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Abstract

Forward Vehicle Collision Warning(FCW) is one of the most important func-

tions for the Advanced Driver Assistance System (ADAS). In this procedure,

vehicle detection and distance measurement are core components, requiring ac-

curate localization and estimation. In this paper, we propose a simple but

efficient forward vehicle collision warning framework by aggregating monocu-

lar distance measurement and precise vehicle detection. In order to obtain

forward vehicle distance, a quick camera calibration method which only needs

three physical points to calibrate related camera parameters is utilized. As for

the forward vehicle detection, a multi-scale detection algorithm that regards

the result of calibration as distance prior is proposed to improve the precision.

What’s more, traditional deterministic FCW approaches cannot be personalized

for different drivers, which will lead to false warnings when drivers are in diverse

driving status. Therefore, abnormal driver behaviors are introduced to make

FCW adaptive. Specifically, the proposed adaptive FCW generates warnings by

considering the different behaviors of the driver. Intensive experiments are con-

ducted in our established real scene dataset and the results have demonstrated

the effectiveness of the proposed framework.
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1. Introduction

Over 10 million people are injured yearly worldwide in road accidents. Among

these accidents, rear-end collision is a serious safety problem, accounting for al-

most 30% of all crashes [1]. Significant effort has been made on the safety of road

vehicles in recent decades. Advanced driver assistance system(ADAS) plays a5

significant role in increasing the safety of passengers and of vehicles. Forward

vehicle collision warning (FCW) as one of the fundamental techniques in ADAS

is the core function to mitigate rear-end collisions.

A series of devices mounted on the vehicle could provide the solution to

FCW [2, 3]. The traditional systems available today are typically based on radar10

sensors [4]. However, the narrow field of view and the poor lateral resolution

limit the performance of these systems. From a technological point of view,

fusion of radar and vision information seems to be an attractive way. In such

systems [5, 6] the radar provides accurate distance and velocity, while vision

obtains exact locations of the forward vehicle. Unfortunately, expensive and15

complex course of fusing radar and vision degrades its practicability. Given

these practical difficulties, a simple but efficient forward vehicle collision warning

framework is proposed using only vision information in this paper. The proposed

framework includes two stages. The camera calibration stage gets distance from

forward vehicles to the camera, while the vehicle detection stage based on the20

distance provides exact locations of forward vehicles.

On the other hand, in the conventional designs of FCW the warnings are

triggered with a deterministic model whenever a potential collision is detected

[7, 8]. However, utilizing the deterministic warning model makes these ap-

proaches unable to adapt the different driving behaviors of each individual driver25

and prevents them from making decisions for different driving behaviors. There-

fore, adaptive algorithms have been proposed to tackle this issue and achieve

enhanced versions of the FCW systems [9, 10, 11].

Every driver has its own driving style, which seriously affects his decisions

and reactions in different driving situations. These personal mental and physical30
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characteristics, which are summarized as driving behaviors in the literature [12],

can be studied to generate adaptive FCW systems. Different behaviors could

be employed in order to build adaptive FCW algorithms. For instance, braking

and steering styles are two descriptive indicators which have been extensively

used to make up an adaptive model [9, 13].35

Under normal driving conditions, the driver is assumed to be fully focused on

his driving and pay enough attention to road conditions. However, the driver’s

attention is often dispersed in some situations such as talking with passengers

and fatigued driving. In this paper, we call these distracting driving as abnor-

mal driver behaviors. These abnormal behaviors which can be considered as40

one of the driver behavioral modes need to be modeled carefully, since it may

lead to dangerous. For example, 19% of United States total fatalities 2016 are

due to alcohol impaired driving, which is one of the most important abnormal

driver behaviors, as reported by National Highway Traffic Safety Administra-

tion (NHTSA)[14]. To this end, ADAS applications should be appropriately45

designed to generate warnings adaptive to the abnormal driver behavior. This

adaptive design requires a reliable abnormal driving detection mechanism.

In this paper, the abnormal driver behaviors are introduced to build FCW

via an in-vehicle camera to generate collision warnings adaptively. Different

from monitoring vehicle signals, such as acceleration, braking, etc., we propose50

an abnormal driver behavior detection method by directly detecting the driver’s

face. To the best of our knowledge, adaptive FCW based on abnormal driver

behavior has not been proposed in the literature.

The main contributions of our framework are as follows: First, a simple

but effective framework is proposed for forward vehicle collision warning. Since55

it is based on vision information, the framework is inexpensive and easy to

setup. Second, distance information is applied to improve the performance of

forward vehicle detection. Third, an abnormal driver behavior detection method

is proposed to make the proposed FCW adaptive via an in-vehicle camera.

This work is an extension of our earlier conference paper [15]. The more60

detailed method description and the further experimental analysis are shown in
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this version.

The rest of this paper is organized as follows. Section 2 introduces the related

work and Section 3 describes the proposed framework. Experimental results are

demonstrated in Section 4 while conclusion is presented in Section 5.65

2. Related Work

In this section, we will first review the camera calibration algorithms. Then,

some detection methods that are used in FCW will be introduced. Finally,

current adaptive FCW approaches will be discussed.

2.1. Camera Calibration70

Camera calibration has been studied extensively in computer vision and pho-

togrammetry. According to the dimension of the reference, calibrating methods

can be roughly classified into four categories as follows:

3D object-based calibration. Techniques in this category are required

to observe a calibration object whose geometry in 3D space is know with very75

good precision. Calibration can be done efficiently [16]. Since the calibration

object always consists of two or three planes orthogonal to each other. Some-

times a plane undergoing a precisely known translation is also used [17]. These

approaches require an expensive calibration apparatus, and a complex setup.

2D object-based calibration. Camera calibration is performed by ob-80

serving a planar pattern shown at a few different orientations [18, 19]. Different

from 3D-based calibration methods[17], the knowledge of the plane motion is

not necessary. Since such a calibration pattern is easy to be made, the setup

becomes more uncomplicated.

1D object-based calibration. Zhang proposes one-dimensional object85

based calibration in 2004[20]. This method considers 1D objects composed of

a set of collinear points. It uses poorer knowledge of the observation compared

to 2D and 3D object-based calibration methods. However, since the observed

object is too sample, the accuracy of calibration is relatively poor.
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Self-calibration. Techniques in this category don’t utilize any calibration90

objects [21]. By moving a camera in a static scene, the internal parameters of the

camera will be estimated with image information alone. Though no calibration

objects are necessary, a large number of parameters still need to be estimated.

Computational complexity will be greatly increased.

2.2. Vehicle Detection95

Recent years many deep learning methods have been proposed for computer

vision. Wang et al. put forward the attention model [22, 23]. Dong et al.[24]

perform a quadruplet network. Wang et al.[25] propose a dynamic fully con-

volutional network. A deep Q-learning model is introduced by Shen et al.[26].

[27] formulate triplet loss in Siamese network. However, considering the appli-100

cation scenarios of forward vehicle collision warning, traditional methods will

be mainly reviewed in this section. Vehicle detection approaches are divided

into two types : template-based and appearance-based.

Template-based methods. Methods in this category apply predefined

patterns from the vehicle class and perform correlation between the image and105

the template. Li et al. [28] propose an And-Or model that integrates context and

occlusion for detecting vehicles. Felzenszwalb et al. [29] propose deformable part

models(DPM) to structure template model. Each model is composed of parts

with different viewpoints. They detect vehicles by comparing the similarity of

each hypothesis and the DPM models. Leon et al. [30] put forward a template-110

based approach using mixture of deformable parts models. They expand the

original DPM [29] to adapt to crowded scenes. Wang et al. [31] also propose a

probabilistic inference framework based on part models for improving detection

performance. Since these methods detect vehicles by matching template, they

are time consuming.115

Appearance-based methods. Appearance-based methods learn the fea-

tures of vehicles from a set of training images which should capture the variabil-

ity in vehicle appearance. Usually, appearance models treat a two-class pattern

classification problem: vehicle and nonvehicle. Wu and Zhang [32] apply stan-
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dard Principal Components Analysis (PCA) for extracting global features to120

detect vehicles. Owing to small training data set, it is difficult to draw any

meaningful conclusions. Li et al. [33] employ segmentation and neural network

classifier for distinguishing vehicles from background. Khammari et al. [34]

add depth image to set up their appearance models. Apart from the observed

features, Zheng et al. [35] design image strip features based on the vehicle struc-125

ture for vehicle detection. Since features come from the side view of the vehicle,

this detector is sensitive to the viewpoint. Dollar et al. [36] propose aggregate

channel features (ACF) and Yuan et al. [37] improve the features for detection.

2.3. Adaptive FCW

Many variations of deterministic FCW systems have been proposed in litera-130

ture and most of them are evaluated in NHTSA reports [7]. Due to deterministic

FCW cannot adapt different driving behaviors, only adaptive FCW methods will

be reviewed in this section.

Nakaoka et al. [38] regard the variable road friction coefficient as a parameter

to slightly adapt the warning generation criteria of FCW. However, there are no135

specific driver characteristics in the proposed adaptive framework. Chang et al.

[39] employ a fuzzy logic based algorithm to differentiate various bus drivers’

behaviors in terms of some driving parameters, such as perception-reaction time

and braking deceleration, to improve the accuracy of warning in the bus rear-end

collision scenarios. Wang et al. [6] propose a model for driver’s risk perception to140

individualize collision warning generation process. In this model, the accuracy

of the generated warning is tuned according to drivers braking data.

Although the concept of adaptive generating collision warning has been pro-

posed, it seems that the abnormal driver behaviors have not been considered as

an adaptive factor so far. Since abnormal driver behaviors greatly affects drivers’145

crash avoidance reactions, taking it into consideration in designing adaptive col-

lision warning systems will improve the performance.

Abnormals driver behaviors have been considered as a special driver situation

and different modeling methods have been proposed in the literature to identify
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its aspects. Different parameters such as unusual increasing velocity, increasing150

distance from the leading vehicle, abrupt steering wheel movements, reduction

of control on lateral movements, slow reactions to the brake action of leading

vehicle and changes in the driver’s normal glance pattern have been considered

as the different distraction indicators in the literature [40, 41].

Iranmanesh et al. [42] firstly utilize driver distraction which is one of the155

abnormal driving styles to build an adaptive FCW system. They target a com-

binational design of adaptive safety systems with driver distraction detection

in order to reduce annoying false warnings while preserving the required ones.

However, they indirectly utilize driver distraction to build adaptive FCW by

braking data. As a result, the abnormal driving behavior that they find are lim-160

ited. Therefore, in order to take full advantage of abnormal driver behaviors, we

detect them by analyzing the facial expression of the driver in this paper. Owing

to directly using facial information, more abnormal behaviors of the driver can

be found and the performance of FCW will also be better.

3. Our Method165

As mentioned before, the proposed framework will be introduced with two

parts: 1) vision based FCW with camera calibration and multi-scale vehicle

detection. 2) adaptive FCW with abnormal driver behaviors. To simplify the

calibration course, a point-based calibration method [43] is employed to get

camera parameters and to calculate distance from the forward car. During the170

detection course, we expand original ACF detector [36] into a distance-based

multiple scale detector. The distance is not only used for forward collision

warning, but also employed for improving vehicle detection. When generating

collision warnings, an in-vehicle is used to collect driver’s facial information.

A modified version of DSOD [44] is implemented to detect abnormal driver175

behaviors.
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Figure 1: The pinhole imaging model of forward point P. (a) is the projection model and

Eq 1 is derived from it; (b) shows the relation of idealized image coordinate system xO1y to

camera’s pixel location coordinate system uO0v.
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Figure 2: Overview of our detection framework.

3.1. Point-based calibration

Camera calibration is a necessary step in distance measuring with monocular

vision. In engineering practice, the object distances are usually considerably

larger than the focal length of camera. Hence, the pinhole camera model can

be used to measure the distance. The geometry relationship of actual point P

on the ground and its projection point on the image plane P1 is shown in Fig

1(a). According to [45], the distance from point P to camera is:

d =
h

tan(α+ arctan[|(y0 − y)/f |])
, (1)

Here, α is the pitch angle of the camera; h is the height of the camera from the

ground; (x0, y0) is the cross point of optical axis of the camera and the image

plane; and y is the vertical coordinate of P1. In order to simplify the calibration180

process, let dx, dy denote the physical dimension of one pixel along the x-axis

and the y-axis separately. Then the coordinates of point P1 in the image physical
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coordinate plane xO1y and its position in the image pixel reference frame uO0v

are related by the transformation equation:

u =
x

dx
+ u0, v =

y

dy
+ v0, (2)

In theory, as the corresponding pixel location of (x0, y0), (u0, v0) usually locates

in the center of image. But in fact, there might be slight departure due to

fabrication. In that case, u0 and v0 need to be measured. So, Eq. 1 can be

expressed as

d =
h

tan(α+ arctan[|(v0 − v)/fy|])
. (3)

Here, fy = f/dy. Hence, we can get the distance d by solving the ratio fy rather185

than calculating the optical length and pixel physical dimension separately.

In practice, the height of camera h can be measured after the camera is

mounted on the car. Therefore, the distance from forward point to camera is

determined by the camera parameters fy, v0, α, and the vertical coordinate of

point in the pixel coordinate system v. Supposed that we have already got three

calibration points. Their distances from camera are (d1, d2, d3), and locations

(u1, v1), (u2, v2), (u3, v3) in pixel coordinate system. The height of camera from

the ground h is measured. Then we can get the camera parameters by solving

equations as below:
d1 = h/ tan(α+ arctan[(v0 − v1)/fy])

d2 = h/ tan(α+ arctan[(v0 − v2)/fy])

d3 = h/ tan(α+ arctan[(v0 − v3)/fy])

(4)

Obviously, Eq. 4 is hard to solve as a nonlinear equation system. To sim-

plify the calculation, we established two linear equation systems by variable

substitution. Firstly, Eq. 3 can be written as

d = h
fy −B(v − v0)

Bfy + (v − v0)
, (5)

where B = tanα. Let

C = d · v, (6)
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Eq. 5 can be expressed as

d(v0 −Bfy) + h(fy +Bv0)− vBh = C. (7)

Next, let 
x1 = v0 −Bfy

x2 = fy +Bv0

x3 = B

(8)

Eq 7 can be transformed into

dx1 + hx2 − vhx3 = C. (9)

Eq. 8 means that if x1, x2, x3 are known, fy, v0, B can be calculated. Then the

values of fy, v0, α will be obtained by the definition of B = tanα. In order to

solve x1, x2, x3, we write Eq. 9 into its matrix form as follows

x = M−1c. (10)

Here,

M =


d1, h, −v1h

d2, h, −v2h

d3, h, −v3h

 , x =


x1

x2

x3

 , c =


C1

C2

C3

 , (11)

Camera height h, distance from points to the camera (d1, d2, d3) and corre-

sponding coordinates (v1, v2, v3) are known. What’s more, C1, C2, C3 can be

calculated according to Eq. 6. Put all of them into Eq.10, x1, x2, x3 can be

solved and the results of Eq. 9 are
B = x3

fy = x2 − x3(x1 + x2x3)/(x23 + 1).

v0 = (x1 + x2x3)/(x23 + 1)

(12)

According to B = tanα, camera parameters fy, v0, α are calculated. We can ob-

tain distance by Eq. 3. Up till now, we have estimated the relevant parameters

for measuring distance from forward vehicle to the camera.190
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This algorithm needs only three fixed points to complete the calibration,

which greatly reduces the computational complexity. Different from traditional

ones in Section 2.1, this method estimates less parameters (only fy, v0, α and

h) with the purpose of measuring distance. Estimating less parameters makes

the calibration course easy to setup.195

3.2. Multi-scale detection

When detecting forward vehicles, one of the greatest challenge is that vehicles

have various scales at different distances. Multi-scale and multi-aspect ratio

make this problem difficult. Due to perspective principle of the camera, the

features of vehicles will change with different size. The structural feature is200

significant when the forward vehicle is near. However, when forward vehicles

are far, they are made up of a few pixels in the image plane. We can hardly get

structural features in this situation. Therefore, we apply color based features

[36] to detect forward vehicles and distance information is employed to tackle

multi-scale problem.205

The proposed detection framework is exhibited in Fig. 2. Given an input

image I, we compute its channel features. Then the boosting is used to train

and combine decision trees over these channel features to distinguish object

from background. Next, a distance based multi-scale sliding window approach

is employed to detect vehicles. Fig.3 illuminates the major differences between210

original ACF detector and the proposed detector. Windows with various scales

will slide the whole image in the ACF detector, while the proposed detector uses

several windows with certain scale and aspect ratio to slide part of the image.

Due to applying diverse windows in different vertical coordinates, the proposed

method will be less time consuming.215

The scale of sliding windows is related to distances between cars and the

camera. Eq. 3 can be changed into the following form:

v = v0 − fy tan(arctan
h

d
− α). (13)

Eq. 13 is the foundation of multi-scale detection with distance prior. It indicates
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Figure 3: The difference between original ACF detector and our detector.

that if v0, fy and α are estimated, the vertical coordinate can be obtained by

giving the real distance d. Therefore, we build a mapping from forward distance

to the vertical coordinate in the image plane.

The distance prior can be calculated with a calibrated camera according to220

Eq. 13. When camera calibration is completed, we can not only obtain distance

from for ward vehicles to the camera, but also get locations in the image plane

according to the distance conversely. Table 1 demonstrates some scales of sliding

windows in different distance.

Table 1: The change of aspect ratio at different distances

distance / m scale vertical coordinate / pixel

5 400 × 275 482

10 110 × 95 325

20 50 × 45 260

On account of the mapping from forward distance to the vertical coordinate,225

we don’t need to slide various size of windows in the whole image. According to

the distance prior, we can use multiple scale sliding windows in different vertical

coordinates on the image. The size of sliding window can be determined by

statistics. During the statistical process of window size, we discover that not

only the scale but also the aspect ratio of forward vehicles will change as the230
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distance varies. When the vehicle is far, its scale is small and the aspect ratio

will be approximate to 1:1. However, the aspect ratio of vehicles will change

into nearly 1.5:1 when they are close to the camera, e.g. 5 meters.

The reason for the change of aspect ratio is the extension distortion caused by

wide-angle camera. Since drive recorders always utilize the wide-angle camera,235

the change of aspect ratio does exist in practice. Although extension distortion

can be calibrated and corrected, we don’t calibrate it in practice. Calibrating

more parameters will make calibration course more difficult to setup. However,

when measuring the distance of a forward vehicle, extension distortion will not

affect this course. For the reasons above, extension distortion is ignored in the240

calibration course.

According to the distance prior, our multi-scale detection could search ve-

hicles in different distance with a certain scale. The main advantages of our

multi-scale detection are as follows: First, we relieve the multi-scale problem in

forward vehicle detection. Then, due to sliding window with a certain scale in245

different locations in an image, the proposed method speeds up the detection

course. Hence, our multi-scale detector can be faster than the original one and

reach 50fps on CPU.

3.3. Abnormal driver behavior detection

In a real traffic scene, drivers do not always focus on the front. They will be250

affected by some abnormal behaviors such as fatigue, distraction, phone, and so

on. Therefore, reaction time of the driver will keep changing. In this section,

an abnormal driver behavior detection method is proposed to make the FCW

system adaptive.

The most important thing in abnormal driver behavior detection is how to255

define abnormal behaviors. An in-vehicle camera shoots the driver’s face con-

tinuously. The inappropriate definition will lead to unsatisfying false warnings.

As a result, only those activities that affect driving safety is defined as abnor-

mal behaviors. Specifically, the following behaviors are considered as abnormal:

yawn, sleep, phone, head down, glance right and left.260
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Table 2: The architecture of FDSOD

Layer FDSOD

Stem

Convolution 3× 3 conv, stride 2

Convolution 3× 3 conv, stride 1

Convolution 3× 3 conv, stride 1

Pooling 2× 2 max pool, stride 2

Dense Block (1)

1× 1 conv

3× 3 conv

× 6

Transition Layer
1× 1 conv

2× 2 max pool, stride 2

Dense Block (2)

1× 1 conv

3× 3 conv

× 8

Transition w/o Pooling Layer 1× 1 conv

Different facial states is applied to judge whether the driver is abnormal or

not. However, when detecting abnormal behaviors, face components detection

methods will not be utilized. Due to the diversity of face states, components

based methods, such as blinking detection, cannot cover all these abnormal

behaviors. Approaches that monitor the whole face state are supposed to be265

used. On the other hand, the hand-crafted features such as HOG, Haar-like do

work in face detection, however, they will fail in abnormal detection with facial

states. Traditional features are not sufficient to distinguish changes in facial

states. Therefore, a deep learning based method is proposed in this section to

detect abnormal behaviors.270

We propose an improved version of DSOD [44] that is called FDSOD (Fast

Deeply Supervised Object Detectors) to detect abnormal behaviors. The pro-

posed method is a multi-scale proposal-free detection framework. The network

structure can be divided into two parts: the backbone sub-network for fea-

ture extraction and the front-end sub-network for prediction over multi-scale275

response maps. The backbone sub-network is composed of a stem block, two
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dense blocks, one transition layers and one transition w/o pooling layer. The

front-end sub-network for prediction which is the same as DSOD fuses multi-

scale prediction responses with an elabrated dense structure.

Table 2 shows the architecture of FDSOD. The stem block which consists of280

three 3×3 convolution layers followed by a 2×2 max pooling layer can reduce

the information loss from raw input images. The reward of stem block have

proven to be significant for detection performance in [44]. Each transition layer

contains a pooling operation to down-sample the feature maps. A dense block

connects all preceding layers to the current layer. This structure can reduce the285

number of parameters. Fewer parameters make the model faster. Due to dense

connection, information loss among layers is also decreased. In original design

of DenseNet [46] the number of dense blocks is fixed. However, introducing

transition w/o pooling layer [44] eliminates this restriction of the number of

dense blocks. According to this design thought, we propose the FDSOD.290

Compared with DSOD, the proposed structure remove two dense blocks, one

transition layer and one transition w/o pooling layer. Though we remove some

layers of the network, the performance of FDSOD doesn’t decrease too much.

The main reason that some layers are removed is the speed limitation of DSOD.

As we all know, the FCW systems need to handle various situations in real295

time. Thence, abnormal driver behavior detection is also supposed to be real

time. Besides removing these layers, semi-precision optimization is applied for

Caffe layer to reduce computing time. The proposed FDSOD can reach 25fps

in NVIDIA TX1 while DSOD is 8fps under the same conditions. For the same

reason, some recent deep learning techniques such as [23, 27] will not be applied.300

These networks can improve the performance of driver behavior detection, but

slow down the whole FCW system.

Since the driver needs some time to recover from an abnormal state, we test

people’s responses time to alerts in different abnormal behaviors. The results

showed that two seconds are enough for the driver to respond to the warning305

information. Therefore the warning of FCW will be start two seconds in advance

when abnormal behaviors are detected.
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4. Experiment

To demonstrate the capabilities of the presented adaptive FCW framework,

extensive experiments are conducted and evaluated. In this section, we will310

introduce the experiment from the following three aspects: camera calibration,

multi-scale vehicle detection and abnormal driver behavior detection.

Table 3: Experimental results of camera calibration

Car No. d / m d’ / m e∗ / m er / %

1 5.00 5.00 0.00 0.00

2 7.00 6.98 0.02 0.29

3 9.00 9.08 0.08 0.89

4 11.00 11.11 0.11 1.00

5 13.00 13.23 0.23 1.77

6 15.00 15.26 0.26 1.73

7 17.00 17.31 0.31 1.82

4.1. Validation of camera calibration

In the proposed adaptive FCW framework, the in-vehicle camera which de-

tects abnormal driver behaviors does not need to be calibrated. Only the camera315

that measures distance requires to be calibrated.

In our experiment, the images comes from the camera of ordinary driving

recorder and its size is 1280 × 720. The height of the camera is 122.5cm, and

three fixed points used for the calibration are 4m, 5m and 7m away from the

camera. Their vertical coordinate are 461, 428, 383. Following the calibration320

steps mentioned in Section 3.1, we obtain camera parameters for measuring

distance. The calibration results are α = 0.1194rad, fy = 1094.313 and v0 =

363.331. Then a set of test cars are substituted into the algorithm to detect its

measurement error. The estimated distance is denoted by d′. The absolute error

and relative error can be expressed separately as e∗ = |d − d′| and er = e∗/d.325

The measuring results are demonstrated in Table 3.
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As illustrated in Table 3, this algorithm performs well when the points are

near, and relative errors increase with the distance becomes far. This is because

that along with the object getting farther, one pixel on the image covers longer

distance. In other words, if one pixel represents several centimeters in the near,330

it may represent several meters in the far distance. It is an inherent defect of

monocular vision.

4.2. Validation of multi-scale vehicle detection

In order to illustrate the performance of the proposed detection method,

comparisons are made between our detector and [47, 28, 48, 36]. All of these335

methods are trained by KITTI car detection dataset [49] and tested on 5400

images of real scene collected by ourselves. The test images come from 30

different driving videos taken by the same recorder. These videos cover urban

road, highway, night, rainy and other situations. Each video is 3 minutes with

30 fps, and test images are selected every one second. Considering the limitation340

of computing resource in the practical application, deep learning methods will

not be compared in this section.

Table 4 shows the comparisons of detection rate and FPPI (false positive

per image). Benefiting from distance prior, our detector has the knowledge of

vehicle size in different vertical coordinates. FPPI decreases obviously, which345

means less false detection occurs during our framework. Because we have certain

scales in different vertical coordinates, our detector performs better. Besides,

Table 4: Comparison of various detection methods

Detection rate FPPI Time(s)/frame

DPM [47] 91.23% 0.098 4.0

And-Or [28] 89.08 % 0.133 3.0

SubCat [48] 92.70 % 0.087 0.7

ACF [36] 94.02 % 0.065 0.04

Ours 96.61% 0.046 0.02
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Figure 4: Overview of the data set.

certain scales also decrease the number of sliding windows. It also makes the

proposed detector faster than others.

Our multi-scale detection framework can achieve 50 frames per second on350

Intel i5 quad core CPU with 3.20GHz, which can meet the requirements of other

automatic driving and assistance driving applications besides forward vehicle

collision warning in the future.
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Table 5: Experimental results of abnormal behavior detection

Method fps mAP Down Left Right Sleep Phone Yawn Normal

DSOD

[44]

8 95.6% 99.0% 98.1% 98.7% 96.3% 94.5% 88.3% 94.6%

Ours 25 91.6% 96.5% 95.7% 95.1% 92.2% 90.2% 82.6% 88.7%

Baseline

[50]

3 83.1% 88.2% 86.4% 86.1% 83.7% 81.8% 74.9% 80.3%

4.3. Validation of abnormal driver behavior detection

We build our own data set to evaluate the performance of abnormal driver355

behavior detection. The data set has 17500 images and six facial states: yawn,

sleep, phone, head down, glance right, glance left and normal. Each facial state

has 2500 samples. We use 2000 samples to be train set and 500 samples to be

test set. Since some behaviors, such as phone and sleep, are dangerous in real

driving situations, we obtain such dangerous behaviors when parking. Figure 4360

illustrates some examples of the data set. Images in our data set cover different

illumination, daytime and night. After arranging, the data set will be released

soon.

From a practical point of view, abnormal driver detection is performed on

NVIDIA TX1 with 56 core Pascal GPU. Table 5 shows the experiment results.365

In the experiment, we regard Faster RCNN [50] as the baseline. After prun-

ing the network structure of DSOD, the performance of the proposed FDSOD

doesn’t decrease a lot. However, the processing time of our method is nearly

three times than DSOD. And the speed of 25fps is also achieve the real-time

requirements.370

5. Conclusion

In conclusion, we propose a vision based adaptive forward vehicle collision

warning framework. Easy and efficient calibration method makes our framework
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convenient to build. Multi-scale detector improves detection accuracy and de-

crease time consumption. Innovatively introducing abnormal driver behaviors375

detection via an in-vehicle camera makes FCW to generate warnings adaptively.

The entire FCW framework can run in real time, which makes our work highly

practical.

6. Acknowledgement

This work was supported by the National Natural Science Foundation of380

China under Grant U1864204 and 61773316, State Key Program of National

Natural Science Foundation of China under Grant 61632018, and Project of

Special Zone for National Defense Science and Technology Innovation.

References

[1] N. C. for Statistics, Analysis, Summary of motor vehicle crashes : 2015385

data.

[2] G. R. Widmann, W. A. Bauson, S. W. All, Development of collision avoid-

ance systems at delphi automotive systems, in: IEEE International Con-

ference on Intelligent Vehicles, Vol. 2, 1998.

[3] Y. Yuan, J. Fang, Q. Wang, Incrementally perceiving hazards in driving,390

Neurocomputing 282 (2018) 202 – 217.

[4] S. K. Kenue, Selection of range and azimuth angle parameters for a forward

looking collision warning radar sensor, in: Proceedings of the Intelligent

Vehicles ’95 Symposium, 1995, pp. 494–499.

[5] N. Srinivasa, Y. Chen, C. Daniell, A fusion system for real-time forward395

collision warning in automobiles, in: Proceedings of the IEEE International

Conference on Intelligent Transportation Systems, Vol. 1, 2003, pp. 457–

462.

20



[6] J. Wang, C. Yu, S. Li, L. Wang, A forward collision warning algorithm with

adaptation to driver behaviors, IEEE Transactions on Intelligent Trans-400

portation Systems 17 (4) (2016) 1157–1167.

[7] R. J. Kiefer, M. T. Cassar, C. A. Flannagan, D. J. Leblanc, M. D. Palmer,

R. K. Deering, M. A. Shulman, Forward collision warning requirements

project: Refining the camp crash alert timing approach by examining ”last-

second” braking and lane change maneuvers under various kinematic con-405

ditions.

[8] S. M. Iranmanesh, E. Moradi-Pari, Y. P. Fallah, S. Das, M. Rizwan, Ro-

bustness of cooperative forward collision warning systems to communica-

tion uncertainty, in: Systems Conference, 2016, pp. 1–7.

[9] J. Wang, C. Yu, S. E. Li, L. Wang, A forward collision warning algo-410

rithm with adaptation to driver behaviors, IEEE Transactions on Intelli-

gent Transportation Systems 17 (4) (2016) 1157–1167.

[10] L. Zhang, L. Zhang, D. Zhang, K. Li, An adaptive longitudinal driving

assistance system based on driver characteristics, IEEE Transactions on

Intelligent Transportation Systems 14 (1) (2013) 1–12.415

[11] F. Muehlfeld, I. Doric, R. Ertlmeier, T. Brandmeier, Statistical behavior

modeling for driver-adaptive precrash systems, IEEE Transactions on In-

telligent Transportation Systems 14 (4) (2013) 1764–1772.

[12] A. Sathyanarayana, P. Boyraz, J. H. L. Hansen, Driver behavior analysis

and route recognition by hidden markov models, in: IEEE International420

Conference on Vehicular Electronics and Safety, 2015, pp. 276–281.

[13] S. Sekizawa, S. Inagaki, T. Suzuki, S. Hayakawa, N. Tsuchida, T. Tsuda,

H. Fujinami, Modeling and recognition of driving behavior based on

stochastic switched arx model, IEEE Transactions on Intelligent Trans-

portation Systems 8 (4) (2007) 593–606.425

21



[14] N. C. for Statistics, Analysis, Alcohol impaired driving: 2016 data.

[15] Y. Lu, Y. Yuan, Q. Wang, Forward vehicle collision warning based on

quick camera calibration, in: IEEE International Conference on Acoustics,

Speech and Signal Processing, 2018, pp. 2586–2590.

[16] P. K. Ghosh, S. P. Mudur, Three-dimensional computer vision: A geometric430

viewpoint, The Computer Journal 12 (1) (1995) 475–475.

[17] R. Tsai, A versatile camera calibration technique for high-accuracy 3d ma-

chine vision metrology using off-the-shelf tv cameras and lenses, Robotics

and Automation IEEE Journal of 3 (4) (1987) 323–344.

[18] Z. Zhang, A flexible new technique for camera calibration, IEEE Transac-435

tions on Pattern Analysis and Machine Intelligence 22 (11) (2000) 1330–

1334.

[19] P. F. Sturm, S. J. Maybank, On plane-based camera calibration: A general

algorithm, singularities, applications, in: IEEE Conference on Computer

Vision and Pattern Recognition, 1999, pp. 1432–1437.440

[20] Z. Zhang, Camera calibration with one-dimensional objects, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 26 (7) (2004) 892–9.

[21] M. Pollefeys, Multiple view geometry, Encyclopedia of Biometrics 2 (9-10)

(2000) 181–186.

[22] W. Wang, J. Shen, H. Ling, A deep network solution for attention and445

aesthetics aware photo cropping, IEEE Transactions on Pattern Analysis

and Machine Intelligence 41 (7) (2019) 1531–1544.

[23] W. Wang, J. Shen, Deep visual attention prediction, IEEE Transactions on

Image Processing 27 (5) (2018) 2368–2378.

[24] X. Dong, J. Shen, D. Wu, K. Guo, X. Jin, F. Porikli, Quadruplet network450

with one-shot learning for fast visual object tracking, IEEE Transactions

on Image Processing 28 (7) (2019) 3516–3527.

22



[25] W. Wang, J. Shen, L. Shao, Video salient object detection via fully con-

volutional networks, IEEE Transactions on Image Processing 27 (1) (2018)

38–49.455

[26] X. Dong, J. Shen, W. Wang, Y. Liu, L. Shao, F. Porikli, Hyperparameter

optimization for tracking with continuous deep q-learning, in: IEEE Con-

ference on Computer Vision and Pattern Recognition, 2018, pp. 518–527.

[27] X. Dong, J. Shen, Triplet loss in siamese network for object tracking, in:

European Conference on Computer Vision, 2018, pp. 472–488.460

[28] B. Li, T. Wu, S. Zhu, Integrating context and occlusion for car detection by

hierarchical and-or model, in: European Conference on Computer Vision,

2014, pp. 652–667.

[29] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, D. Ramanan, Object

detection with discriminatively trained part-based models, IEEE Transac-465

tions on Pattern Analysis and Machine Intelligence 32 (9) (2010) 1627–

1645.

[30] L. C. Leon, R. H. Jr, Vehicle detection using mixture of deformable parts

models: Static and dynamic camera, in: Sibgrapi Conference on Graphics,

Patterns and Images, 2012, pp. 237–244.470

[31] C. Wang, Y. Fang, H. Zhao, C. Guo, Probabilistic inference for occluded

and multiview on-road vehicle detection, IEEE Transactions on Intelligent

Transportation Systems 17 (1) (2016) 215–229.

[32] J. Wu, X. Zhang, A pca classifier and its application in vehicle detection,

in: International Joint Conference on Neural Networks, 2001, pp. 600–604.475

[33] X. Li, X. Yao, Y. L. Murphey, R. Karlsen, G. Gerhart, A real-time vehicle

detection and tracking system in outdoor traffic scenes, in: International

Conference on Pattern Recognition, 2004, pp. 761–764.

23



[34] A. Khammari, F. Nashashibi, Y. Abramson, C. Laurgeau, Vehicle detection

combining gradient analysis and adaboost classification, in: IEEE Trans-480

actions on Intelligent Transportation Systems, 2005, pp. 66–71.

[35] W. Zheng, L. Liang, Fast car detection using image strip features, in: IEEE

Conference on Computer Vision and Pattern Recognition, 2009, pp. 2703–

2710.

[36] P. Dollár, R. Appel, S. J. Belongie, P. Perona, Fast feature pyramids for485

object detection, IEEE Transactions on Pattern Analysis and Machine In-

telligence 36 (8) (2014) 1532–1545.

[37] Y. Yuan, Z. Xiong, Q. Wang, An incremental framework for video-based

traffic sign detection, tracking, and recognition, IEEE Transactions on In-

telligent Transportation Systems 18 (7) (2017) 1918–1929.490

[38] M. Nakaoka, P. Raksincharoensak, M. Nagai, Study on forward collision

warning system adapted to driver characteristics and road environment,

in: International Conference on Control, Automation and Systems, 2008,

pp. 2890–2895.

[39] C. Y. Chang, Y. R. Chou, Development of fuzzy-based bus rear-end col-495

lision warning threshols using a driving simulator, IEEE Transactions on

Intelligent Transportation Systems 10 (2) (2009) 360–365.

[40] D. J. Simons, Examining cognitive interference and adaptive safety be-

haviours in tactical vehicle control, Ergonomics 50 (8) (2007) 1340–1350.

[41] B. Donmez, L. N. Boyle, J. D. Lee, Safety implications of providing real-500

time feedback to distracted drivers., Accident Analysis and Prevention

39 (3) (2007) 581–590.

[42] S. M. Iranmanesh, H. N. Mahjoub, H. Kazemi, Y. P. Fallah, An adaptive

forward collision warning framework design based on driver distraction,

IEEE Transactions on Intelligent Transportation Systems PP (99) (2018)505

1–10.

24



[43] C. Lin, F. Su, H. Wang, J. Gao, A camera calibration method for obstacle

distance measurement based on monocular vision, in: International Con-

ference on Communication Systems and Network Technologies, 2014, pp.

1148–1151.510

[44] Z. Shen, Z. Liu, J. Li, Y. Jiang, Y. Chen, X. Xue, DSOD: learning deeply

supervised object detectors from scratch, in: IEEE International Confer-

ence on Computer Vision, 2017, pp. 1937–1945.

[45] R. Wang, L. I. Bin, J. Chu, J. I. Shouwen, Study on the method of measur-

ing the leading vehicle distance based on the on-board monocular camera,515

Journal of Highway and Transportation Reseach Andk Development.

[46] G. Huang, Z. Liu, L. V. D. Maaten, K. Q. Weinberger, Densely connected

convolutional networks, in: IEEE Conference on Computer Vision and Pat-

tern Recognition, 2017, pp. 2261–2269.

[47] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, D. Ramanan, Object520

detection with discriminatively trained part-based models, IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 32 (9) (2010) 1627–

1645.

[48] E. Ohn-Bar, M. M. Trivedi, Learning to detect vehicles by clustering ap-

pearance patterns, IEEE Intelligent Transportation Systems 16 (5) (2015)525

2511–2521.

[49] A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving? the

kitti vision benchmark suite, in: IEEE Conference on Computer Vision and

Pattern Recognition, 2012.

[50] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object530

detection with region proposal networks, IEEE Transactions on Pattern

Analysis and Machine Intelligence 39 (6) (2017) 1137–1149.

25


	Introduction
	Related Work
	Camera Calibration
	Vehicle Detection
	Adaptive FCW

	Our Method
	Point-based calibration
	Multi-scale detection
	Abnormal driver behavior detection

	Experiment
	Validation of camera calibration
	Validation of multi-scale vehicle detection
	Validation of abnormal driver behavior detection

	Conclusion

