a supervised method for instance segmentation, which
does not segment the background objects. For the aspect of
architecture, Mask RCNN must detect the objects first and
then segment them. Our model consists of two streams, which
is an asymmetric multi-task learning on the two domains. In
other word, the detection result of Mask RCNN is essential
while ours is auxiliary in the test stage.

Even if there are differences, Mask RCNN and DS are
both multi-task learning framework for object detection and
segmentation. Thus, we conduct two groups of no adaptation
experiments using the two algorithms. To be specific, train
DS and Mask RCNN on synthetic dataset and test them on
the real data. In the Mask RCNN experiments, we implement
the code from maskrcnn-benchmark [42]. Table IV reports
the results of two groups of experiments. From it, Mask
RCNN outperforms the proposed DS. We think the main
reason is that they have different architectures. As for the two
multi-task schemes, Mask RCNN is a sequential architecture,
of which segmentation module directly exploits the features
from detection. DS is an asymmetric multi-task architecture,
of which detection and segmentation modules only share
the base features from the backbone. In general, the Mask
RCNN’s sequential architecture is better than the asymmetric
architecture. However, during the test phase, the latter does
not need the detection but the former must firstly detect the
bounding box. In terms of runtime, DS is faster than Mask
RCNN.

TABLE IV: The comparison results of DS and Mask RCNN.

Methods Domain mean IoUsource target
DS GTA5 City 27.7

Mask RCNN [26] GTA5 City 29.3
DS SYN City 28.5

Mask RCNN [26] SYN City 30.1

G. 2 × N-class ODC vs. 2-class ODC

Traditional domain discriminator only classifies the fea-
tures’ sources, which is a binary classification. In our ODC,
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TABLE III: The comparison results of three groups of ablation experiments and our proposed DS/Full model.

Methods Domain Adaptation Labels mean IoUsource target bbx per-pixel
single FCN #1-1 City 7 City 7 23.0
single FCN #2-1 GTA5 City 7 src & tgt src 22.3
single FCN #2-2 GTA5 City X src & tgt src 28.9

DS #2 GTA5 City 7 src & tgt src 27.7
Full #2 GTA5 City X src & tgt src 33.1

single FCN #3-1 SYN City 7 src & tgt src 19.4
single FCN #3-2 SYN City X src & tgt src 24.2

DS #3 SYN City 7 src & tgt src 28.5
Full #3 SYN City X src & tgt src 35.7

we attempt to make it learn the object label and source
label of each feature simultaneously. The proposed 2×N-class
ODC contains more neural units in fully-connected layer than
traditional 2-class ODC. Note that N denotes the number of
categories in the dataset. By the supervised training, some
specific units of the 2×N-class ODC strongly respond to
the specific object category. Thus, the adversarial loss of the
specific category cannot suffer from the effects of the other
categories. For the 2-class ODC, due to lack of the supervision
at the object level, it cannot learn the above ability of the 2×N-
class ODC. In summary, the 2×N-class ODC provides more
accurate loss than the 2-class ODC. Table V reports the results
of the full models with the 2×N-class ODC and the 2-class
ODC. From it, we find the mIoU of the former is better than
that of the latter.

TABLE V: The comparison results of the Full models with
the 2-class ODC and the 2×N-class ODC.

Methods Domain mean IoUsource target
2-class ODC GTA5 City 31.5

2×N-class ODC GTA5 City 33.1
2-class ODC SYN City 34.8

2×N-class ODC SYN City 35.7

V. CONCLUSION

In this paper, we propose a weakly supervised adversarial
domain adaptation to improve the segmentation performance
from synthetic data to real-world data. To be specific, a
weakly supervised model for object detection and semantic
segmentation is built, name as DS model, which extract more
robust domain-invariant features than the traditional FCN-
based methods. In addition, the pixel-/object- level domain
classifiers are designed to guide the DS model to learn domain-
invariant features by the adversarial learning, which can reduce
the domain gap effectively. Our method outperforms all the
existing method that do domain adaptation from synthetic
scenes to real-world urban scenes for semantic segmentation.
In the future work, we will further explore the object relations
in the scenes, which is a key domain-invariant feature in the
cross-domain semantic segmentation.
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