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Abstract
Point set registration (PSR) is a crucial problem
in computer vision and pattern recognition. Ex-
isting PSR methods cannot align point sets ro-
bustly due to degradations, such as deformation,
noise, occlusion, outlier, and multi-view changes.
In this paper, we present a self-selected regularized
Gaussian fields criterion for nonrigid point match-
ing. Unlike most existing methods, we formulate
the registration problem as a sparse approximation
task with low rank constraint in reproducing kernel
Hilbert space (RKHS). A self-selected mechanism
is used to dynamically assign real-valued label for
each point in an accuracy-aware weighting manner,
which makes the model focus more on the reliable
points in position. Based on the label, an equiv-
alent matching number optimization is embedded
into the non-rigid criterion to enhance the reliabili-
ty of the approximation. Experimental results show
that the proposed method can achieve a better result
in both registration accuracy and correct matches
compared to state-of-the-art approaches.

1 Introduction
As a crucial technique of computer vision, point set regis-
tration, is the process of recovering the correspondences and
determining the spatial transformation between the point sets
that contain the same context sampled at different time, from
different viewpoints or by different sensors. In most appli-
cations, the matching results greatly influence the accuracy
of the subsequent processing tasks like dynamic target detec-
tion, simultaneous localization and mapping (SLAM)[Hong
and Kim, 2016] and object reconstruction [Zhou et al., 2015].
Therefore, it is necessary to develop a robust method that can
automatically align point sets with sub-pixel accuracy.

Recently, lots of PSR methods have been proposed, which
mainly include two categories. One uses rigid transformation
to model the spatial deformation between two input point set-
s, which is simple but has a lower accuracy for complex dis-
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Figure 1: Example of PSR with confused point. The goal of PSR
is moving data points Y onto model points X by the underlying
spatial transformation T .

tortions, and the other models the spatial deformation as non-
rigid transformation by a set of base functions. Since spatial
deformation between point sets has multi-degree of freedom
in real scenario, non-rigid registration is closer to real defor-
mation. So, it is more widely used than the rigid ones. Ow-
ing to following difficulties, PSR becomes pretty challenging:
(1) degradations: the distribution of point set would be more
complex in the presence of large degradations, e.g., noise, oc-
clusion, outlier, scale, and multi-view changes. The noisy da-
ta often means the points cannot be matched precisely. More-
over, the data with occlusion and outliers could cause some
points fail to find the true correspondences. Consequently,
the registration accuracy is unstable for these factors; (2) the
numerical optimization often falls into local minima; (3) the
computational complexity is higher when aligning the point
set with great number.

For these challenges, earlier methods mainly applied dis-
tance ratio to recover point correspondences by comparing
the distance of the closest neighbor with that of the second-
closest neighbor [Lowe, 2004]. However, some outliers or
missing matches always exist in this manner. Particularly,
the outliers or missing matches become more serious as the
distractions, e.g., noise, similar structure or improper thresh-
old, increase. Note that the outliers have a negative effect
on the estimation of spatial transformation while less match-
es mean more unreliable parameter calculation. To remove
outliers, geometric structures [Zhang et al., 2014] and spatial
constraints [Kahaki et al., 2016], are often used. Although
these methods perform well, it is infeasible to align non-rigid
point sets for the unknown underlaying transformation.

Unlike above matching, another often-used approach is the
one based on iterative optimization. Such methods first for-
mulate point matching as an optimization problem, and then
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solve it via numerical algorithms. The typical methods based
on Gaussian fields criterion [Myronenko and Song, 2010]
used a Gaussian mixture model to maximize the overlap be-
tween the features in both images. Whereas this criterion
is generally differentiable, some gradient-based optimization
algorithms can be directly utilized to solve it. Besides, it does
not need explicit point correspondences and is more robust
to noise as well. However, most of them are only suitable
for rigid deformations. For the nonrigid case, Ma et al. [Ma
et al., 2015c] improved it via a regularized constraint and s-
parse approximation. Wang et al. [Wang et al., 2017] used
a laplacian regularized term to preserve the intrinsic geome-
try of the transformed set. Qu et al. [Qu et al., 2017] solved
nonrigid point matching problem by regression and cluster-
ing under a Bayesian framework. However, these methods
only aim to minimize the global error. Since the position ac-
curacies of different points are usually different, this means
they should have different contributions to the accumulation
of global error. In this sense, only minimizing the global error
could make parameter estimation imprecise.

There are often some points (called confused samples) that
should be outliers or noises in the transformed set, and the
global error would be smaller when using them than without
them as shown in Fig. 1. Such confused points easily mislead
the iterative model, even make it struck in local extremum. In
this paper, we introduce a self-selected mechanism to remove
the confused points by guiding the convergence of the mod-
el and propose a robust point matching criterion. Our main
contributions are:
• We formulate the point matching problem as a sparse

approximation with low rank constraint in RKHS, which
makes our model more efficient.
• An adaptive self-selected mechanism is presented to re-

move the confused points, which adaptively select reli-
able points as iteration and make our the model focus
more on the faithful samples;
• An equivalent matching number constraint is embedded

into the non-rigid criterion, which enhances the reliabil-
ity of point matching.

2 Related Work
Point matching has been widely applied to computer vision.
Over past few years, many point matching methods have been
proposed, which can be divided into two aspects. The first is
the ones based on RANSAC [Lowe, 2004]. As a robust es-
timator, RANSAC tries to find a feasible subset to estimate
the transformation by multiple sampling. Based on it, sever-
al improvements are presented [Chou and Wang, 2015].For
instance, Litman et al. [Litman et al., 2015] proposed an in-
verting RANSAC to detect inliers in the given set. To get
more matches, Wu et al. [Wu et al., 2015] first applied a fast
sample consensus (FSC) to obtain initial correct matches, and
then tried to find the precise matches from the initial matches
as many as possible. Although these methods perform well in
most cases, they are designed for rigid matching and unsuit-
able for nonrigid alignment.

Another popular strategy is to iteratively match the points
and solve the optimal spatial transformation, such as coher-

ence point drift (CPD) [Myronenko and Song, 2010], pro-
gressive vector field consensus (PVFC) [Ma et al., 2015a],
robust point matching with L2E estimator (PRM-L2E) [Ma
et al., 2015c], image gradient orientations (IGO) [Zheng et
al., 2017]. Besides, Tsin [Tsin and Kanade, 2004] employed
the kernel correlation (KC) to align the points. Afterwards,
Bing [Jian and Vemuri, 2011] introduced the Gaussian mix-
ture models (GMMs) and expanded the method [Tsin and
Kanade, 2004]. To preserve local or global structures bet-
ter, Zheng and Doermann [Zheng and Doermann, 2006] con-
structed a simple graph matching initialized with the shape
context distance, and proposed a robust point matching by p-
reserving the local structures (RPM-LNS). Ma et al. [Ma et
al., 2016] formulated point alignment as the estimation of a
mixture of densities. Bai et al. [Bai et al., 2018] introduced
local connectivity constraint by k-connected neighbors and
connectivity matrix. In these works, PSR is often formulated
as the optimal problems based on GMMs or graph matching
[Pinheiro et al., 2017], which has a limited calculation effi-
ciency in real applications.

3 Methodology
3.1 Problem Formulation
Given two point sets, the model set X = {xi}ni=1 and the da-
ta set Y = {yr}mr=1, the goal of registration is to recover the
correspondence between {xi}ni=1 and {yr}mr=1. This process
is moving the model set X onto the data set Y by a series of
transformation τ . In general, the best spatial transformation
τ(·) : Rd 7→ Rd is just the one that has the maximum point-
to-point overlapping between X and Y by τ , where d is the
dimension of one point. When we assume that the noise on
the inlier correspondence (xi,yr) is Gaussian on each com-
ponent with zero mean and uniform standard deviation σ, the
correspondence (xi,yr) satisfies yr − τ(xi) ∼ N(0, σ2I),
where I is a d× d identity matrix. Thus, the point correspon-
dence problem can be regarded as finding the largest samples
(i.e., the inlier points) that obey the normal density model.

Defining displacement function f(x) = τ(x) − x, above
matching problem can be further written as follows

min
f
−

n∑
i=1

m∑
r=1

wirexp(ηir) + λΦ(f), (1)

where

ηir=−
d(xi + f(xi),yr)

2

σ2
, (2)

Φ(f) is a regularization term controlled by constant λ for
trading-off the two terms, and the stabilizer Φ(f) is an inner
product Φ(f) = ‖f‖2Γ = 〈f , f〉Γ, where ‖ · ‖2Γ is the Hilber-
tian norm of the vector-valued RKHS, d(x,y) denotes the
Euclidean distance between vector x and y, and wir is the
weight coefficient.

In Eq. 1, Gaussian distance is used as measure function.
And if model point xi and data point yr are matched, the
Gaussian distance is equal to 1 for d(τ(xi),yr) = 0, whereas
if xi, yr are not matched or outliers, d(τ(xi),yr) is generally
larger and the Gaussian distance is closer to 0. So, Eq. 1 aims
to find the largest matches. However, due to the disturbances
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in the data, e.g., noises, local similar structures and minor
outliers, the model is more easily confused so that converges
to local extremum. To avoid above problems, a self-selected
mechanism is introduced to guide model convergence by dy-
namic sample selection and incoordinate treatment in this pa-
per. Specifically, sample label is assigned for each model
point to select suitable sample points first. A self-selected
function w.r.t. the label is defined to measure how much con-
tribution each sample point devotes to the model, which can
restrain the matching number and work for dynamically up-
dating the label. As a result, we formulate the point alignment
as the following self-selected regularized criterion:

min
f ,υ

n∑
i=1

υi

m∑
r=1

wir`(γir) +
n∑
i=1

κ(υi, ς) + λΦ(f),

s.t. ∀i, r, γir =
‖xi + f(xi)− yr‖2

σ2
;W ≥ 0; υ ∈ [0, 1]

n
,

(3)

where W is the weight matrix, written as W =

[w1, · · · , wm] ∈ Rn×m with wr = [wr1, · · · , wrn]
T ; υi ∈

[0, 1] is the sample label for the model point xi that shows
whether it is selected. κ(:, ς) is a function controlled by
the parameter ς > 0, which specifies how xi is assigned.
`(x) = 1− exp{−x} and ‖ · ‖ denotes the L2 norm.

3.2 Self-selected Mechanism
Here, label vi is used as a measure of selection or deselection,
which can be performed by a hard-value within {0,1}, i.e.,
setting selection with vi = 1 while deselection with vi = 0.
But such hard-value cannot reflect the importance of differ-
ent samples to the model. In this paper, we treat the selected
samples with unequal weights. vi ∈ [0, 1]n is set in a mixture
of a hard 0-1 and a soft-assignment manner. More important-
ly, each vi is dynamically updated in order to select the best
sample points for current model during each iteration. For
this purpose, we introduce a self-selected function κ(υi; ς)
w.r.t. vi, just as in [Jiang et al., 2014], and it is crystallized as
follows

κ(υi; ς, ζ) = −ζ ln(υi + ζ/ς), ς, ζ > 0, (4)

where the extra parameter ζ is uesd to control the strength of
the weights assigned to the selected points.

Let `i =
∑
r wir`(ρir) be the accumulated error of model

point xi. To discuss vi better, omit the items without vi , and
then for each model point xi, Eq. 3 can be simplified as

υ∗i = arg min
υi

υi`i + κ(υi; ς), s.t. υi ∈ [0, 1], (5)

Note that Eq. 5 is continuous and differentiable with repect to
vi. Thus, it is easy to derive its optimal solution υ∗i by taking
a derivative with respect to vi, then we have

υ∗i =

{
1, `i ≤ ζς/(ζ + ς)
0, `i ≥ ς

ζ/`i − ζ/ς, otherwise,
(6)

It is clear that each vi is related to its accumulated error in
Eq. 6. Smaller accumulated error means more contributions

to the model for the sample point with larger vi, whereas the
contribution of the sample point varies from small to noth-
ing as `i increasing. Moreover, when `i is less than a small
constant, the corresponding vi ∈ [0, 1] becomes 1, which en-
hances the influence of the less but faithful sample points.
Conversely, vi ∈ [0, 1] is assigned as 0 and it works for re-
ducing the effect of those unstable samples on the model. In
other words, the accumulated error actually reflects the sam-
ple accuracy in position, which can be used to measure its
importance to the model. Generally, higher accuracy means
the point is more important and the sample point would be
more suitable for the model. From this view, such strategy
can select the faithful points in each iteration. As iteration,
it makes our model preferentially select some reliable points
and then gradually increase the points with larger influence
on the model.

From Eq.6, each label υi is updated according to `i, which
makes our model focus more on the reliable and accurate
points in each iteration. By iterative point selection, our
method gradually selects the points from reliable ones to less
reliable ones, which are continually added into the final point
set. The final points can be directly applied to estimate the
displacement function f(x) better and more reliably. In other
words, this is an accuracy-aware matching process. Mean-
while, the sum of the function κ(υi, ς) with respect to the la-
bel υi can be actually regarded as the matching number con-
straint and larger value of the sum means more matches.
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Figure 2: Hard and soft weighting. The left figure is a comparison
for soft curve (ζ = 1.0, ς = 1.2) with hard one. The right shows
the change curve between sample weight and loss under different
parameter ζ, ς .

3.3 Transformation Estimation
The Gaussian kernel is symmetric and positive define. It also
makes the regularization term easy to rewrite in form under
the Representer theorem. According to the theory of RKMS,
the displacement function f can be expressed as a linear com-
bination of multiple Gaussian kernels in RKHS. More details
can be seen in [Ma et al., 2015b]. Then the function f takes
the following specific form of Gaussian redial basis function:

f(x) =
n∑
i=1

Γ(x,xi)ai, (7)

where the coefficient ai is a column vector, and the Gaussian
kernel Γ(xi,xj) = exp

{
−β‖xi − xj‖2

}
· I . Moreover,

the regularization item Φ(f) is specified as the L2 norm, i.e.,
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Φ(f) = ‖f‖2Γ = 〈f , f〉Γ. Then Eq. 3 can be further described
as follows:

min
f ,υ
−

n∑
i=1

υi

m∑
r=1

wir exp

{
−
∥∥xT

i − ΓiC− yT
r

∥∥2

σ2

}

+
n∑
i=1

κ(υi, ς) + λ · tr(CTΓC) + =,
(8)

where Γ is the kernel matrix with Γi,j = π(xi,xj) =

exp
{
−β‖xi − xj‖2

}
, and Γi represents the ith row of Γ.

C = (a1, · · · ,an)
T is the coefficient matrix , and tr(·) de-

notes the trace of matrix, and the constant = satisfies = =∑
i υi
∑
r wir .

3.4 Alternating Optimization
Since Eq.8 is not convex, it is almost impossible to find the
global minimum by existing algorithms. Whereas Gaussian
fields is differentiable and preferably convex in local area
around the optimal position, a stable local extremum is e-
nough for most applications. So, the gradient-based numeri-
cal approaches (e.g., quasi-Newton method, conjugate gradi-
ent method) can be used to solve it by deterministic annealing
(DA). As iteration, a stable local minimum can be reached
with a better chance [Wang et al., 2017]. There are two vari-
ables to optimize in Eq. 8. Here, an alternating optimization
is used, namely, optimizing one variable with the other fixed
in an alternating way. For υ, it is easy to obtain its optimal
value. We only need to update it by Eq. 6 during iteration.

To optimize f , first ignore the items without the f because
the derivatives of these items w.r.t f are 0. Then the equation
becomes the following objective function Eσ(C) :

min
f ,υ
−

n∑
i=1

υi

m∑
r=1

wir exp

{
−
∥∥xT

i − ΓiC− yT
r

∥∥2

σ2

}
+ λ · tr(CTΓC).

(9)

Since Eq. 9 is always local continuously differentiable w.r.t
C, take its derivative w.r.t parameter C, then we have

∂Eσ(C)

∂C
=

n∑
i=1

m∑
r=1

2wir
σ

ΓT
i ρir exp

{
−‖ρir‖2

}
+ 2λΓC,

(10)
where ρir =

xT
i +ΓiC−yT

r

σ . Here, Eq. 9 is convex only in the
local neighborhood around the optimal solution. Thus, it is
almost unlikely to directly get the global minimum. Using the
derivative for Eq. 10, we solve the equation by the gradient-
based quasi-Newton algorithm with DA.

During the optimization, a rigid-to-nonrigid technique is
used to enhance the model convergence by performing DA on
scale parameter σ2. In other words, by varying σ from a larg-
er initial value, it gradually makes Eq. 9 approach the local
area around the real minimum. More specially, we initialize
σ with a large value, and gradually update it with σ 7→ νσ in
each iteration, where ν is the annealing rate. Note that the cri-
terion is convex over a large area around the global minimum
at a large σ. As σ decreases, the position of the global min-
imum will tend towards smoothness. Considering that Eq. 9

Algorithm 1 Self-selected point matching
Input: Reference points with descriptors {xi, F (xi)}ni=1,
and sensed points with descriptors {yr, F (yr)}mr=1, param-
eters β, λ, η, ν, n0, iterations Titer, µ
Output: Optimal transformation τ

1: Calculate the Gram matrix Γ and matrix U;
2: Initialize parameter σ and the coefficient matrix Cs

3: Compute the distance between {F (xi)}ni=1 and
{F (yi)}mr=1 as the weights {wir}n,mi,r=1

4: repeat (DA)
5: t← t+ 1
6: Using the quasi-Newton algorithm (e.g. BFGS ) to

solve Eq. 12 based on υ(t−1)

7: Update the coefficient matrix Cs = arg min
Cs

Eσ(Cs)

8: Update υ: calculate the υ(t) via the Eq. 6
9: Using the Cs, υ(t) to calculate the root mean square

error rmse(t) of the selected points pairs
10: if ς < ςmax then
11: ς ← µς; ζ ← µζ
12: end if
13: Update annealing rate σ = νσ
14: until rmse(t) > min

1≤τ̃≤t−1
rmse(τ̃) or t ≥ Titer

15: Cs, υ∗ = arg min
τ̃
rmse(τ̃)

16: Calculate the transformation τ(x) = x + f(x) by Eq.7
17: Return τ ;

is convex in a local small area near its minimum, it is possible
to converge to a new global minimum using the global mini-
mum of last iteration as initial value of next iteration. So, the
global minimum is more easier to obtain as iteration.

It is complex to directly use all the points in both time
and space. A suboptimal but simpler method may be more
effective. Kernel approximation is efficient for selecting an
RKHS. Low-rank kernel approximation can yield a large
speed improvements with little accuracy loss and constrain-
s both the nonrigid transformation and space [Wang et al.,
2017]. Specifically, low-rank kernel matrix Γs is the closest
n0-rank matrix Γ, which satisfies the Frobenius norm,

arg min
Γs

‖Γ− Γs‖F , s.t. rank(Γs) ≤ n0. (11)

Using the eigenvalue decomposition of Γ, the approximated
kennel matrix can be taken as Γs = PΛP, where Λ is an
n0 × n0 diagonal matrix with n0 largest eigenvalue and P
is an n × n0 matrix with the eigenvectors. Finally, the reg-
ularized Gaussian criterion (9) and its derivative changes as

min
f ,υ
−

n∑
i=1

υi

m∑
r=1

wir exp

{
−
∥∥xT

i −UiCs − yT
r

∥∥2

σ2

}
+ λ · tr(Cs

TUCs),
(12)

∂Eσ(Cs)

∂Cs
=

n∑
i=1

m∑
r=1

2wir
σ

UT
i ρ̃ir exp

{
−‖ρ̃ir‖2

}
+2λUCs,

(13)
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where ρ̃ir =
xT
i +ΓiCs−yT

r

σ , Cs denotes the new n0 × d co-
efficient matrix with elements (a1, . . . , an0

)T, Un×n0
= PΛ

and Ui represents the ith row of U. We summarise the opti-
mization procedure in Algorithm 1.

Note that the time complexity of Gaussian fields criterion
is aboutO(n2m+n3). However, the time complexity reduces
to O(nm) by the low-rank kernel matrix approximation.

4 Experiments
In this section, we assess our approach by comparing with
several methods on different datasets, i.e., the synthesized 2D
shapes dataset [Zheng and Doermann, 2006], the benchmark
IMM Face Databaset1 and the Oxford dataset2. Since differ-
ent methods are proposed for different applications, we select
the targeted methods on different datasets for a fair compari-
son. For the 2D shape and 3D face datasets, we make compar-
isons with the typical methods, mainly including CPD [My-
ronenko and Song, 2010], L2E [Ma et al., 2015b], RGF ([Ma
et al., 2015c]), PR-GLS [Ma et al., 2016] and context-aware
gaussian fields (CA-GF) [Wang et al., 2017]. On the Oxford
dataset, some latest algorithms based on RANSAC [Lowe,
2004] are made comparisons, such as FSC [Wu et al., 2015]
and the imprecise points removing algorithm (IPRA) [Wu et
al., 2015]. All methods are implemented in Matlab, and test-
ed on the same environment.

Parameter Setting In the experiments, a deterministic an-
nealing technique strategy is applied on the scale parameter
σ2 to improve the algorithm convergence. More specially,
give a large initial value of σ2, and reduce them with a fixed
annealing rate ν by σ = νσ. We empirically set σ = 2, and
ν = 0.93 throughout the whole experiments. The parameter
β identifies the range width of the interaction between points.
Since the points have been normalized to 0 mean and unit
variance, β would be similar to different samples, and we set
β = 0.2 in the experiments. The parameter of regularization
term includes λ which works for trade-off the smoothness,
and λ is affected by the degree of data degradation, which is
set by λ = 0.1. Note that parameter η reflects the effect of
feature descriptor on the model. So, it can be set as 1 for the
same kind of data. Besides, we initialize Cs as zero vector.

Whereas the matching error is large at the beginning of
iteration, the tolerance of the model to the error would be
large for selecting more points. So, we dynamically update
ζ, ς that decide the tolerance of the model to the error. As
analyzed in Fig.1, we give a large initial value of ζ, ς and
reduce them with a fixed rate µ. Since the optimization would
be terminated, we choose a lower bound of ζ and set ζfinal =
1.0, and also set a lower bound ςfinal = 1.2 to control the
weight of confused points. ς is fixed when ς ≤ ςfinal.

Low-rank kernel matrix approximation is applied to reduce
the computational cost. Parameter n0 is the number of the
selected eigenvalues, and as a trade-off, it controls the bal-
ance between runtime and matching accuracy. The proposed
method is best for n0 ∈ [15, 20], where eigenvector P and
eigenvalue are calculated by the fast Gauss transform (FGT)

1Available at: http://www.imm.dtu.dk/ aam/datasets/datasets.html
2Available at: http://www.robots.ox.ac.uk/vgg/data/dataaff.html

and its experimental analysis is shown in Fig.3. From it, we
set n0 = 15 in the experiments.
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Figure 3: Matching results on IMM face landmarks for different n0.
Left figure shows matching errors and the right is the runtime.

4.1 Results on Non-rigid Synthesized Data
Fig.4 gives the matching results of our method on point sets
with deformation, noise, outliers and rotation. In each group,
four degradation levels are designed to test the robustness of
our method. The intuitive experimental results in Fig.4 show
that the model point sets are well aligned onto the data sets
except for the data sets distorted by noises.

Moreover, for the data with different deformations, noises,
outliers and occlusion, we list the visual results of the typical
methods, e.g., CPD, L2E, RGF, PR-GLS and the latest CA-
GF (see Fig.5). From it, the shapes badly eroded by noises
or outliers, are still well-aligned by our method. Especially
for the occlusion, other methods almost fail or only align part
of the shape while our method nearly gets a complete align-
ment. It owns to our soft selection. Initially, the points with
large error are blocked by the soft labels, which makes the
model sequential to select points, not to disturb other points.
More reliable points are first selected to gradually enhance
the model until it converges. Even if later points are noises
or outliers, they are not enough to affect the estimated model.
As presented in Table.1, our method has lower errors.

Figure 4: The results of our method on the synthesized data with
different degenerations in every two rows. For each group, the upper
is the input points while the lower is the matching results.

4.2 Registration on IMM Face Dataset
In this section, we test our method on the IMM Face dataset.
It contains 240 images with 640 × 480 resolution on 40 hu-
man faces. For this data, each face has 6 samples and each
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Figure 6: RMSE values of the images with different transformation magnitudes using different methods on the Oxford dataset. The first
image of each group in the Oxford dataset is taken as the reference image and others correspond the magnitude 2-6, respectively.

Figure 5: Schematic results of different methods. The first column
shows the original data, marked as Def1, Def2, Noi, Out, Occ from
top to bottom. The next 2-6 columns list the results of CPD, L2E,
PR-GLS, CA-GF and ours from left to right.

Method Def1 Out Def2 Noi Occ
CPD 0.339 0.420 0.076 0.150 0.291
RGF 0.190 0.094 0.070 0.073 0.048
L2E 0.090 0.117 0.003 0.044 0.050

PR-GLS 0.017 0.025 0.004 0.018 0.022
CA-GF 0.024 0.007 0.017 0.111 0.06

Ours 0.008 0.020 0.003 0.014 0.006

Table 1: Comparisons of matching errors for CPD, RGF, L2E, PR-
GLS, CA-GF, and our method on above data.

sample contains 58 landmarks. In the experiment, our goal
is to align the model points to the data landmarks. Due to
complex facial expression, the deformation is nonrigid and
also serious in local area. Aligning such points is difficult.
However, Gaussian kernel can approach the real deformation
better as shown in Fig.7. From the details of Fig.7, RGF can
align the edges well, but it must be correct to single point for
PSR. Since some landmark pairs are not the actual correspon-
dences in real face, it is almost unlikely to align all the points.
Such points indeed affect CPD, RGF and PR-GLS, and only
obtains a rough alignment. As expected, our method selects
more reliable points, and achieves an accurate alignment.

4.3 Registration on Real Image
The Oxford dataset is a widely used dataset in image regis-
tration. It consists of more than 40 image pairs with different

Figure 7: Comparisons for CPD, RGF, PR-GLS and our method on
the IMM Face Dataset (from left to right).

variations. Fig.6 shows the results on the Oxford dataset. To
test the validity of our method in real scenario, we further
employ our approach to match the real images with complex
deformations, which are captured at different time from dif-
ferent viewpoints and contain large scale changes, local self-
similar texture even nonrigid distortions (see Fig.8). In this
experiment, RGF, K nearest neighbor with the triangle-area
representation (KNN-TAR) [Zhang et al., 2014], RANSAC,
FSC and IPRA, is used to make comparisons.

5 Conclusion
In this paper, a robust nonrigid Gaussian fields criterion with
self-selection is proposed for point matching. The main idea
of the proposed method is a novel non-rigid transformation
estimation with adaptive self-selected mechanism, and the
biggest difference with traditional density estimation method-
s is that our method alters the convergence manner of model
by adaptive sample selection. Moreover, an equivalent match-
ing number constraint is embedded into the nonrigid criteri-
on, which enhances the reliability of point matching. Exper-
iments on three matching datasets show that our method has
higher registration accuracy and correct matches than state-
of-the-art approaches.
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Figure 8: Matching examples on real images. The top row is the
results of our method and the results of IPRA are shown below.
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