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Abstract—Unsupervised feature selection is fundamentally im-
portant for processing unlabelled high-dimensional data, and
several methods have been proposed on this topic. Most exist-
ing embedded unsupervised methods just emphasize the data
structure in the input space, which may contain large noise.
So they are limited to perceive the discriminative information
implied within the low dimensional manifold. Besides, these
methods always involve several parameters to be tuned, which
is time-consuming. In this research, we present a Self-Tuned
Discrimination-Aware (STDA) approach for unsupervised feature
selection. The main contributions of this study are threefold: (1)
it adopts the advantage of discriminant analysis technique to
select the valuable features; (2) it learns the local data structure
adaptively in the discriminative subspace to alleviate the effect
of data noise; (3) it performs feature selection and clustering
simultaneously with an efficient optimization strategy, and saves
the additional efforts to tune parameters. Experimental results
on a toy dataset and various real-world benchmarks justify
the effectiveness of STDA on both feature selection and data
clustering, and demonstrate its promising performance against
the state-of-the-arts.

Index Terms—Feature selection, graph learning, clustering,
unsupervised learning, discriminant analysis

I. INTRODUCTION

In many tasks of artificial intelligence, such as face recog-
nition and image classification [1, 2], data is always char-
acterized by high-dimensional features [3, 4]. However, the
growth of dimensionality brings lots of noises and significantly
increases the computational costs to process the data. To deal
with this problem, plenty of algorithms have been developed to
reduce the dimensionality of input data. Generally speaking,
there are mainly two categories of dimensionality reduction
methods in the literature: feature selection [5–7] and feature
learning [8, 9]. Feature selection learns the most relevant fea-
ture subset for a compact representation, while feature learning
methods project the features into a low dimensional subspace
and creates new features. In comparison with feature learning
approaches, feature selection methods have the advantage on
retaining the original data representation [10]. Thus, feature
selection has received a surge of interests in the past decades.

Based on the availability of labelled data, feature selec-
tion methods can be roughly grouped into supervised, semi-
supervised and unsupervised feature selection. In real-world
tasks, labels are expensive, which makes unsupervised feature
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selection especially practical. In addition, unsupervised feature
selection can be further classified into filter [7, 11–15], wrap-
per [16–18] and embedded [19–21] methods. Filter methods
select the features by examining their intrinsic properties and
assigning each feature a score according to its ability to
preserve the data structure. These methods consider each fea-
ture independently. Wrap methods generally solve a searching
problem. They take clustering methods (e.g., GMM [22]) as
the predictor and search the feature subset that maximizes the
predictor performance. So they exactly remove the irrelevant
features recursively. Embedded methods first learn a projection
matrix W during the model learning procedure, and then se-
lect the features according to the transformation score ||Wf ||2
(f = 1, ..., d). Among them, embedded methods outperform
the other two categories in many cases and have received
increasing attentions [10, 23–25]. In this work, we mainly
focus on the embedded algorithms.

From the perspective of manifold learning, it is important
to discover the geometry structure lying within the high-
dimensional data [3]. Thus, many embedded unsupervised
methods [10, 26–29] are proposed to exploit the intrinsic
local data structure. However, most of them just focus on
the data graph in the input space, which is easily affected by
noise. So it is necessary to investigate the data relationship in
the low dimensional subspace, where the noise is alleviated.
Additionally, the exploration of discriminant information is
still not well-solved. Although some methods [24, 30–32]
utilize Linear Discriminant Analysis (LDA) to select features,
they inherit the limitations of traditional LDA method, such
as the suboptimal solution and the neglect of local manifold.
So it is important to adopt the merits of LDA while avoiding
its drawbacks.

In this paper, we present a Self-Tuned Discrimination-Aware
(STDA) method, which performs data graph learning and
discriminant analysis simultaneously without any parameter to
be tuned. The contributions of this research are summarized
as follows:

(1) A Self-Tuned Discrimination-Aware (STDA) method is
proposed, which reasonably incorporates discriminant analysis
strategy into the unsupervised feature selection framework.

(2) The data relationship is adaptively learned in the desired
discriminative subspace, so the noise in the input data space
is alleviated.

(3) A rank constraint is introduced on the local relationship
of data points, which ensures that both feature selection and
clustering can be performed simultaneously. Moreover, there
is no parameter to be tuned manually in the proposed method.

The rest of this paper is organized as follows. Section II re-
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visits the existing methods on unsupervised embedded feature
selection. Section III introduces the proposed approach, and
an alternative optimization strategy is also designed to solve
it. Section IV conducts extensive experiments on various kinds
of datasets and discusses the results from several aspects. The
conclusions are given in Section V.

II. RELATED WORKS

In this section, some existing techniques on unsupervised
embedded feature selection are reviewed.

Among the numerous unsupervised feature selection ap-
proaches, spectral-based algorithms have shown dominant
performance in the past few years. Cai et al. [26] and Zhao
et al. [33] captured the local data structure by spectral anal-
ysis, and ranked each feature with different sparse regression
constraints. Nie et al. [28] developed a unified framework
for feature selection. Qian et al. [27] employed Nonnegative
Matrix Factorization (NMF) [34] to perform feature selection.
Shi et al. [29] combined the local structure learning method
with a sparse spectral regression strategy. Hou et al. [10]
jointly performed feature selection and local structure learning.
Although the performance of the above approaches are promi-
nent in many occasions, they share the same drawback that the
local manifold structure is learned in the input space, so they
are easily affected by data noise. Recently, Nie et al. [23]
remedied this problem by learning the similarity graph in the
subspace, but they just pull the within-class samples together
and neglect the between-class distance.

In order to select the discriminative features, some methods
incorporate linear discriminant analysis into the framework
of feature selection. Zhang et al. [30] performed multi-modal
discriminative learning to capture the valuable features while
exploring the local data relationship. Tao et al. [31] presented
a Discriminative Feature Selection (DFS) method with a `2,1
norm regularization. But these method require the data label
as the input. To perform unsupervised discriminant analysis,
Yang et al. [24] introduced pseudo labels to investigate the
discriminant information. But this method inherits the short-
coming of Linear Discriminant Analysis (LDA) that the local
data structure cannot be captured. To address this problem, Li
et al. [25] and Tang et al. [32] first found the k neighbors
of each point, and then performed discriminant analysis to
select features. But the neighbor relationship in the input
data space may be unreliable. It is also impractical to select
an appropriate k for various applications. Moreover, these
discriminative feature selection methods represent the LDA
objective with a ratio trace form, which leads to the suboptimal
solution.

In addition, all the above methods involve several parame-
ters to be tuned, and the optimal parameters vary on different
datasets, so they are not so practical on real-world applications.

III. SELF-TUNED DISCRIMINATION-AWARE FEATURE
SELECTION

In this section, the Self-Tuned Discrimination-Aware (ST-
DA) method is described. First, the Linear Discriminant Anal-
ysis (LDA) is introduced as the preliminary. Then, the objec-

tive function of STDA is presented and theoretically analyzed.
Finally, an efficient optimization strategy is followed.

A. Preliminary

Here we revisit the classical LDA [35], and derive it to a
variant. Given the data matrix X = [x1,x2, · · · ,xn] ∈ Rd×n

with c classes, LDA aims to find a transformation matrix
W ∈ Rd×m (m � d) to project xj into a m-dimensional
representation: yj = WTxj (T indicates the transpose oper-
ation). LDA assumes that the optimal W should pull the data
points within the same class closer while pushing those from
different classes far away, so the objective function is

min
WTW=I

c∑
i=1

ni∑
j=1

||WT (xi
j − µi)||22

c∑
i=1

ni||WT (µi − µ)||22
, (1)

where I ∈ Rm×m is the identity matrix, ni is the points
number within class i, µi is the mean of points in class
i, µ is the mean of all the points, xij is the j-th point in
class i. c is always given as a prior in machine learning. The
orthogonal constraint WTW = I avoids the arbitrary scaling
and trivial solution. From problem 1, we can see that LDA
just emphasizes the global data relationship, and neglects the
local manifold structure.

According to Li et al. [36], problem (1) is equivalent to the
following problem

min
WTW=I

c∑
i=1

1
ni

ni∑
j,k=1

||WT (xi
j − xi

k)||22

1
n

n∑
j,k=1

||WT (xj − xk)||22
. (2)

Denote an indicator matrix Z ∈ Rn×n, where Zjk is 1 if j and
k belong to the same class and Zjk is 0 otherwise. Supposing
that the number of points is equal for each class, problem (2)
can be transformed into the following form:

min
WTW=I

n∑
j,k=1

Zjk||WT (xj − xk)||22
n∑

j,k=1

||WT (xj − xk)||22
, (3)

where n counts the number of points in all classes.

B. Problem Formulation

In this part, the proposed STDA is introduced. Since LDA
has the capability to find the discriminative data subspace,
we would like to adopt it into unsupervised feature selection
scheme. However, LDA requires the data to be labelled, so
it cannot be used directly unless the indicator matrix Z in
problem (3) is given.

We consider that the data points belonging to the same cate-
gory should have high similarity in the transformed subspace,
so the matrix Z in problem (3) can be replaced with an affinity
matrix S ∈ Rn×n, where Sjk is close to 1 if ||WT (xi

j−xi
k)||22

is small and 0 otherwise. Then we need learn both the linear
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transformation W and the affinity graph S with the following
objective function

min
W,S

n∑
j,k=1

S2
jk||WT (xj − xk)||22

n∑
j,k=1

||WT (xj − xk)||22
,

s.t.WTW = I,
∑
k

Sjk = 1,S ≥ 0

(4)

where the definitions are the same as those in problem (3).
Sjk is squared to avoid the trivial solution, where S is 1
for the nearest points and 0 for the others. Nevertheless, the
above objective cannot guarantee that the similarity of far away
points is exact 0. Defining the Laplacian matrix L ∈ Rn×n

as D − ST+S
2 (D ∈ Rn×n is the degree matrix), Mohar et

al. [37] have proved that the data graph S will contain exact
c connected components if the rank of L is n − c. If the
above rank constraint is imposed on problem (4), the final S
will contain c components, and the similarity for the far away
points will be zero. So the objective function of STDA is

min
W,S

n∑
j,k=1

S2
jk||WT (xj − xk)||22

n∑
j,k=1

||WT (xj − xk)||22
,

s.t.WTW =I,
∑
k

Sjk = 1,S ≥ 0, rank(L) = n− c,

(5)

where rank() denotes the rank of a matrix.
Problem (5) is difficult to solve because the rank constraint

depends on S. So we transform the constraint into a different
form. Following the proof in [38], denoting the i-the smallest
eigenvalue of L as δi(L), then rank(L) = n− c is equivalent

to enforcing
c∑

j=1

δi(L) to be zero. Furthermore, according to

Ky Fan’s Theorem [39], we get
c∑

j=1

δi(L) = min
F∈Rn×c,FTF=I

Tr(FTLF), (6)

where Tr() is the trace operator. Thus, problem (5) can be
rewritten as

min
W,S,F

n∑
j,k=1

S2
jk||WT (xj − xk)||22

n∑
j,k=1

||WT (xj − xk)||22
+ λTr(FTLF),

s.t.WTW = I,
∑
k

Sjk = 1,S ≥ 0,F ∈ Rn×c,FTF = I,

(7)

where λ is a parameter.
In problem (7), it can be seen that Tr(FTLF) will be

infinitely close to zero if λ is large enough, then the rank
constraint can be satisfied. The optimal S contains exact c
components. Given the transformation matrix W, S will be
large for the points with small distance in the transformed
space, so the local connectivity can be perceived. Then W
can be updated with the learned data graph S. Thus, the

local manifold structure in the discriminative subspace can
be exploited by optimizing S and W iteratively. With the
optimal W, we can calculate the score for each feature f
(f = 1, ..., d) as ||Wf ||2, and select the features with large
scores. Unlike existing works [24, 25, 30–32], which trans-
form the objective function into the ratio-trace form, STDA
performs discriminant analysis with the trace-ratio form, so
the suboptimal solution can be avoided.

In addition, since S contains c connected components, it
can be considered as an indicator matrix, where each com-
ponent corresponds to a cluster. Therefore, the points can be
partitioned into clusters once the optimal S is learned. Note
that, the value of λ can be tuned in a heuristic way [38]
automatically in each iteration. Specifically, If the number
of zero eigenvalues in L is larger than c, which indicates
that the number of the connected components of S is more
than the desired cluster number, we decrease λ; otherwise
we increase it. So the proposed method is totally self-tuned.
This property is promising because the tuning of parameters
is the most time-consuming part in the practical applications
of feature selection methods. Similar to the most feature
selection and clustering methods [24–26, 29, 34, 38, 40], the
proposed method needs the class number c as the input, and the
automatically estimating of c is not the focus of this research.

However, when transforming problem (2) to (3), the data is
assumed to be with a balanced distribution over each class,
which is not true in many tasks. Here we briefly discuss
this confusion. In the proposed objective (7), we constrain
the sum of each row of S to be 1, which effectively weights
each class equally regardless of the point number within the
class. Therefore, our method is able to deal with unbalanced
data, and the experimental demonstration will be given in the
experiments.

C. Optimization of STDA Algorithm

Problem (7) contains several different variables to be opti-
mized, so we put forward an alternative algorithm to get the
optimal solution. The similarity graph S is initialized with an
efficient method [38].

Update F: when fixing S and W, problem (7) becomes

min
F

Tr(FTLF),

s.t.F ∈ Rn×c,FTF = I.
(8)

Denoting the j-th column of F as Fj , because F is orthog-
onal, the minimum value of FT

j LFj equals to the smallest
eigenvalue of L. Thus, the optimal F is constructed with
the c eigenvectors of L, which correspond to the c smallest
eigenvalues.

Update W: when fixing S and F, denoting matrix S̃w ∈
Rd×d and S̃t ∈ Rd×d as

S̃w =
∑
i

∑
j

S2
jk(xj − xk)(xj − xk)

T
,

S̃t =
∑
i

∑
j

(xj − xk)(xj − xk)
T
,

(9)



4

then problem (7) becomes a trace ratio problem:

min
WTW=I

Tr(WT S̃wW)

Tr(WT S̃tW)
. (10)

The optimal W can be leaned with the optimization method
in [13], which derives the trace ratio problem into a mono-
tonically decreasing function, and then calculates the global
minimum solution by binary searching.

Update S: when fixing F and W, according to the spectral
analysis theory [29], we can transform problem (7) into

min∑
k Sjk=1,S≥0

n∑
j,k=1

S2
jk||WT (xj − xk)||22

n∑
j,k=1

||WT (xj − xk)||22
+

λ

n∑
j,k=1

Sjk||Fj − Fk||22.

(11)

It can be seen that the above problem is independent for
different j. Thus, denoting a column vector sj ∈ Rn×1 with
its k-th element equal to Sjk , we can optimize the following
problem separately for each j

min
sTj 1=1,sj≥0

n∑
k=1

s2jk||WT (xj − xk)||22
n∑

j,k=1

||WT (xj − xk)||22
+

λ

n∑
k=1

sjk||Fj − Fk||22,

(12)

where 1 ∈ Rn×1 is a vector with all the elements as 1.
For a clear representation, we define a constant variable a as∑n

j,k=1 ||WT (xj − xk)||22 and a vector bj with bjk = ||Fj−
Fk||22. Denoting a vector uj ∈ Rn×1 with ujk = 1

2λabjk and
a diagonal matrix V ∈ Rn×n with the k-th diagonal element
equal to ||WT (xj−xk)||22, then problem (12) can be simplified
to

min
sTj 1=1,sj≥0

1

2
sTj Vsj + sTj uj . (13)

The Lagrangian function of problem (13) is

L(sj , η, βj) =
1

2
sTj Vsj + sTj uj − η(sTj 1− 1)− βT

j sj , (14)

where η ∈ R1×1 and βj ∈ Rn×1 are the Lagrangian
Multipliers. Setting the derivative of Eq. (14) w.r.t. sj to 0,
we have

Vsj + uj − η1− βj = 0. (15)

For the k-th element of sj , we have

Vkksjk + ujk − η − βjk = 0. (16)

According to the KKT condition, sjkβjk is equal to 0, so we
have

sjk = max(
η

Vkk
− ujk

Vkk
, 0). (17)

According to [38], we can define a function gj(η) w.r.t. η as

gj(η) = −1 +
∑
i

(
η

Vkk
+

ujk

Vkk
)+, (18)

together with the constraint sTj 1 = 1, we have

gj(η) = 0. (19)

gj(η) is a monotonically increasing linear function. Using the
Newton’s method, we can easily get the optimal η such that
gj(η) is 0. Once η is obtained, the optimal sj can be calculated
with Eq. (17).

The algorithm for solving problem (7) is outlined in Algo-
rithm 1. Problem (7) is decomposed in to three sub-problems.
When solving F, the optimal solution is searched. When
solving W, the global minimum solution is obtained. When
solving S, the global optimal solution is achieved according
to the KKT condition. The original problem is equivalent to
the sub-problems when the irrelevant variables are fixed. So
the objective value decreases during the optimization of each
sub-problems, and finally reaches to a local optimal value.
The convergence behavior will be proved experimentally in
Section (IV-C).

Algorithm 1 Optimization algorithm of STDA
Input: Data matrix X = [x1,x2, · · · ,xn] ∈ Rd×n, projection

dimension m.
1: Initialize data graph S.
2: repeat
3: Update F by solving problem (8).
4: Update W by solving problem (10).
5: Update S by solving problem (13).
6: until Converge

Output: The optimal F, W and S.

IV. EXPERIMENTS

In this section, we conduct extensive experiments on various
datasets to verify the effectiveness of the proposed STDA.
First, several real-world datasets and one toy dataset are
utilized to justify the performance on feature selection. Then,
the clustering performance of STDA is evaluated.

A. Performance on Feature Selection

We first conduct feature selection experiments on real-
world datasets. A standard evaluation scheme is to compare
the clustering results with the features selected by different
techniques. We perform k-means for 50 repetitions with ran-
dom initialization and report the average results. Clustering
ACCuracy (ACC) [41] and Normalized Mutual Information
(NMI) [42] are taken as the evaluation metrics, which are
widely used in clustering tasks.

Datasets: The proposed STDA is evaluated on eight pub-
licly available datasets: ORL [26], YALE [43], COIL20 [44],
Arrhythmia and Isolet5 [45], Binary Alphabet (BA) [46],
LUNG [47], and SRBCT [48]. Among them, ORL and YALE
are face image datasets, COIL20 is an object image dataset,
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(h) SRBCT

Fig. 1. Curves of ACC with different numbers of selected features on eight real-world datasets.
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(g) LUNG
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Fig. 2. Curves of NMI with different numbers of selected features on eight real-world datasets.

TABLE I
DATASET DESCRIPTION.

Dataset Size Feature Classes Selected features IR

ORL 400 1024 40 [50,100,...,300] 1
YALE 165 1024 15 [50,100,...,300] 1

COIL20 1440 256 20 [10,20,30,...,100] 1
Arrhythmia 452 279 13 [10,20,30,...,100] 122.5

Isolet5 1560 617 26 [50,100,...,300] 1
BA 1404 320 36 [10,20,30,...,100] 1

LUNG 203 3312 5 [50,100,...,300] 23.2
SRBCT 83 2308 4 [50,100,...,300] 2.64

Arrhythmia and Isolet5 are from the UCI Machine Learning
Repository, BA is a handwritten digit dataset, LUNG and
SRBCT are biology datasets. The detailed description of these
datasets is exhibited in Table I (Imbalance Rate is shorten as
IR). As illustrated in the Table I, for the datasets with high
dimensionality, the number of selected features starts with
50 and steps by 50 until reaching 300. For those with low
dimensionality, the number starts with 10 and steps by 10
until reaching 100.

Competitors: To validate the effectiveness of STDA, six
state-of-the-art competitors are taken for comparison. They
are Laplacian Score (LS) [7], Multi-Cluster Feature Selection
(MCFS) [26], Unsupervised Discriminate Feature Selection
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(e) SOGFS (f) STDA

Fig. 3. Face features obtained by (a) MCFS, (b) UDFS, (c) RUFS, (d) RSFS, (e) SOGFS and (f) STDA with different number of selected features (from
left to right).
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Fig. 4. (a) The first two dimensions of toy data. (b)-(g) visualize the two features selected by different methods, and the coordinate of each point is the
corresponding feature values. (h) The initial data graph. (i) Graph learned by the proposed STDA. Best viewed in color.
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TABLE II
CLUSTERING RESULTS ON REAL-WORLD DATASETS. THE BEST RESULTS ARE SHOWN IN BOLD FACE.

ORL YALE COIL20 Arrhythmia

ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity
RCut 0.25 0.45 0.27 0.25 0.31 0.29 0.29 0.41 0.31 0.45 0.12 0.57
NCut 0.61 0.76 0.64 0.45 0.49 0.46 0.64 0.75 0.67 0.21 0.13 0.56
NMF 0.35 0.60 0.39 0.34 0.43 0.38 0.45 0.58 0.48 0.24 0.15 0.57
STDA 0.58 0.83 0.77 0.47 0.52 0.49 0.85 0.93 0.88 0.58 0.21 0.62

Isolet5 BA LUNG SRBCT

ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity
RCut 0.21 0.34 0.23 0.26 0.39 0.27 0.53 0.35 0.77 0.37 0.07 0.37
NCut 0.64 0.74 0.67 0.35 0.51 0.38 0.53 0.39 0.79 0.38 0.10 0.41
NMF 0.33 0.44 0.37 0.22 0.34 0.23 0.52 0.31 0.73 0.45 0.15 0.48
STDA 0.48 0.63 0.77 0.40 0.55 0.53 0.79 0.49 0.84 0.48 0.31 0.51

(UDFS) [24], Robust Spectral Feature Selection (RSFS) [29]
and Structured Optimal Graph Feature Selection (SOGFS)
[23]. Among them, LS is a filter method and the others are em-
bedded methods. For a fair comparison, the optimal parameters
of each competitors are searched from {10−6, 10−4, ..., 106},
and the neighborhood size is set to be 5. Suggested by Nie
et al. [23], we set the projected dimension m as 2

3d (d is
the original dimensionality). Following Shi et al. [29], the
best parameters are selected for each feature dimension. Each
method is compared at its optimal projection dimension. The
k-means clustering result with all features is taken as the
baseline.

Performance: With different feature numbers, the ACC
and NMI curves of all the methods are shown in Figure 1
and 2. Compared to the baseline (results with all features),
the clustering results with selected features are always better,
implying the fact that the real-world data contains redundant
features. The performance of LS is unsatisfying because it
learns the significance of each feature independently and
neglects their intrinsic correlations. UDFS captures the dis-
criminant features and selects them jointly, but it just focuses
on the global relationship of data points and fails to exploit
the local manifold. MCFS considers the local data structure,
but it is sensitive to noise. RUFS, RSFS and SOGFS are more
robust to some extent, but they fail to find the discriminant
subspace where the features can be clearly classified. The
proposed method captures the discriminative information, and
optimizes the data graph adaptively in the learned subspace,
where the data noise in the input space is avoided. So it
is able to find the discriminative features with robustness,
and achieves the best performance on all datasets. Moreover,
there is no additional parameter to be tuned in our method,
while all the competitors involve several parameters. Thus,
the proposed method is more applicable than the others. In
addition, Arrhythmia, Lung and SRBCT consist of unbalanced
data. Especially for Arrhythmia, the point numbers for the
1st and 8th classes are 245 and 2 respectively. The proposed
STDA performs well on these datasets, which validates that it
is able to handle the unbalanced data.

We further visualize the features selected by MCFS, UDFS,

RUFS, RSFS, SOGFS and the proposed STDA in Figure 3.
We randomly choose one sample from the ORL dataset, and
select {128, 256, 384, 512, 640, 768, 896, 1024} features (from
left to right). Each pixel is a feature. For a better illustration,
the selected features keep their pixel values, and the unselected
ones are set to white. As can be seen in Figure 3, compared to
the competitors, STDA tends to capture more discriminative
features, such as eyes, nose and mouth. Especially, compared
to UDFS, which also performs discriminant analysis, our
method drops more background (skin) pixels. This is because
that STDA is able to exploit the local data structure. So we
can say that the combination of discriminant analysis and data
graph learning is helpful for feature selection.

In addition, a toy dataset is introduced to further verify
the capability of our method to select the discriminative
features. As visualized in Figure 4 (a), the dataset is formed
by the data points from three classes, each class contains 60
points. The data points reside in concentric circles at the first
two dimensions, and the other eight dimensions are noises
randomly generated in the range of 0 and 1. So only the
first two dimensions are valuable features. To illustrate the
effectiveness of local structure learning, we use the the self-
tune Gaussian method [49] to construct the affinity matrix for
all the methods. The top two features selected by different
methods are shown in Figure 4 (b)-(g), where each point takes
its selected features as the coordinate. it is manifest that the
features selected by STDA correctly preserve the intrinsic data
structure. As shown in Figure 4 (h) and (g), although the input
graph contains large noise, our method still learns the optimal
graph with clear cluster structure. The proposed STDA utilizes
the merits of LDA and captures the local relationship of points
adaptively, so it is able to find the discriminative features with
robustness.

B. Performance on Clustering

As mentioned in Section III-B, the proposed method can
be also used for clustering. So we compare its clustering
performance with three widely used clustering methods, Ratio
Cut (RCut) [50], Normalized Cut [40] and Non-negative
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Fig. 5. Clustering accuracy with different initial value of parameter λ. The results are robust to the initial λ.
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Fig. 6. Convergence behavior of STDA on different datasets.

Matrix Factorization (NMF) [34]. For RCut and NCut, the self-
tune Gaussian method [49] is utilized to construct the affinity
matrix. Since RCut and NCut are sensitive to the initialization,
we repeat them for 50 repetitions and report their mean results.
The clustering ACCuracy (ACC) [41], Normalized Mutual
Information (NMI) and Purity [42] are taken as measurements.
NMI measures the mutual information between the predicted
labels and the ground-truth, and Purity indicates the extent
to which the points within the same cluster come from the
same class. The clustering results on the real-world datasets
are reported in Table II .

Table II shows that the proposed STDA achieves the best

performance in most cases, and outperforms RCut and NMF
on all the datasets. On the Isolet5, NCut shows better perfor-
mance than STDA because this dataset contains less redundant
features and the data structure is clear. On the other datasets,
STDA performs well. RCut and NCut highly depend on the
initial affinity graph, so they tend to be affected the data noise.
NMF just emphasizes the global data structure and neglects
the local aspect. On the other hand, the proposed STDA learns
the data graph adaptively in the optimization procedure, and
captures the most discriminative features, so it shows better
performance. In addition, the results of both RCut and NCut
are unstable (i.e., different outputs for every time of running),
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while our method achieves stable clustering performance as it
does not involve k-means as the post-processing.

C. Influence of Initial λ and Convergence Behavior

Here we discuss the performance variation of STDA with
different initial λ. The parameter λ in Eq. (7) balances the
importance of the rank constraint. Since λ is self-tuned, we
show the variance of feature selection performance versus
the initial λ. In Figure 5, it can be seen that the results are
insensitive to the initial λ. We simply set the initial value to
1 in our experiments.

The convergence behavior of the proposed optimization
algorithm is also demonstrated experimentally. Figure 6 shows
the convergence curves on all the datasets, where the objective
value decreases during the iterations. As shown in the figure,
the optimization method converges fast (within 10 iterations)
on all occasions.

V. CONCLUSION

In this work, we present an unsupervised feature selec-
tion method called Self-Tuned Discrimination-Aware (STDA),
which is able to capture the discriminative features. An effi-
cient optimization strategy is developed to solve the problem.
Different from existing works, STDA jointly incorporates
the merits of Linear Discriminant Analysis and data graph
learning, so it can exploits the local manifold structure in
the discriminative subspace. Moreover, it accomplishes data
clustering at the same time, and saves the efforts for tuning
parameters. Experimental results on different kinds of datasets
demonstrate the promising performance of STDA on both
feature selection and data clustering tasks.
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