
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 1
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Abstract—Hyperspectral image (HSI) usually has high
spectral-resolution but low spatial-resolution due to hardware
limitations, while multispectral image (MSI) usually has low
spectral-resolution but high spatial-resolution. To obtain image
with high resolution both in spectral and spatial domains, a
general strategy is image fusion. A variety of methods have been
proposed about this, but these methods generally cannot achieve
good performance due to the incomplete overlapping wavelength
of HSI and MSI. In order to solve this problem, the letter
proposes a novel HSI fusion method based on band simulation.
The proposed method expands MSI using spectral unmixing and
acquires high-resolution image based on linear least squares. The
experimental results on two hyperspectral datasets show that the
proposed method outperforms the competitors, especially when
the overlapping wavelength of HSI and MSI is small.

Index Terms—Image fusion, hyperspectral image (HSI), mul-
tispectral image (MSI), spectral unmixing.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) is characterized by it-
s narrow spectral range and rich bandwidth. It has

many practical applications in recent years, including crop
species classification, biomass and mineralogy mapping [1],
cell phenotype analysis [2]. However, HSI cannot have both
high spatial-resolution and high spectral-resolution due to
sensor hardware limitations and the signal to noise ratio.
To obtain high spatial-resolution HSI, image fusion is an
effective method. It is the process of combining multiple
images into a single image so as to obtain high-quality fused
image. Therefore, image fusion of low resolution HSI and high
resolution multispectral image (MSI), called HS-MS fusion
[3], is taken to acquire high resolution HSI. Many different
methods have been proposed for HS-MS fusion.

Methods based on the multispectral pansharpening [4]–[6]
are early adopted and achieve competitive fusion performance.
A framework is first proposed to solve the HS-MS fusion
problem using the pansharpening algorithm: by dividing the
spectral band of HSI into several regions and using traditional
pan-sharpening techniques in each region [7]. The hypersharp-
ening [8] is another framework for solving the problem. It
demonstrates that the advantages of synthetic high-resolution
band compared to the highest correlation high-resolution band.
Although these methods can achieve the competitive fusion
performance, it is still not completely suitable for HS-MS
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fusion. It’s easier to cause spectral distortion because the
spectral dimension of HSI is much larger than MSI.

Many methods have been specially designed for HS-MS
fusion. Spectral unmixing based methods use the inherent
spectral properties of the scene to fuse HSI and MSI. Non-
negative matrix factorization (NMF) is first used to solve the
HS-MS fusion problem [9]. Then, coupled non-negative matrix
factorization (CNMF) [10] uses NMF to perform alternating
spectral unmixing of HSI and MSI. Similarly, to obtain the
endmember matrix of HSI and the abundance matrix of MSI,
Akhtar et al. [11] apply a method based on dictionary learning
and sparse coding, and Lanaras et al. [12] introduce an alter-
nate updating method using the projection gradient method.
Different from matrix factorization, the tensor based HSI
and MSI fusion methods have also shown their effectiveness.
Dian et al. [13] propose a nonlocal sparse tensor factorization
method, which decomposes the HSI into a core tensor and
three dictionaries, and uses the similar HSI cubes to model
the nonlocal similarities. Zhang et al. [14] tackle the fusion
problem by utilizing a low-rank tensor decomposition model
with a spatial-spectral-graph based regularization. In addition,
Bayesian-based HS-MS fusion has also achieved good results
over the last two decades. Eismann et al. [15] propose a
Bayesian method based on maximum a posteriori estimation.
Wei et al. [16] integrate the explicit solution of the Sylvester
equation into the Bayesian HS-MS fusion method. These
methods are always stable, benefiting from processing data in
matrix format. However, it also makes the spectral correlation
of HSI difficult to adopt.

The HS-MS fusion has been studied through deep learning
in recent years [17]–[19]. The main idea of these methods
is to learn the mapping between high-resolution images and
low-resolution images. Though they can achieve good perfor-
mance, their time cost is always expensive owing to the large
size of HSI.

Due to the different wavelength ranges of HSI and MSI, in
non-overlapping wavelength range, the fused image is proved
to be easier to cause spectral distortion. This greatly affects the
average quality of the fused image, especially when the non-
overlapping wavelength range is large. In order to solve the
problem, Kim et al. [20] propose a block-based fusion method
with simulated band, which complements MSI in the non-
overlapping wavelength range before image fusion. However,
it is designed for the images which have a large area of green
plant, and it does not perform well on other images.

In this letter, a novel hyperspectral and multispectral im-
age fusion method based on band simulation, called band-
simulated hyperspectral super-resolution (BSSR), is proposed.
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Similar to [20], we adopt the band simulation. But the high
resolution band is acquired by considering the spectral correla-
tion of HSI. The main advantages are summarized as follows.

1) In general, hyperspectral sharpening methods directly use
the original HSI and MSI. Though they can obtain good fusion
results, spectral distortion is caused unavoidably. In this work,
the band simulation is introduced to mitigate this problem. It
produces simulated MSI which has the same wavelength range
as HSI, and its effectiveness is showen in Section III-C.

2) It has been proved that a synthesized band can better
sharpen HSI. Thus, we use a synthesized band to sharpen the
HSI band in this work. By combining some MSI bands which
similar to the corresponding HSI band, the synthesized band
is used as corresponding high-resolution image.

II. METHODLOGY

In this section, the BSSR will be described in detail. First,
MSI is expanded in the non-overlapping wavelength range via
spectral unmixing. Then, the optimal linear combination of
MSI bands is performed to obtain corresponding synthesized
band for each HSI band.

A. Band Simulation

Since the fused image in the non-overlapping wavelength
range is more likely to be distorted, we try to make two input
images (HSI and MSI) have the same wavelength range. To
do that, MSI is expanded in the non-overlapping wavelength
range by adding a simulated band. In this part, spectral
unmixing is adopted to obtain the expanded MSI.

Let X = [X1, . . . , XB ] ∈ Rp×B denote the low spatial-
resolution HSI, and Y = [Y 1, . . . , Y b] ∈ RP×b denote the
high spatial-resolution MSI. Note that B and b represent the
number of spectral bands, and p and P represent the number of
pixels, where b < B and p < P . Based on the linear spectral
mixture model, X and Y are modeled as

X =WHh +Nh (1)

Y =WmH +Nm. (2)

Here, W and Wm are spectral signature matrices. Hh and H
are abundance matrices. Nh and Nm are noise matrices. Then
the approximate image (A ∈ RP×B) is defined as

A =WH. (3)

The approximate image A can be calculated by CNMF [10].
Now we obtain the high spatial-resolution image A, which
covers the entire wavelength range of HSI.

Then, bands in non-overlapping wavelength range are se-
lected from A, and are averaged to synthesize one band, called
simulated band (S). Note that it has the same spatial resolution
as MSI and contains approximate spectral information in the
non-overlapping wavelength range of HSI.

Finally, the simulated band S is combined with MSI Y to
form the simulated MSI (SMSI), which is denoted as Ŷ =
[Y 1, . . . , Y b, S] ∈ RP×(b+1). Note that SMSI has the same
wavelength range as HSI and the same spatial resolution as
MSI.

B. Image Fusion
In the previous step, we add a simulated band to the MSI,

so we choose to use the band-based hypersharpening method
to take advantage of the simulated band during the fusion.
Thus, the regression based injection model is adopted to solve
the fusion problem of HSI and SMSI. First, the detail image
is introduced to increase the spatial resolution of HSI while
retaining its spectral information. Before acquiring the detail
image, the corresponding high spatial-resolution SMSI band
(H ∈ RP×1) is obtained by the linear combination of SMSI
bands. We define V ∈ RP×(b+2) and x ∈ R(b+2)×1 as:

V = [Ŷ 1
d , Ŷ

2
d , . . . , Ŷ

b+1
d , 1] (4)

x = [w1, w2, . . . , wb+1, c]
T , (5)

where Ŷ i
d is the image that Ŷ i downsampled to the same

spatial resolution as HSI, wi is the weight coefficient, and
c is constant. Now, the linear combination optimal problem of
SMSI bands can be expressed as

min
x
||Xi − V x||2

s.t. wk ≥ 0, ∀ k, (6)

where ||·||2 represents the 2-norm. It indicates that the spectral
information between V x and ith band of HSI is the most re-
dundant, so the coefficient x is the optimal linear combination
coefficient of SMSI bands. That is to say, the high resolution
band (H = [Ŷ 1, Ŷ 2, . . . , Ŷ b+1, 1][w1, w2, . . . , wb+1, c]

T ) is
the most suitable to fuse with ith band of HSI. Formula (6)
is a convex optimization problem [21]. To solve this problem,
we use CVX, a Matlab-based modeling system for convex
optimization [22].

Then the detail image (Di ∈ RP×1) we desire can be
obtained by

Di = H −Hl, (7)

where Hl is the low-pass Gaussian filter version of H .
Next, we inject the detail image into HSI so as to obtain

high-resolution HSI (Zi ∈ RP×1). The injection model is
expressed by

Zi = Xi
u + giDi, (8)

where Xi
u is the image that Xi upsampled to the same spatial

resolution as SMSI, and gi is the gain coefficient which is
calculating by

gi =
cov(Xi

u, Hl)

cov(Hl, Hl)
, (9)

where cov(·) means covariance.
Finally, by repeating the above injection process on each

HSI band, the high-resolution HSI (Z = [Z1, . . . , ZB ] ∈
RP×B) is acquired. The implementation details of BSSR are
shown in Algorithm 1.

III. RESULTS

In this section, BSSR is compared with other fusion meth-
ods on different hyperspectral datasets. These comparison
methods include SFIM [5] and GLP [6] based on pansharp-
ening, ECCV’14 [11], ICCV’15 [12] and CNMF [10] based
on spectral unmixing, FUSE [16] based on Bayesian, and the
image fusion part of our approach (called nBSSR).
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Algorithm 1 BSSR

Input: Hyperspectral image X ∈ Rp×B , multispectral image
Y ∈ RP×b.

Output: High-resolution hyperspectral image Z ∈ RP×B .
Calculate the approximate image A by (3).
Calculate the simulated band S from A.
Obtain the simulated multispectral images Ŷ by combining
the simulated band S with Y .
for i = 1 to B do

Calculate high spatial-resolution image H by (6).
Obtain the detail image Di by (7).
Obtain Zi using the injection model (8).

end for

A. Dataset and Settings

In order to evaluate the proposed BSSR, two different hyper-
spectral datasets are used: (1) HYPERSPEC-VNIR Chikusei
dataset [23]; (2) HYDICE Washington, D.C., The National
Mall dataset [24]. The Chikusei dataset has 128 bands in the
spectral range from 363 nm to 1018 nm. The resolution of the
scene is 2517×2335 pixels. In this letter, we select a subimage
of 540×420 pixels, and all 128 bands. The Washington, D.C.
dataset has 210 bands in the spectral range from 400 nm to
2500 nm with a scene resolution of 1280×307 pixels. In this
letter, a subimage of 420×300 pixels and 191 bands is selected
after removing bands which cover the water-absorbent area.

Since these hyperspectral datasets have only HSIs which are
not enough for experiment, we need to acquire low spatial-
resolution HSIs and high spatial-resolution MSIs. For simu-
lating these images, we use the dataset images as reference
images (R). In order to obtain low-resolution HSIs (X), the
reference images are first Gaussian blurred in spatial domain,
and then downsampled at a certain ratio. For two datasets,
the spatial downsampling ratio is 6 and 4, respectively. As
to obtain high-resolution MSIs (Y ), original reference images
are downsampled in spectral domain, and the spectral response
function (SRF) of multispectral sensor is used as downsam-
pling filter. The SRFs of the two multispectral sensors are used
in this letter, including WV-2 and QuickBird.

The spectral overlaps of HSIs and MSIs for all two datasets
are shown in Figure 1. For the Chikusei dataset, the SRF of
MSI (gray area) covers substantially the entire wavelength
range of HSI (yellow bars). While it covers only a small
portion of the visible light wavelength range of HSI in the
Washington, D.C. dataset.

B. Evaluation Metrics

In the experiments, we compare the fused image Z =
[Z1, . . . , ZB ] ∈ RP×B with the reference image R =
[R1, . . . , RB ] ∈ RP×B to evaluate the performance of BSSR.
To evaluate the spatial quality, we adopt the peak signal to
noise ratio (PSNR), which is defined as

PSNR = 10 log10(
P ·max(Zi)2∑P
j=1 ||Zi −Ri||22

). (10)

(a)

(b)

Fig. 1: The spectral overlaps of HSI and MSI on two datasets.
(a) HYPERSPEC-VNIR Chikusei dataset, (b) HYDICE Wash-
ington, D.C. dataset.

To evaluate the spectral quality, we adopt the spectral angle
mapping (SAM), which is defined as

SAM = arccos(
V T
Z VR

||VZ ||2 · ||VZ ||2
), (11)

where VZ is the spectral signature of a pixel in Z, and VR is the
spectral signature of a pixel in R. The Erreur relative globale
adimensionnelle desynthese (ERGAS) is used for evaluating
the global relative error, which is defined as

ERGAS = 100d

√√√√ 1

B

B∑
i=1

(
||Zi −Ri||22
1
P

∑P
i=1R

i
)2, (12)

where d is the ground sample distance (GSD) ratio between
MSI and HSI. The Q2n is a generalization of the general image
quality index (UIQI), and it is defined as

Q2n =
4σZi,RiZi ·Ri

(σ2
Zi + σ2

Ri)(Zi
2
+Ri

2
)
, (13)

where σZi,Ri is the covariance of Zi and Ri. σZi and σRi are
the standard deviation of them, and Zi and Ri are the mean
value of them, respectively.

C. Experimental Results

The quality of the fused image is first evaluated visually.
The difference image is introduced to display errors obviously,
which is the difference between the fused image and the
reference image in a certain band. For visually evaluated
results on the Chikusei dataset, as shown in Figure 2, the two
images in the first column are the low resolution HSI and the
reference image at 583.4nm, respectively; the first row are the
fused images; the second row are the difference images. In this
figure, the fused images all get good performance compared
to the reference image, while the fused image obtained by
BSSR performs best. Then, the quality of the fused image is
evaluated on the Washington, D.C. dataset (see Figure 3), the
two images in the first column are the low resolution HSI and
the reference image at 593.5nm, respectively; the first row are
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Fig. 2: HS-MS Fusion results among eight compared methods on HYPERSPEC-VNIR Chikusei dataset. (a) SFIM, (b) GLP,
(c) FUSE, (d) ECCV’14, (e) ICCV’15, (f) CNMF, (g) nBSSR, (h) BSSR.

Fig. 3: HS-MS Fusion results among eight compared methods on HYDICE Washington, D.C. dataset. (a) SFIM, (b) GLP, (c)
FUSE, (d) ECCV’14, (e) ICCV’15, (f) CNMF, (g) nBSSR, (h) BSSR.

TABLE I: Experimental evaluation metrics among eight com-
pared methods on Hyperspec Chikusei dataset.

Method
Hyperspec Chikusei

PSNR SAM ERGAS Q2n Time (s)
SFIM 43.826 1.608 1.603 0.9207 1.06
GLP 44.546 1.425 1.363 0.9120 14.58

FUSE 45.416 1.470 1.622 0.9198 4.75
ECCV’14 43.913 1.483 1.674 0.9473 1506.29
ICCV’15 42.451 1.384 1.732 0.9215 285.70
CNMF 46.132 1.245 1.542 0.9414 65.43
nBSSR 45.168 1.397 1.329 0.9467 15.38
BSSR 46.452 1.178 1.283 0.9424 79.83

the fused images; the second row are the difference images. As
we can observe from it, the fusion effect of ICCV’15, nBSSR
and BSSR is significantly better than other algorithms, but the
differences of BSSR is the smallest.

The experimental evaluation metrics of BSSR and the eight
comparison algorithms on the two datasets are shown in Table
I and II. Here, the bold data indicates the optimal index
among the 8 groups of data. As can be seen from Table I, the
fusion result without band simulation is not satisfactory, but
the overall performance of BSSR is the best. The advantage
of BSSR is clearly shown in Washington, D.C. dataset (Table
II), which has a large non-overlapping wavelength range. In
addition, though BSSR takes a little longer time than some
pansharpening methods, it outperforms other algorithms.

To compare the results more intuitively, the PSNR values
over HSI wavelength range are shown in Figure 4. It displays
reconstruction errors of the fused images overall wavelength

TABLE II: Experimental evaluation metrics among eights
compared methods on HYDICE Washington, D.C. dataset.

Method
HYDICE Washington, D.C.

PSNR SAM ERGAS Q2n Time (s)
SFIM 35.544 1.950 3.333 0.8386 0.56
GLP 37.282 1.572 3.582 0.9086 17.90

FUSE 37.415 1.477 2.992 0.9052 3.03
ECCV’14 31.282 2.746 9.133 0.8469 587.82
ICCV’15 37.460 1.443 3.092 0.9073 186.75
CNMF 37.655 1.437 3.005 0.9113 56.52
nBSSR 38.261 1.257 3.152 0.9203 17.73
BSSR 38.855 1.261 2.831 0.9227 74.23

range. As we can observe from this figure, BSSR has better
results in non-overlapping range (the shaded regions). While
in overlapping range, it shows competitive results, and it is
better than other pansharpening methods. This confirms that
BSSR can get better fusion performance than others especially
when the overlapping wavelength range between HSI and MSI
is small.

IV. CONCLUSION

In this letter, we propose a novel HSI fusion method BSSR.
It focuses on improving the quality of fused image when HSI
wavelength range does not coincide with MSI. Before MSI
is fused with HSI, it is expanded by a spectral unmixing
method to be the same wavelength range as HSI. Then, HSI is
injected by the detail image of expended MSI so as to acquire
high resolution HSI. Experimental results on two hyperspectral
datasets indicate that BSSR can effectively improve the spatial
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(a)

(b)

Fig. 4: PSNRs among eight compared methods on two dataset-
s. (a) HYPERSPEC-VNIR Chikusei dataset, (b) HYDICE
Washington, D.C. dataset.

resolution of HSI while preserving its spectral resolution.
Aiming to acquire high resolution HSI with low hardware cost,
this method makes a lot of sense. For geological applications,
high resolution HSI based mineral resource detection can be
more fine. Considering the number of simulated bands in
BSSR is fixed to one, adaptively selecting the number of
simulated bands will be our future work.
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