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Abstract

Recently, crowd counting is a hot topic in crowd analysis. Many CNN-
based counting algorithms attain good performance. However, these methods
only focus on the local appearance features of crowd scenes but ignore the
large-range pixel-wise contextual and crowd attention information. To rem-
edy the above problems, in this paper, we introduce the Spatial-/Channel-
wise Attention Models into the traditional Regression CNN to estimate the
density map, which is named as “SCAR”. It consists of two modules, name-
ly Spatial-wise Attention Model (SAM) and Channel-wise Attention Model
(CAM). The former can encode the pixel-wise context of the entire image to
more accurately predict density maps at the pixel level. The latter attempts
to extract more discriminative features among different channels, which aids
model to pay attention to the head region, the core of crowd scenes. In-
tuitively, CAM alleviates the mistaken estimation for background regions.
Finally, two types of attention information and traditional CNN’s feature
maps are integrated by a concatenation operation. Furthermore, the exten-
sive experiments are conducted on four popular datasets, Shanghai Tech Part
A/B, GCC, and UCF CC 50 Dataset. The results show that the proposed
method achieves state-of-the-art results.
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1. Introduction

Crowd analysis is a popular task in computer vision [1, 2, 3, 4], which
focuses on understand the still or video crowd scenes at a high level. In the
field of crowd analysis, crowd counting [5, 6, 7, 8] is an essential branch, which
focuses on predicting the number of people or estimating the density maps
for crowd scenes. Accurate crowd counting is important to urban safety,
public design, space management and so on. In this paper, we aim to the
crowd counting for video surveillance and still crowd scenes.

With the development of deep learning on computer vision, scene under-
standing [9, 10, 11, 12, 13, 14] achieves a remarkable progress. At present,
CNN-based methods [15, 16] attain the significant performance for crowd
counting. Some algorithms [17, 18, 19] design a Fully Convolutional Net-
work (FCN) to directly generate the density map. However, the standard
FCN only focuses on local features at the spatial level, which causes that
the large-range contextual information can not be encoded effectively. To
remedy the above problem, some methods [20, 21, 6, 22] attempt to design
the specific modules. However, the spatial range is not large enough so that
the context is limited. In addition, traditional FCN can not encode the rela-
tion of different channels, and it is prone to predicting background as crowd
region.

To reduce the two problems, we propose a Spatial-/Channel-wise Atten-
tion Regression Network (SCAR) for crowd counting, which consists of Local
Feature Extraction, Attention Model and Map Regressor. The architecture
of the proposed networks is shown in Fig. 1. It is a sequential pipeline,
of which data is processed in turns. To be specific, Local Feature Extrac-
tion adopts the first 10 convolutional layers of VGG-16 Net [23], and Map
Regressor consists of two convolutional layers with 1× 1 kernel size.

Here, we describe the proposed Attention Model, which is the essential
module to remedy the aforementioned problems. It consists of two variants
of the self-attention module [24, 25], which are added to the top of the tradi-
tional FCN. To be specific, the Spatial-wise Attention Model (SAM) encodes
the spatial dependencies in the whole feature map, which guarantees the
accurate location for the people’s head. The other Channel-wise Attention
Model (CAM) can handle the relations between any two-channel maps, which
significantly prompts the regression performance and avoids the error esti-
mation for backgrounds. Next, the outputs of two models will be integrated
by a concatenation operation. Finally, the density map is produced by a
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Figure 1: The flowchart of Spatial-/Channel-wise Attention Regression Net-
works (SCAR), which consists of two streams to encode large-range contex-
tual information. It directly concatenates the two types of feature maps and
then produces the 1-channel predicted density map via convolutional layer
and up-sample operation.

convolutional layer according to the combined attention feature map.
In summary, the main contributions of this paper are:

1) Propose Spatial-wise Attention Model (SAM) to encodes the spatial
dependencies in the whole feature map, which can extract large-range
contextual information.

2) Present Channel-wise Attention Model (CAM) can handle the rela-
tions between any two-channel maps, which significantly prompts the
regression performance and avoids the error estimation for background,
especially.

3) The combined model achieves the state-of-the-art on the four main-
stream datasets.

2. Related Work

In this section, some mainstream CNN-based crowd counting methods
and important attention algorithms are briefly reviewed.

2.1. Crowd Counting

With the development of deep learning, many CNN-based counting mod-
els [17, 18, 19, 21, 26, 22, 16, 27] obtain good performance. Zhang et al. [17]
propose a multi-column FCN to encode the local features with the different
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kernel sizes. Sam et al. [18] present a switch layer that selects specific sub-
FCN to handle the image patches with different crowd density. [19] designs a
novel composition loss for FCN and obtain a good localization performance.
However, the above methods only focus on the local appearance features so
that they cannot encode the contextual information. Sindagi and Patel [21]
propose a Contextual Pyramid CNN (CP-CNN) to integrate the local and
global contextual information. Li et al. [6] embed the dilation convolution
operation into the FCN to encode the contextual features. Liu et al. [22]
propose a recurrent spatial-aware network, which can model the variations
of crowd density. Gao et al. [28] propose an efficient development framework
for crowd counting.

2.2. Attention Model

Mnih et al. [29] are the first to propose the visual attention via the recur-
rent model. After this, many researchers [30, 31] focus on encoding attention
information in visual tasks. Xu et al. [32] adopt hard/soft pooling that se-
lects/averages the most probably attentive region or the spatial features with
attentive weights. Here, we list some classical attention modules in tradition-
al CNN. Vaswani et al. [24] propose a transformer architecture to dispense
with recurrence and convolutions entirely, which can capture global depen-
dencies between input and output. Chen et al. [33] propose a sequential
pipeline to encode the spatial and channel-wise Attentions in a CNN. Non-
local Neural Networks [25] is proposed by Wang et al. in 2018, which can
compute the response at a position as a weighted sum of the feature maps
at all positions. Woo et al. [34] design a Convolutional Block Attention
Module (CBAM) to implement attention computation in the feed-forward
convolutional neural networks.

3. Methodology

3.1. Overview

In this section, we describe the flowchart of entire networks and explain
the detailed information of two attention models: SAM and CAM.

For a crowd scene, it is firstly fed into a Local Feature Extractor, which
consists of the VGG-16 backbone and dilatation module. The former is the
first 10 convolutional layers of VGG-16 Net [23]. Inspired by CSRNet, we
design a dilatation module to enlarge the respective field of the extracted
feature map, which outputs 1/8 size feature maps with 64-D channel. The
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dilatation conv’s output contains more contextual information on the spatial
dimension than that of the backbone. However, it still lacks more large-range
spatial contextual information. In addition, it does not encode the attention
features. To this end, we design two streams to respectively encode the
spatial- and channel-wise attention features. To be specific, two streams are
adopted the non-local module to compute large-range information. Finally,
SCAR directly concatenates the two types of feature maps and then produces
the 1-channel predicted density map via convolution operation. The entire
architecture is described in Fig. 1.

During the training phase, the loss function is standard Mean Squared
Error (MSE).

Table 1: The network architecture of the proposed SCAR.

SCAR

VGG-16 backbone
conv1: [k(3,3)-c64-s1-R] × 2

Max polling
conv2: [k(3,3)-c128-s1-R] × 2

Max polling
conv3: [k(3,3)-c128-s1-R] × 3

Max polling
conv4: [k(3,3)-c512-s1-R] × 3

Dilation Module
k(3,3)-c512-s1-d2-R
k(3,3)-c512-s1-d2-R
k(3,3)-c512-s1-d2-R
k(3,3)-c256-s1-d2-R
k(3,3)-c128-s1-d2-R
k(3,3)-c64-s1-d2-R

Attention Model
SAM CAM

Concat

Regression Layer
k(1,1)-c1-s1-R
Up-sample: ×8

In order to show the detailed information, we list the hyperparameter
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Figure 2: The detailed architectures of the Spatial-wise Attention Model
(SAM) in SCAR.

and configuration of SCAR in Table 1. In the table, “k(3,3)-c512-s1-d2-R”
represents the convolutional operation with kernel size of 3 × 3, 512 output
channels, stride size of 1 and dilation rate of 2. The “R” means that the
ReLU layer is added to this convolutional layer.

3.2. Spatial-wise Attention Model

Due to the perspective changes of crowd scenes, the global and local den-
sity distribution has a certain regularity. For the global images, the density
change has a consistent gradual trend. For example, in the sample image
of Fig. 1, the density is increasing from bottom right to top left. As for
the local image patches with high density, we find they have similar local
patterns and texture features.

In order to encode the above two observations, we design a Spatial-wise
Attention Model (SAM), which can model large-range contextual information
and capture the change of density distribution. The detailed architecture is
described in the orange box of Fig. 2. For a backbone’s output with the
size of C × H ×W , it is fed into three different 1 × 1 convolutional layers.
Then by the reshape or transpose operations (concrete operation setting is
shown in the orange box), three feature maps S1, S2 and S3 are attained.
For generating spatial attention map, we apply a matrix multiplication and
softmax operation for S1 and S2. After this, we get a spatial attention map
Sa with size of HW ×HW . The process can be formulated as follows:
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Sji
a =

exp(Si
1 · S

j
2)

HW∑
i=1

exp(Si
1 · S

j
2)

,
(1)

where Sji
a represents the i-th position’s influence on j-th position’s. More

similar feature maps of two positions have a stronger correlation of them.
After getting Sa, we again apply a matrix multiplication between Sa and

S3 and then reshape the output to C ×H ×W . For the final sum operation
with F , we scale the output by a learnable factor. Finally, the output of
SAM is defined as below:

Sj
final = λ

HW∑
i=1

(
Sji
a · Si

3

)
+ F j, (2)

where λ is a learnable parameter. In the practice, we exploit a convolutional
layer with kernel size 1× 1 to learn the λ.

From the entire detailed description of SAM, the final output feature map
Sfinal is weighted sum of attention map and original local features map, which
contains global contextual features and self-attention information. Thus,
SAM effectively tackles our two observations mentioned at the beginning of
this section.

3.3. Channel-wise Attention Model

In the last section, SAM attempts encode large-range dependencies on a s-
patial dimension, which is effective for the performance of density location. In
order to prompt class-specific response, we design a similar structure to SAM
to learn dependencies on channel dimension, which is called as “Channel-wise
Attention Model”. In the field of crowd counting, the class-specific response
consists of two types: foreground (head region) and background (other re-
gion). As for highly congested crowd scenes, the foreground’s textures are
very similar to that of some background region (tree, building and so on).
Embedding CAM can effectively remedy the above estimation errors.

The concrete architecture of CAM is demonstrated in the green box of
Fig. 3. Compared with SAM, CAM has two differences as below:

1) CAM has only one 1× 1 convolutional layer to tackle obtained feature
map from the backbone, but SAM has threes.
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Figure 3: The detailed architectures of the Channel-wise Attention Model
(CAM) in SCAR.

2) The sizes of intermediate feature maps are different, and the detailed
values are shown in Fig. 3.

Similarly, the main operations are the same as SAM. To be specific, Ca

with size of C × C is defined as:

Cji
a =

exp(Ci
1 · C

j
2)

C∑
i=1

exp(Ci
1 · C

j
2)

,
(3)

where Cji
a denotes the i-th channel’s influence on j-th channel’s. And Cfinal

with a size of C ×H ×W is computed as:

Cj
final = µ

C∑
i=1

(
Cji

a · Ci
3

)
+ F j, (4)

where µ is a learnable parameter. In practice, we exploit a convolutional
layer with kernel size 1× 1 to learn the µ, which is same as the λ in Sec. 3.2.
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4. Experiments

4.1. Evaluation Metrics

In this paper, we evaluate the methods from two perspectives: the count-
ing performance and the quality of density maps. To be specific, for the
former, the Mean Absolute Error (MAE) and Mean Squared Error (MSE)
are introduced into each model or algorithm, which are defined as follows:

MAE =
1

N

N∑
i=1

|yi − ŷi|, (5)

MSE =

√√√√ 1

N

N∑
i=1

|yi − ŷi|2, (6)

where N is the number of images in testing set, yi is the ground truth of
people number and ŷi is the estimated count value for the ith testing image.

For further evaluating the quality of density maps, we exploit PSNR (Peak
Signal-to-Noise Ratio) and SSIM (Structural Similarity in Image [35]), which
are the full reference metrics.

4.2. Implementation Details

In our experiments, all images are resized to 576 × 768, and the density
maps are generated under the same size. The learning rates of the entire
networks are initialized at 10−5 and reduced to 0.995 times every epoch. The
batch size is set as 4 on each GPU. The Adam algorithm is exploited to
optimize the proposed networks and obtain the best results after 400 epochs.
Take the experiment on Shanghai Tech Part B Dataset as an example, the
entire training process spends 4 hours on two paralleled GPUs. In SAM and
CAM, the channel number C is set as 64, which is the channel number of
Dilatation Module’s outputs.

All experimental training and evaluation are performed on NVIDIA GTX
1080Ti GPU using PyTorch framework [36].

4.3. Performance on Shanghai Tech Dataset

ShanghaiTech dataset [17] is a real-world crowd counting dataset, which
is collected by the researchers of ShanghaiTech University. It consists of
two parts: A and B. To be specific, Part A is collected from a photo-sharing
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website (https://www.flickr.com/), of which images have different resolution.
Part B contains 400 training and 316 testing images. of which crowd scenes
are captured from surveillance cameras, which are installed on the walking
streets in Shanghai, China.

Table 2: Estimation errors on ShanghaiTech dataset.

Method
Part A Part B

MAE MSE MAE MSE

Zhang et al. [37] 181.8 277.7 32.0 49.8
MCNN [17] 110.2 173.2 26.4 41.3

Switching-CNN [18] 90.4 135.0 21.6 33.4
CP-CNN [21] 73.6 106.4 20.1 30.1

DR-ResNet [38] 86.3 124.2 14.5 21.0
CSRNet [6] 68.2 115.0 10.6 16.0
ic-CNN [39] 68.5 116.2 10.7 16.0

SCAR (ours) 66.3 114.1 9.5 15.2

Table 2 reports the results of some mainstream methods on ShanghaiTech
dataset. From it, the proposed SCAR wins three first places and one second
place. Compared with Switching-CNN [18] and CSRNet [6] (the both also
adopt VGG-16 as the pre-trained model), our model is the best from the
overall performance on the two datasets.

In order to intuitively show the performance of SCAR, Fig. 4 illustrates
the six groups of visualization results on Shanghai Part A, B and GCC
Dataset. The first, second and third column demonstrates the original im-
ages, groundtruth and predicted density maps of SCAR, respectively. From
it, we find the predict maps can show the densities of different regions and the
estimation counting numbers are very close to the label counting numbers.

4.4. Performance on UCF CC 50

UCF CC 50 dataset is extremely congested crowd counting dataset, which
is released by Idrees et al. [40]. It only contains 50 images without partition
for training and testing. Thus, we adopt the 5-fold cross-validation proto-
col to evaluate SCAR with other methods. Table 3 lists the recent popular
methods’ results on this dataset. From the table, we achieve the best MAE
of 259.0 and the third-place MSE of 374.0.
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GT: 44

Pred: 44.4
PSNR: 23.04
SSIM: 0.895

GT: 504

Pred: 534.2
PSNR: 28.36
SSIM: 0.835

Pred: 1049.1
PSNR: 30.02
SSIM: 0.769GT: 1063

GT: 334

Pred: 297.4
PSNR: 26.5
SSIM: 0.778

GT: 401

Pred: 443.8
PSNR: 29.55
SSIM: 0.899

GT: 2500

Pred: 2390.5
PSNR: 30.58
SSIM: 0.891

Figure 4: Exemplar results of the full model on Shanghai Tech Part A, B and
GCC Dataset. Column 1: input image, Column 2: groundtruth, Column 3:
predicted density map by SCAR. “GT ” and “Pred” denote the ground truth
count and the estimation count, respectively.
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Table 3: Estimation errors on UCF CC 50 dataset.

Methods MAE MSE

Idrees et al. [40] 419.5 541.6
Zhang et al. [37] 467.0 498.5

MCNN [17] 377.6 509.1
Switching-CNN [18] 318.1 439.2

CP-CNN [21] 295.8 320.9
DR-ResNet [38] 307.4 421.6

CSRNet [6] 266.1 397.5
ic-CNN [39] 260.9 365.5

SCAR (ours) 259.0 374.0

4.5. Performance on GCC

GTA V Crowd Counting Dataset (GCC) [16] is a large-scale synthetic
dataset based on an electronic game, which consists of 15,212 crowd images.
GCC provides three evaluation strategies (random splitting, cross-camera,
and cross-location evaluation) to show the capacity from different angles.
In this section, we implement SCAR on GCC dataset and the results are
reported in Table 4. At the same time, the results of four classical models
(MCNN [17], CSRNet[6], FCN [16] and SFCN [16]) are listed in Table 4.

From the table, we find our SCAR attains the best place of MAE (random
splitting/cross-camera/cross-location evaluation: 31.7/55.8/87.2) compared
with other mainstream methods. To be specific, CSRNet[6], FCN [16], SFCN
[16] and the proposed SCAR adopt the same backbone, the first 10 layers
of VGG-16 Net [23]. Compared with them, our SCAR achieves the 8 best
places from the 12 metrics, which shows that the proposed attention model
can effectively prompt the estimation performance for crowd density.

5. Discussion and Analysis

5.1. Ablation Study on ShanghaiTech Part B

For showing the effect of each module (SAM and CAM), we conduct the
ablation experiments on the ShanghaiTech Part B Dataset [17]. Table 5
demonstrates the performance of models with four different settings:

FCN: the baseline of this paper. It is the combination of a single-column
VGG-16 FCN and the dilation conv in CSRNet [6];

12



Table 4: The results of our proposed SCAR and the four classic methods on
GCC dataset.

Performance of random splitting

Method MAE MSE PSNR SSIM

MCNN [17] 100.9 217.6 24.00 0.838
CSRNet[6] 38.2 87.6 29.52 0.829
FCN [16] 42.3 98.7 30.10 0.889

SFCN [16] 36.2 81.1 30.21 0.904

SCAR 31.7 76.8 30.56 0.921

Performance of cross-camera splitting

Method MAE MSE PSNR SSIM

MCNN [17] 110.0 221.5 23.81 0.842
CSRNet[6] 61.1 134.9 29.03 0.826
FCN [16] 61.5 156.6 28.92 0.874
SFCN [16] 56.0 129.7 29.17 0.889

SCAR 55.8 135.3 28.84 0.894

Performance of cross-location splitting

Method MAE MSE PSNR SSIM

MCNN [17] 154.8 340.7 24.05 0.857
CSRNet[6] 92.2 220.1 28.75 0.842
FCN [16] 97.5 226.8 29.33 0.866
SFCN [16] 89.3 216.8 29.50 0.906

SFCN 87.2 220.7 29.74 0.929
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FCN+SAM: SAM is added to the top of FCN;
FCN+CAM: CAM is added to the top of FCN;
SCAR: the full model is proposed by ours, which consists of FCN, SAM

and CAM.

Table 5: Estimation errors and density map quality for different models of
the proposed method on ShanghaiTech Part B dataset.

Methods MAE MSE PSNR SSIM

FCN 13.2 21.0 21.36 0.787
FCN+SAM 11.0 18.8 23.01 0.881
FCN+CAM 11.5 19.3 22.45 0.875

SCAR 9.5 15.2 24.03 0.912

From the table, we find that SAM achieves a better performance than
CAM: 11.0/18.8 of MAE/MSE v.s. 11.5/19.3 of MAE/MSE. Meanwhile,
FCN+SAM produces more high-quality density maps than FCN+CAM, name-
ly 23.01/0.881 of PSNR/SSIM v.s. 22.45/0.875 of PSNR/SSIM. When si-
multaneously embedding SAM and CAM into the networks, the proposed
model attains the best performance regardless of the counting results or den-
sity maps’ quality.

5.2. Comparison of Density Map Quality

The evaluation of density map quality is an emerging criterion in this
field, which is adopted by [6]. In [6], the authors use two criteria (PSNR and
SSIM) to evaluate the quality of density maps. Here, we also compared the
above metrics with MCNN [17], CP-CNN [21] and CSRNet [6]. Table 6 shows
that our SCAR outperforms other three methods. Particularly, we obtains
the 23.93 of PSNR and 0.81 of SSIM on Shanghai Tech Part A dataset.

Table 6: Density map quality on ShanghaiTech Part A.

Methods PSNR SSIM

MCNN [17] 21.4 0.52
CP-CNN [21] 21.72 0.72
CSRNet [6] 23.79 0.76

SCAR (ours) 23.93 0.81
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5.3. Analysis of Attention Feature Fusion

In this paper, for two types of attention features, namely outputs of SAM
and CAM, we adopt concatenation operation to fuse them and then pro-
duce 1-channel density map. In addition to the concatenation operation, the
element-wise sum is also a potential operation to integrate different features.
In this section, we compare the performance of different fusion strategies of
two types of attention features. To be specific, we conduct a comparison
experiment on Shanghai Tech Part B dataset, and the experimental results
are reported in Table 7.

Table 7: Estimation errors of different different fusion strategies on Shang-
haiTech Part B dataset.

Fusion Strategy MAE MSE PSNR SSIM

Element-wise sum 9.9 16.7 23.91 0.898
Concatenation 9.5 15.2 24.03 0.912

From the table, we find the concatenation operation obtains lower esti-
mation errors compared with the element-wise sum operation, which shows
the feature fusion effect of the former is better than that of the latter.

5.4. Attention Map Visualization

In proposed SCAR, we design two types of attention maps, namely spatial-
wise and channel-wise maps. The former focuses on encoding the pixel-wise
context of the entire image. The latter attempts to extract more discrimina-
tive features among different channels, which aids model to pay attention to
the head region. Here, we analyze the effect of different attention maps by
visualizing them. Fig. 5 shows the results of attention maps in some typical
crowd scenes. To be specific, we select #1 and #2 maps from 64 channels in
two types attention masks.

From the figure, we find that spatial attention maps can capture the large-
range context information. The #1 is sensitive to people region the #2 can
effectively segment the background. For the channel attention maps (#1 and
#2), they can accurately locate the head position. The above visualization
results intuitively show different effects of SAM and CAM in the proposed
SCAR. Finally, the proposed SCAR encodes context and location information
to predict the density map.
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Image Spatial Attention #1 Spatial Attention #2 Channel Attention #1 Channel Attention #2

Figure 5: Exemplar results of the different attention maps. Column 1: in-
put image, Column 2 and 3: Spatial-wise attention maps, Column 3 and 4:
Channel-wise attention maps.

6. Conclusion

This paper proposes a Spatial-/Channel-wise Attention Regression Net-
work (SCAR) to generate high-quality density map and estimate the number
of people in crowd scenes. To be specific, spatial-wise attention model and
Channel-wise attention model are parallel architecture on the top of VGG-16
backbone network. SCAR is very flexible, of which attention modules can
be embedded into any CNN to encode large-range contextual information.
Thus, we believe that it is applied to other pixel-wise tasks, such as saliency
detection, image segmentation and so on. In the future, we will verify the
guess on the above applications.
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