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Abstract—Spectral clustering has been widely used in various
aspects especially the machine learning fields. Clustering with
similarity matrix and low-dimensional representation of data
is the main reason of its promising performance shown in
spectral clustering. However, such similarity matrix and low-
dimensional representation directly derived from input data
may not always hold when the data is high-dimensional and
has complex distribution. First, the similarity matrix simply
based on distance measurement might not be suitable for all
kinds of data. Second, the low-dimensional representation might
not be able to reflect the manifold structure of the original
data. In this paper, we propose a novel linear space embedded
clustering method which uses adaptive neighbors to address the
above problems. Linearity regularization is used to make the
data representation have a linear embedded spectral. We also
use adaptive neighbors to optimize the similarity matrix and
clustering results simultaneously. Extensive experimental results
show promising performance compared with other state-of-the-
art algorithms.

Index Terms—machine learning, spectral clustering, spectral
embedded clustering, adaptive neighbors.

I. INTRODUCTION

CLUSTERING is a fundamental approach in the machine
learning fields. Many clustering methods have been suc-

cessfully applied in the data mining applications. Among them,
the spectral clustering shows remarkable results because it can
capture the structure information which conforms to manifold
assumption. Another property of spectral clustering is that it
is a graph based algorithm. The manifold assumption means
that the nearby data points should have the same labels because
the data should be formed in a certain manifold structure. This
assumption can hold on many low-dimensional data while the
high-dimensional or sparse data might violate this hypothesis.
In [1], [2], rank constraint of Laplacian matrix is added to
update the similarity graph and get a better result. In [3],
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a kernel based support vector clustering method is proposed
to capture more complex data structure. In [4], [5] and [6],
several methods which find the largest margin in the low-
dimensional data space is proposed. In[7], a spectral embedded
clustering method is proposed to address this problem. The
main idea of this method is that they use a linear mapping to
make the data fit the manifold assumption. In this way, the
spectral clustering can be extended to high-dimensional data.
Although many methods are proposed to fix the problem of
high-dimensional and sparse data, the challenge in reasonably
representing data still exists. In [8], a novel convex algorithm is
proposed to address the problem of altered manifold properties
in reduced-dimensional subspace. The starting point of low-
dimensional representation is the same as this work, but we
utilized a different way to solve this problem.

Another part of difficulty in clustering data is the backend
process after the data representation. Many methods use K-
means [9], [10], [11] as its backend process to obtain the
discrete clustering labels. K-means is a simple and effective
method which might be the most widely used one, but there is
still one big problem, which is the initialization problem. With-
out good enough initialization, the K-means method might
perform badly.

In order to address these problems, namely the difficulties
in stably representing and clustering data, we propose the
spectral embedded adaptive neighbors clustering (SEANC)
algorithm. SEANC uses a two-stage framework containing
spectral embedded representation of data and adaptive neigh-
bors clustering. The embedded representation stage is used
to process the high-dimensional data which might violate
the manifold assumption. The adaptive neighbors clustering
stage is used to optimize the similarity graph and obtain a
stable clustering results. The novelty of our method can be
summarized in three parts: 1. The proposed method can learn
an effective linear embedded representation that can handle
high-dimensional and sparse data. 2. The proposed method is
proved to be a generalization of PCAN [12]. 3. The proposed
method gains good performance when comparing with some
state-of-the-art methods. Meanwhile, the effectiveness of our
method when dealing high-dimensional and sparse data is
examined.

A. Notation

All of the matrices and vectors are written in uppercase
while the scalars are written in lowercase. For instance, M
represents a matrix, Mi is the i-th column and Mij is the ij-
th element of M . ‖·‖F and ‖·‖2 mean the Frobenius norm
and the L2 norm respectively. Tr(·) demonstrates the trace
operation.
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II. RELATED WORK

A. Revisiting Spectral Clustering

The spectral clustering method can be seen as a graph
theory based method. The main target of spectral clustering
is to divide a dataset X = {x1, · · · , xn} ∈ Rd×n into c
parts, in which d and n are the dimension and the number of
input data respectively. Based on the graph theory, the spectral
clustering is to find the optimal graph partition and separate
the data. Denote G = (X,E) as an undirected graph. Let
W be the weighted adjacency matrix which demonstrates the
relationship of data. We have [13]:

Wij = exp(−
‖xi − xj‖22

2σ2
). (1)

The parameter σ is used for adjusting the neighborhood size.
The adjacency matrix can be changed with the largest k
elements reserved. Define D as the diagonal degree matrix
composed of Dii =

∑n
j=1Wij . The Laplacian matrix is

defined as:
L = D −W. (2)

In some works, normalized Laplacian matrices are used:

Lsym = I −D− 1
2WD

1
2 (3)

and
Lrw = I −D−1W. (4)

We use L∗ to demonstrate these forms of Laplacian matrix.
The optimization of spectral clustering can be formulated as
[14]:

min
F

Tr(FTL∗F ),

s.t. FTF = I.
(5)

The optimal solution to F is composed of eigen-
decomposition. It is composed of eigenvectors corresponding
to the Laplacian matrix, while the obtained F is the relaxed
solution compared with discrete form of labels.

One way to convert the partition matrix F into labels is
using K-means [15]. Another method is to utilize the or-
thonormal invariance of partition. Denote ε(·) as the objective
function of spectral clustering. The relation between partition
and rotation matrices are:

ε(FR) = ε(F ),

s.t. RTR = I.
(6)

In [14], the inverse mapping from partition matrix F to label
YF is defined as:

YF = f−1(F ) = Diag(Diag(FFT )−
1
2 )F. (7)

Then, the optimization of discrete solution can be formulated
as:

min
Y,R
‖Y − YFR‖2 ,

s.t. Y ∈ {0, 1}d×n, Y 1 = 1, RTR = I.
(8)

B. Nonlinear Embedding

In [16], two kinds of spectral nonlinear embedding methods
are proposed. The first one is the kernel-based method. The
nonlinear embedding problem can be written as:

min
F,α

Tr(FTL∗F ) + µ(‖Kα− F‖2 + γgTr(α
TKα)),

s.t.FTF = I,
(9)

in which K is a symmetric kernel matrix and α =
[α1, · · · , αn]T ∈ Rn×c.

The second one is the spectral nonlinearly embedded clus-
tering model based on extreme learning machine (ELM). We
have:

min
F,β

Tr(FTL∗F ) + µ(‖Helmβ − F‖2 + γgTr(β
Tβ)),

s.t.FTF = I,
(10)

where Helm represents the output of ELM.
In fact, both these two methods utilize a nonlinear embed-

ding function to fit the manifold assumption of original data
and gains the ability of handling the out-sample data.

III. GENERAL FRAMEWORK FOR SEANC

In this section, we will describe the detailed derivation of
SEANC. In order to deal with high-dimensional or sparse
data which breaks the manifold assumption, we use linear em-
bedded low-dimensional representation [7]. Different from the
previous methods, we treat the low-dimensional representation
as a kind of data itself and cluster with such representation
instead of the original data. We use a two-stage method to
address the above problems.

A. Spectral Embedded Representation

According to [7], the clustering results can be regarded as a
linear mapping of the original data, which can be written as:

Y = XTW + 1bT , (11)

in which Y is the one-hot assignment matrix, W ∈ Rd×c and
b ∈ Rc×1 are the mapping matrices. The definition of X is the
same as related work section. This assumption has been well
studied in [17], [18], which holds for most high-dimensional
data.

As shown in the related work section, the objective function
of spectral clustering is:

min
F

Tr(FTL∗F ),

s.t. FTF = I. (12)

In order to make the data have more useful low-dimensional
representation, the linear embedded regularization term is
added. The basic idea is to minimize the differences between
the relaxed assignment matrix F and the label matrix Y . In
this way, the spectral embedded representation can be written
as:

min
F,W,b

Tr(FTL∗F ) + λ(‖Y − F‖2 + µTr(WTW )),

s.t. FTF = I, (13)
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in which λ and µ are the parameters used for adjust the weight
of different tasks and regularization terms.

In order to optimize Eq. 13, we utilize eigenvalue decom-
position to solve this problem. Making the derivatives of W
and b in Eq. 13 into zero, the results can be:

b =
1

n
FT 1, (14)

W = (XXT + µI)−1X. (15)

Substituting W and b into Eq. 13, the objective function can
be:

min
F

Tr(FT (L∗ + λ(Hn −XT (XXT + µI)−1)X)F ),

s.t. FTF = I, (16)

in which Hn is the centering matrix.
The optimal solution to Eq. 16 can be regarded as a new

kind of representation extracted from the original data. Such
representation contains both spectral and linear data mapping
information. Different from the classical spectral clustering
method, we use an adaptive neighbors method instead of the
K-means method to get the cluster assignment matrix.

B. Adaptive Neighbors Clustering

Our goal is to find a method that is able to find the cluster
assignment matrix from the above spectral embedded represen-
tation F . Based on Ky Fan’s theorem [19], a similarity matrix
which contains c components can be used for clustering with
c classes. In this way, we can convert the cluster assignment
problem into the following ways [20], [21]:

min
S

n∑
i,j=1

‖fi − fj‖22 sij ,

s.t. sTi 1 = 1, sij > 0, (17)

in which S is the similarity matrix with si ∈ Rn×1 as a vector
and fi is the i-th sample from the embedded spectral output
F . However, the above problem has a trivial solution that the
nearest data point is the most similar one. In order to tackle
this problem, we use a prior knowledge which doesn’t consider
the relationships between the spectral embedded samples:

min
S

n∑
i,j=1

s2ij ,

s.t. sTi 1 = 1, sij > 0. (18)

By combining Eq. 17 and Eq. 18, we have the adaptive
neighbors objective function and its matrix form:

min
S

n∑
i,j=1

(‖fi − fj‖22 sij + αs2ij)

⇔ min
S
Tr(FTL∗FF ) + α ‖S‖2F ,

s.t. sTi 1 = 1, sij > 0.

(19)

in which L∗F is the Laplacian matrix corresponding to the
spectral embedded representation F and α is the regularization
parameter.

According to Ky Fan’s theorem, if the clustering results
have c clusters, the similarity matrix should have exactly c
components. Also, we have the following theorem [22], [23]:

Theorem 1: The multiplicity c of the eigenvalue 0 of the
Laplacian matrix L (nonnegative) is equal to the number of
connected components in the graph with the similarity matrix
S.

From theorem 1 we can see that the number of cluster
is subject to the rank of Laplacian matrix. If the rank of
Laplacian matrix equals n − c, the cluster result would have
exactly c clusters. As a result, we add the rank constraint to
the original objective function, which is:

min
S
Tr(FTL∗FF ) + α ‖S‖2F ,

s.t. sTi 1 = 1, sij > 0, rank(L∗F ) = n− c.
(20)

C. Optimization

In the previous sections, we propose a two-stage method.
The optimization of the spectral embedded representation
in Eq. 16 is relatively simple while the adaptive neighbors
clustering with rank constraint is difficult to solve. In this
section, we propose the optimization approach to solve Eq.
20.

Without loss of generality, denote {e1, · · · , en} as the
eigenvalues of Laplacian matrix L∗F in ascending order. As
shown in [19], we have:

c∑
i=1

ei =min
G

Tr(GTL∗FG),

s.t. GTG = I,G ∈ Rn×c.
(21)

Meanwhile, the rank constraint in Eq. 20 can be seen as the
optimization of the smallest c eigenvalues of the Laplacian
matrix. In this way, the problem in Eq. 20 can be rewritten as:

min
S
Tr(FTL∗FF ) + α ‖S‖2F + β

c∑
i=1

ei,

s.t. sTi 1 = 1, sij > 0.

(22)

in which β is a large enough regularization parameter. Comb-
ing Eq. 21 and Eq. 22, we have:

min
S,G

Tr(FTL∗FF ) + α ‖S‖2F + βTr(GTL∗FG),

s.t. sTi 1 = 1, sij > 0, GTG = I,G ∈ Rn×c.
(23)

When S is fixed, the first two terms of Eq. 23 are constant.
So the optimization of G can be:

min
G

Tr(GTL∗FG),

s.t. GTG = I,G ∈ Rn×c.
(24)

This problem can be solved by eigenvalue decomposition with
c eigenvectors corresponding to the smallest c eigenvalues.

When G is fixed, those constraints related with G can be
discarded. In this case, the optimization of S can be:

min
S
Tr(FTL∗FF ) + α ‖S‖2F + βTr(GTL∗FG),

s.t. sTi 1 = 1, sij > 0.
(25)
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In order to have an easier explanation, we use the vector form
of Eq. 25. The vector form of Tr(GTL∗FG) can be:

Tr(GTL∗FG) =

n∑
i,j=1

‖gi − gj‖22 sij . (26)

in which gi ∈ R1×c is a row of G. The vector form of Eq. 25
is:

min
S

n∑
i,j=1

(‖fi − fj‖22 sij + αs2ij + β ‖gi − gj‖22 sij),

s.t. sTi 1 = 1, sij > 0.

(27)

We should notice a trick that the solution of Eq. 27 can be
divided into every column of S. Then we have:

min
si

n∑
i,j=1

(‖fi − fj‖22 sij + αs2ij + β ‖gi − gj‖22 sij),

s.t. sTi 1 = 1, si > 0.

(28)

Denote dfij = ‖fi − fj‖22, dgij = ‖gi − gj‖22 and di ∈ Rn×1

as a vector with dij = dfij + βdgij . Then the Eq. 28 can be:

min
si

∥∥∥∥si + 1

2α
di

∥∥∥∥2
2

,

s.t. sTi 1 = 1, si > 0.

(29)

The solution of Eq. 29 is:

sij = (−
dfij
2αi

+ ηi)+. (30)

in which ηi and αi are Lagrange multiplier for every i.
The final two-stage objective functions can be:

min
F

Tr(FT (L∗ + λ(Hn −XT (XXT + µI)−1)X)F ),

s.t. FTF = I. (31)

and

min
S,G

Tr(FTL∗FF ) + α ‖S‖2F + βTr(GTL∗FG),

s.t. sTi 1 = 1, sij > 0, GTG = I,G ∈ Rn×c.
(32)

Here, we propose our SEANC Algorithm.
The SEANC algorithm can be seen as an iterative combina-

tion of low-dimensional representation and adaptive neighbors
clustering. In this way, the computational complexity should
be no higher than any of these two methods. In consideration
of the matrix formation of our method, the most computational
expensive parts are the eigen-decomposition and inverse cal-
culation. In this way, the computational complexity should be
O(n3). Frankly speaking, our method achieves the same speed
performance as most of the spectral methods while obtains
better performance.

Algorithm 1 SEANC Algorithm
Input: Data X = {X1, X2, · · · , Xn} ∈ Rd×n, classes

number c, regularization parameters σ, k, λ, µ, α, β.
Output: Cluster assignment matrix C ∈ Rn×1
1: Calculate Laplacian matrix L∗ using Eq.3 or Eq. 4 and
L∗ + λ(Hn −XT (XXT + µI)−1)X

2: Use eigenvalue decomposition in Eq. 31 to get the repre-
sentation F

3: Compute the Laplacian matrix L∗F using the representation
F and Eq. 3 or Eq. 4

4: while not converge do
5: Update G with eigenvectors corresponding to c small-

est eigenvalues of L∗F
6: Update S with Eq 30.
7: end while
8: Compute assignment matrix C using S and Ky Fan’s

theorem

D. Connnection to PCAN

In the SEANC algorithm, the spectral embedded repre-
sentation is optimized with linear embedded data for high-
dimensional problems. In fact, the linear embedded data can
be seen as a kind of projection [24]. In view of this projection,
we can see the relationships between SEANC and PCAN [12].
The proposed SEANC has a similar solution with PCAN when
λ→∞ and µ = 0.

Proof: In [12], the definition of PCAN is:

min
S,W

n∑
i,j=1

(
∥∥xTi W − xTj W∥∥22 + γs2ij),

s.t. sTi 1 = 1, sij > 0,WTStW = I,

rank(Ls) = n− c,

(33)

in which St = XHnX
T is the scatter matrix. The definition

of SEANC is:

min
S
Tr(FTL∗FF ) + α ‖S‖2F ,

s.t. sTi 1 = 1, sij > 0, FTF = I,

rank(L∗F ) = n− c.

(34)

When λ → ∞ and µ = 0, the optimal solution to Eq. 13
can be:

F = XTW + 1bT . (35)

Combined with Eq. 20, we have:

Tr(FTL∗FF ) + α ‖S‖2F

⇔
n∑

i,j=1

(
∥∥xTi W + 1bT − xTj W − 1bT

∥∥2
2
+ αs2ij)

⇔
n∑

i,j=1

(
∥∥xTi W − xTj W∥∥22 + αs2ij)

(36)
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Without consideration of the bias item, the constraints can
be equivalent for SEANC and PCAN. Supposing the data is
centralized, we have:

FTF = I

⇔WTXXTW = I

⇔WTXHn(XHn)
TW = I

⇔WTXHnX
TW = I

⇔WTStW = I

(37)

The above proof demonstrates that the proposed method has
a similar solution with PCAN when λ → ∞ and µ = 0. But
there are two different factors between them. The first one
is the discarded bias item when proving the equivalence of
constraints. The second factor is the different optimization pro-
cedure. In our method, the spectral embedded representation
is determined by the linear data mapping before the adaptive
neighbors clustering stage, while the corresponding item in
PCAN, data projection, is optimized in the whole optimization
process. These differences ensure our method can make more
use of spectral embedded information.

IV. EXPERIMENT

In order to verify the effectiveness of the proposed method,
we use two kinds of data which are synthetic and real world
data to test our method. In order to verify the effectiveness
of high-dimensional data, a distinct experiment on high-
dimensional and sparse text clustering is conducted in this
section.

A. Experiment Setup

Due to the property that the results of K-means method are
highly related to initialization, those experiments involving K-
means are conducted for 100 times. The average performance
and variance are recoded for comparison. Other methods that
has closed-form or determined solution are tested for only
once. The self-tuning spectral clustering [25] is used for
determining the parameters. All of the results of our method
run for 100 times and the best parameters are recorded.

As for the four parameters used in SEANC, the principles
of setup are explained as follows. The parameter σ is used for
adjusting the neighborhood size and k is used for determining
the number of neighbors. Thus, these values are tuned accord-
ing to different types of data. The values of λ and µ are in
[0.1, 0.2, 0.5, 0.8] and some random disturbances are added to
µ for larger parameter space. The setup of α and β follows
the implementation of [12].

B. Experiment on Synthetic Data

In this section, we use synthetic data to demonstrate the
effectiveness of the proposed two-stage framework, especially
the adaptive neighbors clustering stage.

As shown in Figure 1(a), the synthetic data in two semi-
circles shape is utilized. According to Eq. 32, the adaptive
neighbors clustering stage optimizes the clustering results and
the spectral embedded similarity matrix simultaneously. The

learned graph by similarity matrix is shown in Figure 1(b).
We can observe that the learned similarity graph is constrained
by spectral embedded representation and neighbor distribution
instead of single distance information, which shows the effec-
tiveness of the adaptive neighbors clustering stage.

C. Experiment on Real Data

In this section, we conduct our experiment to test our
method with real-world datasets. Six datasets with four low-
dimensional datasets and two high-dimensional datasets are
used for evaluation. The COIL20 dataset [26] has 20 kinds of
objects with the image size as 32×32. The USPS dataset is a
handwritten recognition dataset [27] in which the image size
is 16× 16. The YEAST, WINE,ECOLI and GLASS datasets
are part of UCI Machine Learning Repository datasets [28].
The detailed information of these datasets can be seen in Table
III.

In this experiment, we use two kinds of evaluation metrics
to verify the effectiveness of the proposed method, namely
the clustering accuracy and the normalized mutual information
(NMI) [29]. The clustering accuracy is defined as:

ACC =
#correct decisions

#total decisions
, (38)

where # means ”the number of”. Denote C as the set of
clusters from the ground truth and C ′ the output. Their mutual
information MI is defined as:

MI =
∑

ci∈C,cj∈C′

p(ci, cj)log
p(ci, cj)

p(ci)p(cj)
. (39)

And the NMI is defined as:

NMI =
MI√

H(C)H(C ′)
, (40)

in which H(·) is the entropy of cluster result that is defined
as:

H(C) = −
∑
ci∈C

p(ci)logp(ci). (41)

Seven algorithms including K-means, Spectral Clustering
with ratio cut [30], Spectral Clustering with normalized cut
[31], Nonnegative Matrix Factorization [32] [33], PCAN [12],
KSEC [16], and ESEC [16] are used for comparison. Due to
the limited information, the comparison of KSEC and ESEC
only contains the clustering accuracy metric. The missing
values are demonstrated as ’-’.

The experimental results about clustering accuracy are
shown in Table I. The proposed SEANC framework outper-
forms other methods in five datasets. Compared with ratio
cut spectral clustering algorithms, our method shows a better
performance by 12.31% on average. The comparison results
between normalized cut spectral clustering and the proposed
method are similar. In the experiment conducted with ECOLI
dataset, our method outperforms normalized cut spectral clus-
tering by 32.32%. This demonstrates that the proposed method
takes advantages of spectral embedded representation and
shows better performance compared with spectral clustering.

The experimental results about clustering NMI are shown
in Table II. Our method outperforms other algorithms on
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(a) Original Data (b) Learned Clustering Graph

Fig. 1. Experiment on Synthetic Data.

TABLE I
CLUSTERING ACCURACY

Dataset COIL20 USPS YEAST WINE GLASS ECOLI

K-means 56.54±5.35 64.27±3.08 38.00±2.13 94.65±0.53 45.57±3.51 57.10±6.07
Spectral Clustering(R) 69.42±4.60 67.59±5.11 38.11±2.18 95.44±0.54 38.28±2.27 54.08±5.30
Spectral Clustering(N) 70.30±4.66 68.43±5.10 36.99±2.81 94.99±4.58 38.26±3.00 53.10±4.22

KSEC 72.40±2.70 65.10±1.60 - 61.20±2.30 58.90±2.40 -
ESEC 70.20±3.10 62.30±2.80 - 63.70±1.90 63.10±2.50 -

NMF 70.42 67.37 35.65 94.94 37.85 54.17
PCAN 83.33 63.81 50.07 100.00 49.53 83.33

SEANC 85.97 71.36 51.15 89.32 53.27 85.42

TABLE II
CLUSTERING NMI

Dataset COIL20 USPS YEAST WINE GLASS ECOLI

K-means 73.45±2.61 62.07±1.64 25.19±1.06 82.41±1.44 33.13±2.60 53.04±3.02
Spectral Clustering(R) 84.01±1.94 73.95±2.41 24.94±1.37 84.37±1.25 29.10±3.05 48.96±3.11
Spectral Clustering(N) 84.42±1.93 73.97±2.40 23.88±1.35 84.02±3.90 28.58±2.49 49.78±2.32

NMF 81.22 74.15 23.66 83.24 28.70 47.12
PCAN 89.10 68.93 30.55 100.00 33.82 72.44

SEANC 92.04 78.05 29.21 68.71 34.82 70.47

TABLE III
DESCRIPTION OF FIVE DATASETS

Dataset COIL20 USPS YEAST WINE GLASS ECOLI

sample 1440 1854 1484 178 219 336
class 20 10 8 3 6 8
dimension 1024 256 8 13 9 7

three datasets. On the YEAST and ECOLI datasets, the
proposed method achieves the second highest performance.
It is noticeable that our method shows promising results with
high-dimensional data, namely COIL20 and USPS datasets,
using both kinds of evaluation metrics. This phenomenon
demonstrates that the proposed two-stage framework benefits
from spectral embedded representation and adaptive neighbors
clustering. With the help of these two steps, the SEANC

method can process high-dimensional and sparse data.

D. Experiment on High-dimensional and Sparse Data

In this section, we use three text datasets to verify the effec-
tiveness of our method when dealing with high-dimensional
data. 3000 random selected articles from Enron Emails, NIPS
full papers and KOS blog entries [34] which contain 35284
dimensions are used. Due to the property of writings, an
article is hard to cover most part of vocabularies. Thus the
text clustering data is an ideal kind of high-dimensional and
sparse data to examine our method. All of the setups are the
same as the previous section. The experimental results can be
seen in Table IV.

As shown in Table IV, our method outperforms other
methods when dealing with high-dimensional data. The PCAN
method fails in this experiment due to the out of memory error.
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TABLE IV
COMPARISON ON TEXT CLUSTERING

Meauserment Accuracy NMI

K-means 50.52±2.09 45.29 ± 0.19
Spectral Clustering(R) 47.98±7.70 17.89±9.39
Spectral Clustering(N) 61.20±0.00 22.53±0.00

PCAN failed failed
SEANC 63.00 49.67

This experiment shows the effectiveness of SEANC and the
combination of linear embedded representation and adaptive
neighbor clustering.

V. CONCLUSION

In this paper, we propose a two-stage framework called
SEANC for clustering. The manifold assumption problem is
addressed with linear spectral embedded process and adaptive
neighbors clustering. The proposed method can not only
handle the high-dimensional data with spectral embedded rep-
resentation, but also learn the similarity graph and clustering
results simultaneously. Experiments on both synthetic and real
world data shows the promising performance of our method.
In the future, applying the SEANC method in the large scale
data can be a meaningful work.
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