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Abstract—Non-negative Matrix Factorization (NMF) has been one of the most popular clustering techniques in machine leaning, and
involves various real-world applications. Most existing works perform matrix factorization on high-dimensional data directly. However,
the intrinsic data structure is always hidden within the low-dimensional subspace. And the redundant features within the input space
may affect the final result adversely. In this paper, a new unsupervised matrix factorization method, Discrimination-aware Projected
Matrix Factorization (DPMF), is proposed for data clustering. The main contributions are threefold: (1) the linear discriminant analysis is
jointly incorporated into the unsupervised matrix factorization framework, so the clustering can be accomplished in the discriminant
subspace; (2) the manifold regularization is introduced to perceive the geometric information, and the ¢ 1-norm is utilized to improve
the robustness; (3) an efficient optimization algorithm is designed to solve the proposed problem with proved convergence.
Experimental results on one toy dataset and eight real-world benchmarks show the effectiveness of the proposed method.

Index Terms—Clustering, Linear Discriminant Analysis, Non-negative Matrix Factorization, Subspace Learning

1 INTRODUCTION

Non-negative Matrix Factorization (NMF) [1] is a widely-
used method for data clustering, and has attracted many
researchers in the field of machine learning and data mining.
Given the data matrix, NMF approximates it with the prod-
uct of two non-negative factor matrices. Ding et al. [2] have
pointed out that the two factor matrices correspond to the
cluster centroid and indicator respectively, thus NMF can
obtain the clustering result directly with the cluster indica-
tor, and does not need the post-processing (e.g. k-means). In
addition, NMF is able to learn a parts-based representation
since its updating rules only allow additive operation [3].
Therefore, it shows good performance in face recognition [4]
and document clustering [5], where the objects are parts-
based.

Despite its good property on data interpretation, the
original NMF has three major disadvantages. First, NMF
performs matrix factorization in the input data space di-
rectly. However, the high-dimensional data is often lying
within a low-dimensional subspace [3], which contains more
valuable information. Thus, NMF is limited to capture the
discriminant features. Second, because NMF neglects the
local relationship of data points, it fails to discover the geo-
metric structure of the data distribution. And this drawback
makes NMF unable to handle the data with complicated
structures. Third, NMF squares the residue error of each
data point with a £>-norm objective function, so it is easily
affected by the outliers.

In the past two decades, many variants of NMF have
been put forward to tackle the last two problems. For
the second problem, Cai et al. [3] integrated the graph
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regularization term into the original NMF to exploit the
local data structure. Guan et al. [6] proposed an optimal
gradient method to speed up the optimization of NMF
and regularized-NME. Zeng et al. [7] introduced the hyper-
graph to encode the high-order relationship between data
points. Zhang et al. [8] and Gao et al. [9] proposed to
perform matrix factorization and graph learning simulta-
neously. To address the third problem, Huang et al. [10]
and Zhang et al. [11] factorized the data matrix with a
{3, 1-norm objective function and achieved relatively better
performance. Zhou et al. [12] developed the divide-and-
conquer framework, which shows good performance in
handling high-dimensional noisy data. However, the first
problem is still not well solved. Zhang et al. [11] proposed
to learn the low-dimensional representation of input data,
but they neglect the discriminant information. Zafeiriou et
al. [13] and Lu et al. [14] combined the Linear Discrimi-
nant Analysis (LDA) [15] into matrix factorization for data
classification, but these methods are either supervised or
semi-supervised, so they cannot be used for data clustering.
Moreover, as pointed out by Tao et al. [16], LDA imposes the
Gaussian distribution on the input data, which means that
it also fails to discover the local data structure. Note that,
the first problem may compound the second one, since the
data graph constructed with the input data may be unreli-
able. Therefore, it is important to capture the discriminant
features resided within the desired subspace.

In this paper, we propose the Discrimination-aware Pro-
jected Matrix Factorization (DPMF) method, which inherits
the merits of both LDA and NMF. The major contributions
of this research are summarized as follows:

1. The proposed method learns the discriminant sub-
space with LDA, and performs clustering in the learned
subspace. So the redundant features in the input space are
avoided.

2. The local data relationship in the desired subspace
is captured by the manifold regularization term, and the
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robustness to outliers is improved with the ¢ ;-norm.

3. An efficient and effective alternative algorithm is
proposed to optimize the proposed problem, and its con-
vergence is proved experimentally.

2 REVIEW oF NMF AND LDA
2.1 Non-negative Matrix Factorization

Given the data matrix X = [21,29, - ,2,],2; € R (d
and n are the dimensionality and sample number respec-
tively), NMF approximates it with the product of two non-
negative matrices:

IX - FG"||%, )

min
F>0,G>0
where F € R%*¢ is the cluster centroid, and G € R"™*¢ is
the cluster indicator matrix. However, for any scalar § > 0,
the product of §F and GT/§ will give the same residue
error. So the non-negative constraint cannot guarantee the
uniqueness of solution.
To circumvent this problem, Huang et al. [10] proposed
to impose the orthogonal constraint on G, and then prob-
lem (1) is reformulated as

IX - FG"||, 2

min
G>0,GTG=L,
where I, € R°*€ is the identity matrix. Then the optimal
solution is unique.

2.2 Linear Discriminant Analysis

LDA aims to learn a linear transformation W & R4x™
to project the d-dimensional data into the m-dimensional
representation. Given the binary label matrix Y € R"*¢, the
total-class scatter S;, between-class scatter S; and within-
class scatter S,, are defined as follows [17]:

St =5 (zi — p)(w; — )" = XHXT,
/LC
Sy =3 nilwi — )i — )" =XHGEGTHXT, ©)
i=1
Sw =8¢ — S,
where p is the mean of all data points, y; is the mean of
the points in the i-th class, n; is the number of points in
the i-th class. G = Y(Y7Y)~!/2 is the scaled label matrix,
and H € R"*" is I,, — %lnlnT (I,, is the n-dimensional
identity matrix and 1,, € R"*! is a column vector with all
its elements as 1).

The objective of LDA is to find the optimal W to push
the points from different classes far away while pulling
those from the same class together. Thus, the objective
function of LDA can be written as

Tr(WTS, W), 4)

min
WTS,W=I,,
where I,, € R™*™ is the identity matrix, and Tr() is
the trace operator. According to the definitions in Eq. (3),

problem (4) can be further transformed into
i Tr(WT(S, — Sp) W
wrdin - Tr(W7(S: — S))W)
= in  Tr(W'XH(I. - GGT)HX"W
WTS WL, ( ( ) NG
= min |[WIXH(I, - GGT)|%.
WTS,W=I,,

3 DISCRIMINATION-AWARE PROJECTED MATRIX
FACTORIZATION

3.1 Methodology

In real-world applications, data with high-dimensionality is
often lying within a low-dimensional subspace. To find the
discriminant subspace, we propose to integrate LDA and
NMF into a unified framework.

In problem (2), when G is fixed, the optimal F is com-
puted as XG. Then the objective value becomes

X — XGGT||2 = X1 — GGT)||%, (©6)

which is equivalent to the objective value of problem (5) if
X and G are replaced with W/ XH and G respectively.
Furthermore, since G is considered to be the unique cluster
indicator, the optimal G for problem (2) is equal to the
scaled label matrix G in problem (5). Therefore, LDA can
be naturally incorporated in the unsupervised matrix fac-
torization framework as

min |[WTXH — FGT||%,
F.G,W
stF e R™" G e R™° W e R, @)
G>0G'G=1,,Wi's,wW=1,,,

where G can be also regarded as the pseudo label. And
then the discriminant subspace for matrix factorization can
be found with the optimal W.

In the perspective of manifold learning, the points with
close relationship should be grouped into the same cluster.
When W is fixed, we build a data graph S € R"*" with
WTX, and the geometry structure can be captured by
minimizing the following problem

min Tr(GTLG), 8)
GERnxe

where L is the Laplacian matrix of S. According to the
feature selection theory [17], the value of ||W; .||3 indicates
the significance of the ¢-th dimension. Then we assume
that [[W, .||3 should shrink to zero if the corresponding
dimension is incorrelate to the label vector G; ., leading to
the following problem

in [[W'X - G"|[3. 9
o ] 153 ©)
Finally, by combining the problem (7), (8) and (9) to-
gether, and introducing the {3 ;-norm to improve the ro-
bustness, we have the objective function of the proposed
Discrimination-aware Projected Matrix Factorization (DPM-
F) method:
min [|[WTXH - FG” ||y, + A\Tr(GTLG)+
F.G,W
BIWTX — G5
s.t.F € R" G € R"™*¢, W € R¥x¢,
G>0,G"G=1,W'S,W =1,

(10)

where A and [ are parameters. When W is obtained, we up-
date G and reconstruct the Laplacian graph L with W7'X.
Then both the manifold learning and matrix factorization
can be approached in the desired subspace.
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3.2 Optimization Algorithm

Problem (10) is difficult to solve with the constraint
WTS,W = I.. So we first disturb the diagonal elements
of S; with a small enough scalar ¢ > 0. Then S; is posi-
tive definite, and we can decompose it with the Cholesky
decomposition S; = RTR. Thus, denoting RW as P, and
denoting (R™!)T”XH and (R™!)7X as A and B respective-
ly, problem (10) is simplified into

Fr%?P||PTA —FG"|51 + M Tr(GTLG)+
BIPTB - GT|%,
st.F € R G e R™*¢, P e R¥*¢,
G>0GT'G=1,PTP=1,.

(11)

The above problem is not convex with three variables, so
we propose to solve it with the Augmented Lagrangian
Multiplier (ALM) [18]. Since both the f3 ;-norm and the
manifold regularization depend on G, we introduce two
auxiliary variables E = PTA — FGT and Z = G. Then
problem (11) is equivalent to the following ALM problem

|El|2.1 + ATr(Z"LG) + 8||PTB — GT||%+

min
E,Z F.G,P
LIPTA -FG” -
SIG-Z+ %II%,
st Ec R Z cR"™ . F € R, G ¢ R"*¢,

P cR™¢ Z>0,GI'G=1.,PTP =1,

E + %37+

(12)

where p € R*! is the ALM parameter, and A; € R*"™ and
Ay € R™*¢ are ALM multipliers. Then we optimize each
variable iteratively.

Update E: when fixing all the variables expect E, we
have

E ~||JE-M 13
prin [[Efl2,; + || 1%, (13)
where M =PTA — FG” + A1 According to Huang et

al. [10], the optimal E is computed as

_ ) -

Update Z: when updating Z, problem (12) becomes
ATr(Z'LG) + 5||G - Z + 82[%,

__1 o ) 1
) M 1 | Milz > 5 . (14)

else

min
Z>0,ZcRm%¢

(15)

which can be further reduced into a closed-form problem

: _ 2
min ||Z — ||, (16)

where T = G + % - %LG. Therefore, the optimal Z is

Zij = max(Tij, 0) (17)
Update F: optimizing problem (12) w.rt. F yields the
following sub-problem:

min ||[PTA - FGT —

FeRexn

E+ 203 (18)

Because GT'G = 1., the above problem is reformulated as

min ||F — (PTA-E+ 4)G|f7, (19)

FGRCX‘IL

so the optimal F' is (P A — E + £4)G.
Update G: to update G, problem (12) is reduced to
min ATr(Z'LG) + |[P"B - G™[|3+
L|PTA -FG" -
4G - Z 4 A2 )3,
st.GTG =1,,G e R,

E + 212
+ e+ (20)

By expanding the objective function and removing the irrel-
evant terms, we get

G-K
Sim I %,

(21)
st.GTG =1,

where K = 20B"P—2LZ+(PTA - E+ 41)TF4+Z— 22,
And Huang et al. [10] proved that the 0pt1mal solution of
the above problem is

G=UVT, (22)

where U € R"*¢ and V € R*€ are the left and right singu-
lar vectors of the compact singular value decomposition of
K.

Update P: when solving P, problem (12) is transformed

into
P'B-G"
plin Al 1+
LIPTA -FG" —

st.PTP =1,

E + A%, (23)

which can be further reduced to
min Tr(PTJP) —

PeRdxe
stPTP =1,

Ti(P*Q), b

where
J =pBBBT + £AAT,
 FGT ALy (25)
Q=20BG + pA(FG" +E — 71) .
Note that problem (24) is non-convex because J is not a
positive semi-definite matrix. Denoting the largest eigenval-
ue of matrix J as A4z, problem (24) can be converted into

the following form

max Tr[PT(/\maCL.IC
PecRdxe

stPTP =1..

—J)P] + Tr(PTQ),
(26)

Since (Amazlc — J) is positive semi-definite, problem (26)
is a standard convex problem on the Stiefel manifold, and
can be solved by the Generalized Power Iteration (GPI)
method [19].

Update 1, A; and Ay: the ALM parameters are updated
as follows:

A=A+ u(PTA -FG' - E),
A2 = AQ -|—/J(G — Z)7
1= PH,

27)

where the parameter p controls the convergence speed.
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Fig. 1. Performance of NMF, RMMF and DPMF on the toy dataset.

4 EXPERIMENTS

In this section, the effectiveness of the proposed DPMF
is demonstrated on one toy dataset and eight real-world
datasets. And the convergence behavior and the parameter
sensitivity of DPMF are also discussed.

41

To evaluate whether DPMF is able to exploit the geometry
structure and project the input data to the discriminant
subspace, a toy dataset is constructed.

Dataset. As shown in Figure 1, the dataset consists of the
data points from two classes. And the data dimensionality
is six, where the data is distributed in concentric circles in
the first two dimensions while the other four dimensions
are noises randomly generated from 0 to 3.

Competitors. The proposed DPMF is compared with the
original NMF [1], and Robust Manifold Matrix Factorization
(RMMF) [11]. On the other hand, RMMF projects the data
into a low-dimensional representation, and learns the local
data manifold with graph regularization. For DPME, the
similarity graph is initialized with an efficient method [20]
and the transformation matrix is initialized with the method
in [21]. The graph of RMMF is built with the self-tune
Gaussian method [22].

Performance. The first row in Figure 1 visualizes the
clustering performance of different methods. It can be seen
that the original NMF can not cluster the data into the
correct class even without noise dimensions. This is because
NMF neglects the local geometry structure. RMMF and the
proposed DPMF work well on the noise data, which benefits
from the exploitation of local data relationship.

The second row in Figure 1 (e) and (f) show the cluster-
ing results of RMMF and DPMF on the noise data. RMMF
while DPMF still performs well. From Figure 1 (g) and
(h), we can see that RMMF fails to project the data into
the correct subspace, while the subspace learned by DPMF

Performance on Toy Dataset

-6 -4 -2 0 2 B 01 -0.05 0 0.05 0.1

(g) Data projected by RMMF (h) Data projected by DPMF

preserves the intrinsic structure of original data successfully,
which indicates that DPMF is more capable of capturing the
discriminant features. DPMF inherits the merit of LDA, so it
has the capability to learn the valuable features and find the
discriminant subspace. The noises dimensions do not exist
in the subspace, so DPMF clusters the data correctly. This
result indicates that the incorporation of LDA does improve
the clustering performance of DPMF.

4.2 Performance on Real-World Datasets

In this part, eight real-world datasets are employed to verify
the effectiveness of DPMF on data clustering. The widely-
used clustering ACCuracy (ACC) and Normalized Mutual
Information (NMI) [8] are taken as evaluation metrics.

Dataset. The real-world datasets used in the experiments
include one object image dataset, i.e., COIL20 [23], three face
image datasets, i.e., JAFFE [24], UMIST [25] and YALE [26],
one biology dataset, i.e., SRBCT [27], and three datasets from
the UCI Machine Learning Repository [28], i.e., Dermatolo-
gy, Movement and Semeion.

Competitors. Six state-of-the-art clustering methods are
taken for comparison, including k-means, Normalized Cut
(NCut) [29], NMF [1], Graph-regularized NMF (GNMF) [3],
Robust Manifold NMF (RMNMF) [10] and Robust Manifold
Matrix Factorization (RMMF) [11].

Initialization and parameter setting. The similarity
graph of each method is constructed by the approach
suggested by the authors. Particularly, for NCut, the data
graph is built with the self-tune Gaussian method [22]. For
GNMF and RMNME, the bipartite graphs are constructed by
finding the five nearest neighbors. The initialization strategy
of RMMF and DPMF are the same as in Section 4.1. Since
the initial values of u, A; and Ay in DPMF have very little
influence on the final results, we set them empirically.

In addition, the regularization parameters of GNMF and
RMNMF are searched in the range of {1073,1072, ..., 10°},
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TABLE 1

ACC of different methods on real-world datasets. The best results are in bold face. And the second best results are underlined.
Datasets k-means NCut NMF GNMF RMNMF RMMF DPMF
COIL20 0.6176 0.5328 0.4570 0.8049 0.5874 0.8693 0.8853
JAFFE 0.7178 0.7300 0.7075 0.8310 0.7563 0.8814 0.9108
UMIST 0.4123 0.4450 0.3376 0.5583 0.4197 0.5813 0.6104
YALE 0.4812 0.5158 0.3467 0.3818 0.3570 0.5327 0.5576
SRBCT 0.4494 0.3735 0.4301 0.4217 0.4193 0.5213 0.5542
Dermatology 0.6973 0.8876 0.7022 0.7978 0.7221 0.8901 0.9536
Movement 0.4403 0.4569 0.3566 0.4694 0.4063 0.5372 0.5561
Semeion 0.5976 0.5207 0.3772 0.5888 0.5498 0.5821 0.6033

TABLE 2

NMI of different methods on real-world datasets. The best results are in bold face. And the second best results are underlined.
Datasets k-means NCut NMF GNMF RMNMEF RMMF DPMF
COIL20 0.7505 0.6799 0.5894 0.8787 0.7113 0.9247 0.9351
JAFFE 0.8160 0.8216 0.7343 0.9030 0.7926 0.8917 0.9197
UMIST 0.6253 0.6343 0.4866 0.7726 0.5877 0.7714 0.7923
YALE 0.5730 0.5704 0.4107 0.4549 0.4220 0.5841 0.6032
SRBCT 0.1571 0.1061 0.1822 0.1776 0.1559 0.2636 0.3340
Dermatology 0.7872 0.8488 0.6780 0.8365 0.7619 0.8624 0.9118
Movement 0.5751 0.5951 0.4200 0.6150 0.4967 0.6560 0.6834
Semeion 0.5310 0.4851 0.3199 0.5746 0.4688 0.5932 0.6201

and the parameters of RMMF and DPMF are searched
from {108,107, ..., 102}. For all the NMF methods except
GNMF, the clustering result is obtained with the learned
indicator matrix directly. And for GNME k-means is used
for post-processing because its G does not have a clear
cluster structure. And for those that are sensitive to the
initialization, we run them with the best parameters for
twenty times and report the average ACC and NML

Performance. Tabel 1 and 2 show the quantitative
comparison of different methods. The proposed DPMF
achieves the highest ACC and NMI on all datasets, which
indicates the good performance. Particularly, SRBCT is
a biology dataset with very high-dimensionality (2308).
DPMF projects the data into a very low-dimensional (4)
subspace, and shows promising performance. This phe-
nomenon demonstrates that the intrinsic data structure is
exactly lying within the low-dimensional subspace. NCut,
GNMF and RMNMF show better performance than k-
means and NME, because they respect the data structure
by exploiting the local data correlation. RMMF achieves
the second best performance in most of the cases be-
cause it learns the low-dimensional representation of high-
dimensional data. But it is still inferior to the proposed
DPMF for two reasons: (1) RMMF neglects the discriminant
information, while DPMF learns the valuable features by
discriminant analysis; (2) RMMF builds the data graph with
the input data directly, while DPMF updates the graph in
each iteration and finally learns the data structure in the
desired subspace.

In order to evaluate the robustness of DPMF, we further
conduct experiments on the JAFFE dataset. To simulate the
outliers, each face image in the dataset is randomly occluded
with a 6x6 black area. Figure 2 shows some representative
clustering results of NMF, GNMF and DPMF, and the red
box indicates that the image is partitioned into the wrong
cluster. We can see that NMF and GNMF cluster the first
face image into the wrong group, while DPMF partitions
the faces captured from the same person correctly. NMF and

(a) Clustered by NMF

(b) Clustered by GNMF

(c) Clustered by DPMF

Fig. 2. Clustering results of NMF, GNMF and DPMF on occluded face
images. Red square boxes indicate the incorrect results. NMF and
GNMEF cluster the first image into the wrong class, while DPMF performs
well.
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Fig. 3. Convergence curves of the proposed optimization method on (a)
YALE and (b) Dermatology.

GNMF square the residue error of each sample, so they are
prone to outliers. While DPMF is robust to outliers with the
5 1-norm objective function.
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Fig. 4. Classification accuracy of DPMF on (a) YALE and (b) Dermatol-
ogy with varying 8 and A. It can be seen that the performance is not
sensitive to the parameters within a wide range.

4.3 Convergence Study and Parameter Sensitivity

The convergence behavior of DPMF is first discussed. The
parameter p increases exponentially during the iteration,
so the problem (12) converges to the original problem (10)
finally. And for problem (12), the optimization algorithm
decomposes it into five sub-problems, among which the first
four provide the closed form solutions, and the convergence
of fifth one has already been proven by Nie et al. [19]. So
the objective value decreases in the optimization of each
sub-problem, and finally converges to a local optimal value.
As shown in Figure 3, the optimization always converges
within five iterations. Therefore, the proposed optimization
algorithm is effective and efficient.

In addition, the parameter sensitivity of DPMF is also
investigated. There are two important parameters (i.e., A
and () in DPMEF. A controls the weight of the manifold regu-
larization term, and § balances the transformation learning
term. As the values of A and 3 vary within the range of
{1078,1079,...,10%}, the clustering accuracy of DPMF is
visualized in Figure 4. It can be seen that DPMF shows
stable performance across a wide range of A and 3. And
the performance decreases when \ and f3 are 102, because
the fitting error of the matrix factorization term becomes
very large in this situation.

5 CONCLUSIONS

In this research, an unsupervised Discriminant-aware Pro-
jected Matrix Factorization (DPMF) method is presented for
data clustering. In order to discover the intrinsic geometry
structure, DPMF projects the data into the low-dimensional
subspace, which contains more discriminant information. In
addition, the manifold regularization is performed in the
learned subspace to capture the local relationship between
samples, and {5 1-norm is used to improve the robustness
to outliers. And the proposed objective function can be
solved efficiently with the suggested optimization algorith-
m. Extensive experiments conducted on toy and real-world
datasets show the satisfying performance of DPMF, and
validate its superiority over the state-of-the-art competitors.
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