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Abstract—Although traffic sign detection has been studied for
years and great progress has been made with the rise of deep
learning technique, there are still many problems remaining to
be addressed. For complicated real-world traffic scenes, there
are two main challenges. Firstly, traffic signs are usually small-
size objects, which makes it more difficult to detect than large
ones; Secondly, it is hard to distinguish false targets which
resemble real traffic signs in complex street scenes without
context information. To handle these problems, we propose a
novel end-to-end deep learning method for traffic sign detection
in complex environments. Our contributions are as follows: 1) We
propose a multi-resolution feature fusion network architecture
which exploits densely connected deconvolution layers with skip
connections, and can learn more effective features for small-
size object; 2) We frame the traffic sign detection as a spatial
sequence classification and regression task, and propose a vertical
spatial sequence attention (VSSA) module to gain more context
information for better detection performance. To comprehensive-
ly evaluate the proposed method, we do experiments on several
traffic sign datasets as well as the general object detection dataset
and the results have shown the effectiveness of our proposed
method.

Index Terms—Trafic sign detection, Context modeling, Small
object, Sequence attention model

I. INTRODUCTION

Road signs play a vital role in maintaining traffic safety
and conveying road information to drivers or pedestrians,
so the signs are designed with regular shapes and striking
colors. Detecting and recognizing them automatically is an
important sub-module of driver assistant systems and au-
tonomous vehicles. Considering its industrial potential, traffic
sign recognition (TSR) systems have been heavily studied in
recent years. Many methods obtain good performance on some
traffic sign detection datasets, especially the deep learning
based approaches.

For traffic sign detection and recognition in complicated
driving scenes, methods which using hand-craft features such
as HOG [, SIFT or color and shape prior are not robust
enough for distinguishing real signs from fake ones. From our
observation, the main reason is that many objects in complicat-
ed driving scenes have similar appearance with traffic signs,
and the low level image features are not able to represent
the subtle differences. Therefore, these methods are with high
false alarm rate, and are not robust enough for real-world
applications.
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Fig. 1. [Illustration of the different detection task, including traffic sign
detection, person detection and vehicle detection.

Fig. 2.
signs.

Illustration of the non-traffic signs, which is similar to real traffic

Fortunately, deep convolutional neural network has brought
a vast improvement in image classification performance com-
paring to conventional methods. By using deep learning mod-
els, more powerful representation features can be learned
automatically. Moreover, object detection task can also benefit
from deep learning methods. Great progress has been made
in object detection owing to the resurgence of deep convo-
lutional neural networks. By stacking multiple convolution
layers, features learned by these deep models are with higher
semantic-level. More powerful features result in lower false
alarm rate and higher detection performance. Among these
deep learning based object detection methods, region proposal
based methods like R-CNN [2]], Fast-RCNN [3]], Faster R-
CNN [4] and other modifications have achieved state-of-the-
art results on many object detection benchmarks, such as
PASCAL VOC [5], KITTI[6], MS COCO[7]] and so forth.

These deep learning detection methods can be directly
applied to detect road signs, as traffic sign detection is a
kind of rigid object detection task. However, traffic signs
are different from other objects like vehicles, pedestrians
in driving scenes. Directly applying general object detection
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methods cam hardly get satisfactory performance. One reason
is that traffic signs have smaller size than many other objects,
and usually occupy less than 1% of each image as shown in
Fig[l] Moreover, traffic signs are designed to inform drivers
to drive in compliance with the traffic rules. Thus for real
world applications, traffic signs should be detected as soon as
possible to gain more reaction time for drivers. The signs that
need to be detected by driver assistant systems are small in
size. When the size is small, the appearance information can be
used decreases, and it makes the detection more challenging.
Another reason is that traffic scene is getting more and
more complicated in downtown area. There may exist many
billboards or other signs unrelated to traffic, which makes
the detection task more challenging. As presented in Fig. [2}
the signs not related to traffic may lead to false detections,
if no spatial context information is used. Hence, traffic sign
detection is a difficult task for real world applications.

As depicted above, the complex traffic scene further makes
the detection task difficult in comparison with general object
detection. However, humans can exploit context information to
recognize small objects in complicated traffic scenes. Taking
as example the traffic signs, human can determine whether
a target is a sign by the surroundings, especially the vertical
direction of the view, such as the pole supporting the sign.
Considering that traffic signs locate in specific environments,
and some objects co-exist with them, we employ RNN (Recur-
rent Neural Networks) to explicitly learn the pattern of region
sequences rather than merely the local region of interest.
By encoding the surrounding visual features into the final
feature maps, more discriminative features can be learned to
distinguish a true traffic sign from advertising signs. However,
directly modeling the region sequences of the image may intro-
duce some irrelevant background, which have no contribution
to the traffic sign detection. To address this problem, we design
a vertical spatial sequence model with attention mechanism to
encode the contextual feature disregarding the noise.

The contributions of this work can be summarized as
follows:

(1) We introduce an effective single-shot detector with
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multi-resolution fused features. To alleviate the small
size problem, we employ densely connected deconvo-
Iution layers with skip connections to obtain multi-
resolution feature maps. We show that well-designed
network architecture with dedicated process for small
size object can improve the detection performance.

(2) We view the traffic sign detection as a region sequence
classification and regression task. As aforementioned,
traffic signs are small objects occurring in specific
patterns. By explicitly modeling the local sequence of
regions with attention mechanism, we can gain more
context information for better detection accuracy.

(3) Considerable experiments has been done to evaluate
the performance of the proposed method, including
evaluation on two traffic sign detection datasets and one
general object detection dataset.

The rest of the paper is organized as follows. Related works
about traffic sign detection is shown in Section II. The detail
of our method is presented in Section III. The experiments
section demonstrated the performance of the proposed method.
Finally the conclusion of this paper is given in Section V.

II. RELATED WORK

Computer vision methods devised for traffic sign detection
can be divided into three categories: color- and shape-based,
traditional machine learning based and deep learning based.
To make a comprehensive review of the related work, these
three kinds of methods will be introduced respectively.

Shape and color based methods. As traffic signs are
designed with regular shapes and special colors, many methods
try to exploit these strong priors. Such as [8] exploits the
CIECAM color appearance model and propose to calculate
different color attributes including lightness, chroma and hue
angle for traffic sign segmentation. The color probability
model (CPM) proposed by [9]] estimates the color distri-
bution of traffic signs from the training samples, and the
Ohta space [10] is used rather than RGB space. Besides
the color-based methods, shape-based detection algorithms
are also heavily investigated. Constrained Hough transform
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is applied in [11]] to detect triangular, rectangular, and arrow
signs. Other method like Radial symmetry voting [12] makes
use of the characteristic of traffic sign appearance. While
in complicated scenes, color-based and shape-based methods
are sensitive to illumination changing, shadows and different
weather conditions. Thus color and shape based methods are
usually used as the preprocessing or postprocessiong stage of
the detection or recognition system.

Machine learning based methods. In recent years, ma-
chine learning methods achieves satisfactory results in many
computer vision tasks [13]] [14] [15] including object detection.
Traffic sign is a kind of rigid object. Many machine learning
based general object detection methods can be applied to
detect signs. Viola and Jones [[16] propose a real-time cascade
of boosted Harr-like classifiers detector for face detection, but
it is also suitable for traffic sign. Thus many modifications of
Viola Jones detector [17]] 18] have improved the performance
of traffic sign detection. Another milestone is Aggregated
Channel Feature (ACF) detector [[19]. ACF detector is compact
and effective for rigid object detection in simple scenes. How-
ever its limitation is that the shallow feature is not powerful
enough in complicated traffic scenes. For pedestrian detection
with occlusion under complex scene, a boosted multi-task
detector is proposed in [20] to handle the occlusion problem
effectively.

Deep learning based methods. Features extracted by deep
learning methods are more semantic. Deep neural networks
based detection framework can be divided into two categories:
region proposal based methods and single stage based meth-
ods. R-CNN |[2] first demonstrates the effectiveness of two
stage detection frameworks, which uses region proposals and
classification subsequently. Other modifications such as Fast
R-CNN [3], Faster R-CNN [4]], R-FCN [21] and Mask R-
CNN [22] have achieved satisfactory performance on public
object detection benchmarks. Another kind of deep detection
framework is single stage based. Overfeat [23] first combines
object classification neural networks with detection task by
sliding windows on the last of shared feature maps. DenseBox
[24] employs deconvolution layers to enlarge the feature maps
so as to preserve more detail information of images. YOLO
[25] and SSD [26] are real-time single stage detectors. SSD
exploits multi-layer features for detection to improve perfor-
mance. However, directly using these methods obtains relative
poor performance for locating traffic signs in complicated
driving scenes. As single-shot detectors are more promising
to be real-time, many single shot framework based methods
[27] [28] [29] are proposed for specific object detection such
as scene text detection, which is similar to traffic sign detection
in consideration of the complex background.

Small-size object detection methods. To detect objects
with small size, many different methods have been proposed.
Perceptual Generative Adversarial Networks (GAN) [30] is
used to learn super-resolved features in R-CNN for small
object detection. MS-CNN [31]] exploits multiple layer features
with different resolutions for multi-scale object detection. For
tiny face detection, [32] explores three aspects which affect
small face detection performance: image resolution, contextual
reasoning and scale invariance. In DSSD [33]], deconvolution
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Fig. 4. The Multi-Resolution feature learning module.

layers are used to enlarge the feature map resolution for small
object detection. The results show that using features with
higher resolution can improve small object detection perfor-
mance. Feature-Fused SSD [34] explores how to combine
features of different layers to boost the detection performance
for small objects.

Spatial context based methods. However, these methods
mainly focus on powerful features, the rich context informa-
tion is relatively neglected. [35] propose spatial RNN to en-
code different direction context information, which improves
performance on small-size object. Another method [36] uses
spatial memory iterations to encoder object-to-object context.

III. OUR METHOD

The whole network is illustrated in Fig. |3} We adopt Mo-
bileNet [37] as the backbone for its high time-efficiency. The
main process of the system consists of two components. One
is the multi-resolution feature learning module, which is used
to combine different semantic level features with extra densely
connected deconvolution layers. Another module is the vertical
spatial sequence attention (VSSA) module, which explicitly
encodes the vertical spatial context for more accurate traffic
sign classification. During the training stage, an input image
is transformed to multi-scales to learn the scale-invariance
deep features. Then the multi-resolution feature maps are built
through the proposed multi-resolution feature (MRFeature)
network. Next, the spatial sequence is encoded along each col-
umn of the multi-resolution feature maps by a LSTM network.
At last, an attention LSTM decoder layer is exploited to output
the classification and detection results simultaneously. The
proposed framework is single stage without region proposal
process, which makes it fast and can be trained in an end-to-
end manner.

A. Multi-Resolution Conv-Deconv Network

For object detection, higher resolution features are impor-
tant for providing more accurate location information. Shal-
lower layers of the deep neural network can preserve more
object location details. Thus deep detection methods such as
SSD[26] and Multi-Scale CNNJ[31] attempt to use the deep
features of different layers with multiple resolutions. Another
important factor for improving object detection performance
is exploiting features with higher semantic level. Inspired by
this, we proposed multi-resolution conv-deconv network which
takes advantage of densely connected deconvolution layer to
magnify the feature maps and obtain higher semantic features
simultaneously.
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TABLE I
VSSA NETWORK BACKBONE ARCHITECTURE

Layer Type Channels | Kernel Size | Stride

Convl Convolution 32 3x3 2
DepthConv1 Depth Separable Convolution x 1 64 3x3 1
DepthConv2 Depth Separable Convolution x 1 128 3x3 2
DepthConv3 Depth Separable Convolution x 1 128 3x3 1
DepthConv4 Depth Separable Convolution x 1 256 3x3 2
DepthConv5 Depth Separable Convolution x 1 256 3x3 1
DepthConv6 Depth Separable Convolution x 1 512 3x3 2
DepthConv7 Depth Separable Convolution x 5 512 3x3 1
DepthConv12 Depth Separable Convolution x 1 1024 3x3 1
DepthConv13 Depth Separable Convolution x 1 1024 3x3 2

DCD1 Densely Connected Deconvolution x 1 512 3x3 2

DCD2 Densely Connected Deconvolution x 1 512 3x3 2

DCD3 Densely Connected Deconvolution x 1 512 3x3 2

There are two advantages of the conv-deconv feature learn-
ing module for detecting traffic signs. One is that deeper con-
volution networks can extract higher-level semantic features.
As de-convolutional layers are usually implemented with the
transposed convolution operation, they are essentially the same
with convolution layer. These extra learnable layers make the
original CNNs deeper by adding several de-convolution layers
on top of the original network. Thus the conv-deconv module
can learn higher semantic-level representation. Another advan-
tage is that multi-level feature maps with higher resolution
are obtained with this module. The proposed conv-deconv
architecture fuses low-level and high-level features gradually
to enhance the final feature maps with more details, and the
higher resolution features can do tremendous help to detecting
small objects.

MobileNet [37] proposed depth-wise separable convolution,
which factorize the standard convolution into two separable
operations. The first one is the depth-wise convolution, which
applies a single convolution filter to each input feature map.
Then the pointwise convolution combines the depthwise con-
volution feature maps by using a 1 x 1 convolution. We add
three extra convolution layers to the Mobilenet backbone. The
detailed network architecture is shown in Table. [l

As MobileNet consists of 14 layers in total. We use DS,
to present the ¢, depth-separation convolution layer. Then
the multi-resolution conv-deconv module can be formulated
as follows. The MobileNet outputs DSy and DSg are used
as high resolution features to recover the object details in
deeper deconvolution layers. Although feature maps with
higher-resolution is helpful for detecting small objects, too
large feature maps will bring undesirable computational cost.
Thus we need to select appropriate layers to balance the
computational complexity and the resolution. Considering this,
layer D.S, and D.Sg are employed to build the multi-resolution
conv-deconv module.

Additionally, concatenating these two layers to the deeper
layers can help to alleviate the vanishing-gradient problem. As
illustrated in Fig. 4l DC' Dy and DC D, represent the densely
connected deconvolution layers. DC D1 layer is computed by

DCD; = [DSg; deconv(DS13)]. (1)

DCDy is computed based on DCD;. To concatenate
layers with lower resolution, we adopt deconvolution operation

before the concatenation. This can be formulated as follows:
DCDy = [DSy; deconv(DCDy); deconv(DS13)],  (2)

where [-] denotes the concatenation operation.

Finally DSy35, DCD; and DCDy are taken as the final
multi-resolution feature maps for the subsequent sequence
modeling. It is worth noting that Le normalization is used
after the concatenation operation of DCD; and DCD,. We
modified the final layer of MobileNet from stride 1 to stride
2, so the resolutions of these three feature maps are 5 X 5,
10 x 10 and 19 x 19 respectively.

Moreover, scale-invariant representation is significant for
computer vision tasks. To detect small objects together with
the large ones, in our work we pre-process the input training
images to be multi-scale as the supervision to train our
network. By sharing parameters with different scale inputs,
we make the designed multi-resolution network to learn scale-
invariance automatically.

B. Vertical Spatial Sequence Attention Model

In addition to the multi-resolution features, context informa-
tion is also vital for finding small instances, and many previous
methods have shown the effectiveness. Unlike existing ones,
we treat the traffic sign detection as spatial sequence classi-
fication and regression task. The VSSA module is illustrated
in Fig. [5| Supposing that an input image is fed into the multi-
resolution conv-deconv module, and three feature maps with
different resolution are obtained. Then we choose one of the
three feature maps as example to describe the VSSA module
in detail.

Attention models have been successfully applied in neu-
ral machine translation and image captioning tasks. Encoder
and decoder models are widely used to model the context
for sequence tasks. However, a key limitation of the base
encoder-decoder model is that a fixed length context vector
is insufficient to encode the sequence. In our model, attention
mechanism is used to align the input features at decoding
stage and automatically focus on useful features for context
modeling.

Based on the chosen feature maps, we divide it into "vertical
capsules” to encode the vertical spatial context. For example,
a length 3 capsule is a (3 x 1 x 1024) tensor. We encode
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Fig. 6. The capsule illustration. Capsules on 5 x 5 and 10 x 10 feature maps
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the points in one capsule (x,y — 2), (z,y — 1), (z,y) along
feature maps of all channels by using LSTM. As shown in
Fig. 5] the capsule is comprised of the yellow, green and
red feature vectors. We denote the three features from top to
bottom at {(x,y — 2), (z,y — 1), (z,y)} by {Vi—2, Vi_1, Vi }.
The LSTM network processes these features step by step, and
the context information across the sequences is captured in the
hidden state h;. This can be formulated as follows: At step t
of features from top to bottom, the hidden state is updated
with the next input of that sequence by

he = LSTM(h¢—1. Vi3 6), 3)

We denote these encoded hidden states as (hi, ho, ..., hr).
These three hidden states correspond to features from top
to bottom. Moreover, the states are encoded sequentially, so
the contextual information is also been encoded from top to
bottom.

Based on the encoded hidden states, another LSTM is used
for attention decoding. We denote the decoder hidden states by
(dhi, ..., dhr). The attention decoder generate a weight vector
over the three encoded hidden states at each decode step . By
using the attention decoder, every decoding step will exploit
features from all three encoded hidden states and generate the
next weight vector(attention vector) sequentially. The attention
vector a} at time ¢ can be computed by:

pf = thanh(Whhi + deht)v “)

al = softmax(p), 5)

Where a! is the (1 x T') weight vector generated for the t,
decoding step. v, W}, and W, are learnable parameters of the
model. Then at the decoding stage, we compute the attended
hidden state by using the attention vector a:

T

dhe =3 (alh), ©)

=1

Lastly, we concatenate dht with decoder hidden state dh;
together to predict the detection label ¢ and the bounding box
d. Tt is worth mentioning that we apply the VSSA module
on DSi3 and DCD; to reduce the computational complexity.
The vertical capsule of the two feature maps are illustrated in

Fig. [6l We use capsule size of 3 x 1 and 4 x 1 for DS;3 and
DC Dy respectively.

C. Multi-Task Training

Finally, the concatenated h; is convolved by a 1x1 convo-
lution layer and outputs the bounding box shifts together with
the classification label for every feature point. If we denote
the predicted label and bounding box as g and d, the total
loss function includes the classification log loss L.;s and the
Smooth L1 regression loss:

L= (Las(@i,yi) + aly > 0lsmoothry (d; — d;)), (7)
where « is a fixed parameter to adjust weight between the
two loss functions, and we set it to 0.1 in this work. y; is the
ground truth label and d; represents the ground truth bounding
box.

IV. EXPERIMENTS

To evaluate the proposed network, we trained and tested
it on two traffic sign detection datasets. One is the public
STS (Swedish Traffic Signs) dataset [38]]. STS dataset contains
more than 20,000 images and has 20% labeled for training.
There are 3,488 traffic signs captured from highways and
cities from more than 350km of Swedish roads in this dataset.
Another is our collected traffic sign detection dataset, which
contains 8,725 images in total. Images of this dataset are
captured in many complicated driving scenes by a camera
mounted on the vehicle. We use 5,816 images for training
and 2,909 images for evaluation. Additionally, to evaluate the
effect of the proposed Multi-Resolution and VSSA module
more comprehensively, we conduct experiments on the general
object detection dataset, i.e., the Pascal VOC 2007 and 2012
datasets. The image examples are presented in Fig. As
we can see that in the STS dataset, the traffic scenes are
less complex than OPTTSR dataset. Target Objects usually
occupy more than 50% in Pascal voc dataset. In this section,
we will describe the parameters setup and the details of the
experiments on three datasets.

A. Parameters Setup

Tensorflow object detection API [39] is used to implement
the proposed method. We used the MobileNet pretrained
model on coco dataset [7] to initialize the proposed network.
The experimental environment is equipped with Intel Core i7
7700K @ 3.50GHz CPU, 64GB RAM, and four NVIDIA
GeForce Titan X Pascal GPUs. As for the trained configu-
ration, Stochastic Gradient Descent (SGD) is used to train
the model with the following parameters: base input image
size 300x300 (for SSD300) or 500x500 (for SSD500), batch
size 24, base learning rate 0.0003, initial momentum 0.9, and
weight decay 0.0005.

As the proposed method is based on the single-stage de-
tector SSD, the final multiple feature maps with different
resolutions are used to output the detection result. In our
experiment setting, 5x5, 10x10 and 19x19 are utilized for
detection. All the detection results are processed by the NMS
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Fig. 5. The Vertical spatial sequence attention module.

Fig. 7. Three datasets used in the experiments. The first row are images in
STS dataset. The second row are images from our OPTTSR dataset, and the
third row shows images from Pascal VOC 2007 dataset.

TABLE II
PERFORMANCE COMPARISON ON STS DATASET.
Methods Precision(%)  Recall(%)
MRFeature+VSSA(Ours) 99.18 94.42
MRFeature(Ours) 98.83 93.96
FCN 98.67 93.27
Overfeat 95.05 83.74
Adaboost SVR [4T]] 94.52 80.85
R-CNN [2] 90.08 87.27
Fourier spatial model [38] 91.84 77.08

module for the final detection output. For all the SSD based
methods, we set the aspect ratios to {1,2,3, 3, }. For multi-
scale training, {0.75,1,1.25} times of the original scale are
used.

B. STS dataset

The detection results on STS dataset is shown in Table [[Il
The proposed method achieves an average precision of 99.18%
and 94.42% for average recall on all traffic sign classes, which
outperforms other methods and attains state-of-the-art result.
To compare with other traffic sign detection methods, PartO of
Setl are used as the training set and PartO of Set2 as the test
set. IoU (intersection over union) threshold is set to 0.5 for

the evaluation. Following the compared methods, only traffic
signs larger than 50 pixels are considered for training and
evaluation. SSD with input size 300 x 300 is used as the base
detection framework.

The methods listed in Table [T contain deep learning meth-
ods and also conventional methods like [38]] and [41]]. From
look on the whole, deep learning methods can obtain better
detection performance thanks to the powerful features. To
evaluate the effect of the proposed network architecture and
the sequence modeling, we trained and tested our method
with and without the sequence model separately. From the
results we can see that the Multi-Resolution is effective for
traffic signs detection even when the sequence model is not
used. Moreover, the proposed method with sequence modeling
achieves the best detection performance, which indicates the
active effect of the proposed context model. Some qualitative
detection results on STS dataset is shown in Fig[8] Although
the model is trained with signs whose size is larger than 50
pixel, our method can still detect small traffic signs thanks
to the effective Multi-Resolution features and scale-invariant
training.

C. OPTTSR dataset

We also perform evaluation on our own traffic sign dataset
named OPTTSR, and the detection examples are presented
by FiglT2] and Fig[T3] Our dataset contains 8725 fully anno-
tated images under different and challenge situations. There
are 7 class of Chinese traffic signs including construction,
indication, information and guide, supplemental, tourist, and
warning. In this experiment, SSD with input size 300 x 300
and 500 x 500 are used as the base detection framework.
The OPTTSR dataset has the same format with Pascal voc
2007 dataset, and mean average precision(mAP) is used as
the evaluation measurement.

The detail detection results on OPTTSR dataset are shown
in Table It is worth mentioning that the size of annotated
signs in OPTTSR dataset ranges from 10 pixel to 400 pixel,
and there are many challenging situations such as rainy weath-
ers, illumination variation and serious occlusion. To evaluate
the proposed method, we compared 4 existing popular detec-
tion architectures, i.e., Faster RCNN with VGG16 network,
SSD 300 with MobileNet network, SSD 500 with MobileNet
network and Deconvolutional SSD with 321 input size and
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TABLE III
PERFORMANCE COMPARISON ON OPTTSR DATASET

Method dataset mAP | construction indication information_guide  prohibitory  supplemental tourist  warning | FPS

Faster RCNN + VGG OPTTSR | 52.00 37.40 50.83 67.35 44.77 35.77 93.46 34.47 7

SSD300 + MobileNet OPTTSR | 48.54 34.13 45.69 60.53 39.44 36.47 92.11 31.38 46

SSD500 + MobileNet OPTTSR | 51.87 37.33 47.79 68.06 45.41 32.42 95.56 36.49 20
DSSD321 + Residual-101 OPTTSR | 53.79 37.68 48.00 68.31 45.83 38.85 96.11 41.717 9.8
SSD300+MRFeature+VSSA(Horizontal) | OPTTSR | 53.45 37.37 45.14 62.29 44.25 46.86 94.68 43.56 21
SSD300+MRFeature+VSSA(Vertical) OPTTSR | 55.43 40.48 44.49 63.60 44.85 52.36 95.47 46.76 21
SSD500+MRFeature+VSSA(Vertical) OPTTSR | 59.81 48.55 50.87 73.97 50.90 48.09 97.22 49.07 8.9

Fig. 8. Illustration of some qualitative detection examples tested on STS dataset.

ResNet 101 as backbone. Moreover, to analyze the effect of
different spatial direction context, we conduct experiments
to compare the models with horizontal and vertical spatial
context. The results are presented in Tab. [T} From the results
we can see that our method with vertical spatial modeling
outperforms it with horizontal direction. There are obvious
performance improvement for the construction” and “supple-
mental” signs. In Fig. [T1] there is a more clear display to
show the difference of the two models. For 6 out of 7 types
of signs, the “vertical” spatial sequence model performs better
than the horizontal one. This result supports the assumption
that vertical context is more important and effective than the
horizontal information for traffic sign detection task.

The baseline detection method merely achieve mAP
48.54%. However, with the proposed two modules, a mAP of
55.43% can be obtained, which is a significant improvement
compared to the baseline method. Moreover, we observe that
the improvement is mainly caused by the better performance
for small size traffic sign. The reason may be that in complex
traffic scenes, there are many objects which have similar
appearance with traffic signs such as billboards or other signs
unrelated to traffic. The proposed VSSA module can help
to reduce this kind of mistakes by encoding more context
information. From the results in Table. [[Ill we can see that
the best detection result is obtained by the proposed method
with explicit vertical spatial context encoding.

As real-time processing is a required ingredient for ap-

plication like traffic sign detection task, we evaluate and
compare the inference time of the proposed method as well
as other methods in Tab. [lll Although single-stage based
detection frameworks achieve slightly lower performance than
Faster RCNN, they substantially outperform the two-stage
based methods in terms of time-efficiency. As we can see,
”SSD 500 outperforms the method ”SSD 300” by using
larger input scale. However, with the multi-resolution feature
learning and context modeling, the proposed method can
improve the ”SSD 300 baseline by a significant gap of 6.89%.
The proposed vertical context modeling method with 300x300
input can operate at 21 frames per second (FPS), and it can
still obtain better performance than the "DSSD 321" method
with a running speed of 9.8 FPS. To explore the effect of
the input size, we used the 500x500 input scale for the
proposed method, and ‘SSD500+MRFeature+VSSA (Vertical)’
can further improve the performance at a cost of the running
time.

Additionally, capsule size is another critical factor which
affect the inference time of the proposed method. In terms
of performance, optimal capsule size is hard to find. But in
our experiments, we observe that capsule sizes such as 3, 4
and 5 performs well on our dataset and larger capsule size
will dramatically increase the inference time. Considering this,
capsules are only used on some of the multi-resolution feature
maps, i.e., the 10x10 and 5x5 maps in our experiments.
Another reason for choosing small capsule size on high-level
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Fig. 9. The comparison of the horizontal and vertical direction context
modeling. We use “Horizontal - Vertical” for a clearly presentation of the
difference on Pascal VOC 2007 dataset.
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Fig. 10. The comparison results of vertical and horizontal directional context
models on Pascal VOC 2007 dataset.

feature maps is that one pixel on these feature maps corre-
sponds to a large receptive field on the original image. Thus
too large capsule size is not considered in our experiments.

Qualitative detection results of OPTTSR dataset is shown
in Fig. [I2] and Fig. [I3] The first row of Fig. [[2] and Fig.
[13] are the results of SSD500 + MobileNet, i.e., the baseline
detection method, and the second row are the results of the
proposed SSD500+MRFeature+VSSA method. Our proposed
method can reduce false positive detections and get better
detection performance.

D. Pascal voc dataset

To get a more comprehensive evaluation of the proposed
method, we test it on Pascal VOC 2007, which is a 20 class
general object detection dataset. 5011 images are used for
training and 4952 images are used for evaluation. The de-
tection performance comparison is presented in Table. [TV} We
trained the SSD based detection methods for 70000 iterations.
The experiment results indicate that the full proposed method
achieves the best detection performance.
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Fig. 11. The comparison of the horizontal and vertical direction context

modeling. We use "Horizontal - Vertical” for a clearly presentation of the
difference on OPTTSR dataset.

As we can see from Table the proposed method achieves
better detection performance than the baseline methods. How-
ever, the 2.1% improvement is mainly caused by several kinds
of objects. Taking the ’chair” class for example, as the chairs
are put on the ground with a natural vertical direction, so
the vertical spatial context is more effective for this kind of
object. Some qualitative detection results are presented in Fig.
[[4] and Fig. [I3] the first row in the result of the baseline
detection method and the second row is the result of the full
proposed method. These figures indicated that the proposed
method can achieve better detection performance than other
methods especially for objects with vertical spatial property.

Additionally, we compare the proposed horizontal and ver-
tical ”SSD300+VSSA” methods with other 6 state-of-the-
art methods on Pascal VOC 2007 with Pascal VOC 2012
augmented dataset, and the results are shown in Tab.
Among these methods, DSSD is the most relevant method
to the proposed one considering that the deconvolution layer
is used to boost the features. Perceptual GAN [30] employs
generator to transfer the features of small object to super-
resolved one. It deals with the small object detection problem
by obtaining the super-resolved feature. The results reveal
that the proposed method with context modeling outperform
the baseline ”SSD300+VGG” and the DSSD321 methods.
Although DSSD 513 with ResNet 101 network outperforms
our method, it is more time-consuming with large input size
513 x 513 and ResNet 101 as backbone.

It is worth mentioning that models with the two direction
context achieve similar mAP on the general object detec-
tion dataset, which is different from the traffic sign dataset.
Most interestingly, models with different direction context can
improve the detection performance of several specific object
types. From Fig. [0] we can see that vertical direction context
modeling improves the performance of “boat” and “bottle”
more obviously. However, horizontal context modeling do
good to the “dog” and “sofa” objects. To clearly compare
different spatial-direction models, we illustrate the results of
them in Fig. [I0]
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TABLE IV
COMPARISON RESULTS ON PASCAL vOC 2007 DATASET
Method dataset | mAP | aero bike bird boat bottle  bus car cat  chair cow table dog horse mbike person plant sheep sofa train tv
Fast RCNN voc07 669 | 745 783 692 532 366 773 782 820 407 727 679 796 792 73.0 69.0 30.1 654 702 758 658
Faster RCNN voc07 699 | 700 806 70.1 573 499 782 804 8.0 522 753 672 803 798 75.0 76.3 39.1 683 673 811 67.6
SSD300+VGG voc07 680 | 734 775 641 590 389 752 808 785 460 678 692 766  82.1 77.0 72.5 412 642 69.1 780 685
SSD300+MobileNet voc07 713 | 731 813 682 620 388 846 836 839 493 709 724 806 855 80.8 717 408 718 747 863 715
SSD300+MRFeature voc07 726 | 798 802 702 635 413 836 838 863 513 747 707 813 816 80.1 79.0 432 676 730 877 725
SSD300+MRFeature+VSSA | voc07 734 | 780 823 708 628 402 852 837 857 524 740 749 829 847 81.8 79.5 457 69.7 731 870 731

TABLE V
RESULTS ON PASCAL vOC 2007 DATASET
Method dataset | mAP | aero bike bird boat bottle  bus car cat  chair cow table dog horse mbike person plant sheep sofa train tv
Faster RCNN 07++12 | 732 | 765 79.0 709 655 52.1 83.1 847 864 520 819 657 848 84.6 71.5 76.7 38.8 73.6 739 830 726
YOLOV2 544 07++12 | 734 863 820 748 592 51.8 798 765 90.6 521 782 585 89.3 825 834 81.3 49.1 712 624 838 687
SSD300+VGG 07++12 | 75.8 88.1 829 744 619 47.6 827 788 915 581 80.0 641 894 85.7 855 82.6 50.2 79.8 73.6 866 721

DSSD321+Residual-101 07++12 | 763 | 873 833 754 646 468 827 765 929 595 783 643 915 866 86.6 82.1 533 796 757 852 739
DSSD513+Residual-101 07++12 | 80.0 | 92.1 866 803 687 582 843 850 946 633 859 656 93.0 885 87.8 86.4 574 852 734 878 768
Perceptual GAN + VGG 07++12 - - - - 694  60.2 - - - 579 - - - - - - 41.8 - - - -
SSD300+VSSA(Horizontal) | 07++12 | 78.5 80 883 832 697 539 828 867 864 641 837 742 894  90.7 84.6 76.4 50.7 802 835 88 74
SSD300+VSSA(Vertical) 07++12 | 78.7 | 81.5 884 827 728 554 835 875 876 652 8.1 745 863 90.0 834 75.8 50.1 80.8 824 889 731

prohibitory: 92%

Fig. 12. Some detection examples on OPTTSR dataset. The left column shows that the proposed method is more effective for dense signs detection. The
middle one and the right one shows our method is more robust than the baseline.

Fig. 13. Some qualitative detection examples on OPTTSR dataset.
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Fig. 14. Some qualitative detection examples on Pascal VOCO7 dataset.

Fig. 15. Some qualitative detection examples on Pascal VOCO07 dataset.
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V. CONCLUSION

In this work, we treat the traffic sign detection task as
a sequence classification and regression task, and proposed
a unified end-to-end traffic sign detection framework. The
main network consists of two modules. One is the Multi-
Resolution feature learning module and another is the ver-
tical spatial sequence attention (VSSA) module. The Multi-
Resolution module is constructed by concatenating multi-layer
features to densely connected deconvolution layers. Through
the Multi-Resolution module, multiple resolution feature maps
with higher semantic level are obtained. In addition, context
information is taken into consideration by using sequence
classification and regression with attention mechanism. From
the experiments we can see that many false positive detentions
can be suppressed by this module. Finally, the proposed
network is evaluated on STS dataset, our OPTTSR dataset
and Pascal VOC 2007 dataset. The results have shown the
effectiveness of the proposed method.
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