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Abstract—Street scene understanding is an essential task for
autonomous driving. One important step towards this direction
is scene labeling, which annotates each pixel in the images
with a correct class label. Although many approaches have
been developed, there are still some weak points. Firstly, many
methods are based on the hand-crafted features whose image
representation ability is limited. Secondly, they can not label
foreground objects accurately due to the dataset bias. Thirdly,
in the refinement stage, the traditional Markov Random Filed
(MRF) inference is prone to over smoothness. For improving
the above problems, this paper proposes a joint method of
priori convolutional neural networks at superpixel level (called
as “priori s-CNNs”) and soft restricted context transfer. Qur
contributions are threefold: (1) A priori s-CNNs model that
learns priori location information at superpixel level is proposed
to describe various objects discriminatingly; (2) A hierarchical
data augmentation method is presented to alleviate dataset bias
in the priori s-CNNs training stage, which improves foreground
objects labeling significantly; (3) A soft restricted MRF energy
function is defined to improve the priori s-CNNs model’s labeling
performance and reduce the over smoothness at the same time.
The proposed approach is verified on CamVid dataset (11
classes) and SIFT Flow Street dataset (16 classes) and achieves
a competitive performance.

Index Terms—Scene labeling, convolutional neural networks,
deep learning, label transfer, street scenes, data augmentation.

I. INTRODUCTION

N recent years, intelligent driving has been a hot topic

for the research communities and industrial companies. It
can promote the understanding towards fundamental computer
vision and machine learning problems and enhance the actual
experience of intelligent transportation. For this purpose, a
critical challenge is how to understand the street scenes
and react to the outside conditions efficiently. At present,
researchers tackle this problem by an integration of several
mature technologies, such as pedestrian detection [1], anomaly
detection [2], vehicle detection [3], road surface detection [4],
lane detection [5] and so on. However, these technologies are
on the initial stage of scene understanding and far away from
real requirement.
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Fig. 1. Street scenes labeling examples. The images in the first row are street
scenes and the second row illustrates the per-pixel labeling results.

In order to get a better knowledge of the street scene, a new
computer vision task is proposed, semantic scene labeling.
It combines segmentation, object detection and multi-object
labeling into one single framework and can be regarded as a
per-pixel labeling task. This is because for intelligent driving
in street scenes, it is necessary to not only recognize the
individual participant and event, but also have a thorough
perception of the whole view. For instance, if the driver knows
where the side buildings are, or what the traffic status is, he
will drive more safely. Examples of street scene labeling are
presented in Fig. 1.

However, because scene labeling is a unified framework
and involves many fundamental computer vision tasks, it is
still challenging since Wright et al. [6] firstly put forward
this concept in 1989. There are two questions to be solved
in this topic: how to get distinctive internal representations of
object appearance and how to improve labeling accuracies of
foreground objects in the street scenes. Firstly, scene labeling
is not like traditional single-object problem that needs to
extract features between positive and negative samples. As
a multi-object task, how to extract rich and discriminative
features to describe different objects is essential to labeling,
which is obviously more difficult than single-object task. For
this purpose, many approaches (e.g. [7], [8], [9], [10], [11],
[12]) aim to exploit multiple features to characterize objects.
The first five exemplar ones compute RGB based features to
describe image by combination and fusion of them. The last
two exploit 3D features (dense depth maps or 3D point clouds)
to reconstruct 3D street scenes. Generally, the more features
are extracted, the more information is exploited . However, the
feature weight and fusion strategy are manually determined,
and it is not easy to obtain some features, especially 3D fea-
tures. Thus, how to automatically learn rich and discriminative
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features is an important issue that needs further research.

At the same time, labeling foreground objects is another
intractable issue in the scene labeling. This is because the
data distribution in the training set is unbalanced (called
as “long-tail effect”). A few background objects (sky, road
and building) account for the majority of the training data,
while the foreground objects only take a small part. This
phenomenon makes the training process or feature extraction
are less adequate and the final result is: background objects
labeling accuracy is far higher than foreground objects. How-
ever, because foreground objects may be more oriented to
intelligent driving than background objects, such as traffic
signs, pedestrian, surrounding preceding vehicle and so on, we
think the foreground detection is more important to intelligent
driving than background detection. Nevertheless, there is no
approaches to solve it well because the long-tailed effect is
a natural phenomenon and almost exists in every image. If
the bias of the dataset can be reduced, the foreground objects
detection will be promoted.

Therefore, our model focuses on how to learn more rich
features and reduce the bias of dataset for labeling scene more
accurately.

A. Overview of Our Approach

In this paper, we propose a joint method of superpixel-
CNNs model and soft restricted context transfer to tackle the
street scene labeling problem. The superpixel-CNNs model
focuses on learning rich and discriminative features of image
superpixels and exploiting priori location information effec-
tively, which is called as “priori s-CNNs”. The soft restricted
context transfer aims to reduce the noises caused by the priori
s-CNNs labeling results. The entire framework is illustrated in
Fig. 2.

Training priori s-CNNs with anti-bias data augmen-
tation. In this stage, a priori s-CNNs is trained to label
superpixels. At first, the training images are over-segmented
to a certain amount of superpixels. Then all of them are input
to the CNNs to train the model parameters by a supervised
method. For a more efficient feature learning, the superpixel
location prior is particularly considered in this procedure.
Thus our CNNs feature does not only contain appearance
but also reflect location information. At the same time, in
order to reduce the dataset bias, this work uses a hierarchical
data augmentation to enlarge the original training set. It takes
different numbers of training object classes into account and
augments them separately. Thus the CNNs model can learn
more rich features to describe superpixels.

Labeling images with context smoothing: Given a test
image, two processes are applied, initial label assignment and
context transfer smoothing. The former aims to label each
superpixel in the test image according to the previously learned
model. But the obtained result is noisy and far from perfect.
Therefore, the latter accordingly focuses on reducing the initial
labeling noise by transferring contextual clue from the training
set to the test image. To this end, we search for the k most
similar images in the training set and transfer their structured
labels to the examined test image, combined with an MRF
post-optimization.

B. Contributions

In this work, we focus on learning more rich features to
describe each superpixel and improving the problem of dataset
bias. The main contributions of this work are threefold:

1) Learn rich feature (4096 dimensions) by finetuning the
powerful CNNs (AlexNet, an image classifier network)
to tackle our task - scene labeling. In order to get a
coherent labeling result, we utilize a superpixel with
location priors as an input unit instead of a traditional
pixel based image. Our treatment keeps the structural
relationship between the examined superpixel and the
whole image and implicitly embeds the location prior in
the CNNs processing. This is critical because the street
scene understanding is highly dependent on the class
spatial structure. For example, the sky is prone to be in
the upper image and the road tends to be in the bottom.
Thus, priori s-CNNs can extract rich feature for each
superpixel to label scenes.

2) Propose a hierarchical data augmentation method to
reduce overfitting and dataset bias. Traditional data
augmentation expands the training data randomly and
equally, which can not balance the number of different
training classes. In order to tackle this problem, we
propose to enlarge the training set in a more balanced
manner. The classes with more training samples will be
less augmented, and vice versa. Based on a well adjusted
training set, the performance of the foreground objects
labeling improve significantly.

3) Present a soft restricted MRF model to adapt to priori
s-CNNs model’s outputs and reduce over smoothness.
Traditional approaches treat contributions of adjacen-
t superpixels equally, which causes some foreground
objects are smoothed improperly by its majority of
adjacent background objects for consistence. In order
to weaken this problem, adaptive weights are added to
the smoothness term according to the similarity between
the pairs. With such a soft restriction, our model can
alleviate noises in the initial results and dose not result
in serious over smoothness.

The rest of the paper is organized as follows. Section II
reviews the related work briefly. Section III and Section IV
describe the priori s-CNNs training process and soft restricted
context transfer respectively. Section V shows the experimental
results on two street scenes datasets and compares its per-
formance with other competitors. In addition, some further
discussion and analysis about some import modules in our
methods are presented in this section. Finally, we summarize
the work in section VI.

II. RELATED WORK

In recent years, a large amount of approaches for scene
labeling have been proposed. According to their pipelines,
the algorithms usually consist of two components: extracting
image feature and introducing contextual smoothness.

There are many methods for feature extraction. Liu et al.
[13] use SIFT Flow feature to align the input image. Shotton
et al. [8] define a texton and extract its texture, layout, and
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Fig. 2. The flowchart of our proposed joint method of priori s-CNNs and soft restricted context transfer. Firstly, given an input image, this paper generates
a certain amount of superpixels. For learning priori location information, each superpixel is extracted from original image as a single input of priori s-
CNNs. Then, the CNNs model outputs probability vectors (called as “label score”) corresponding to each label. Secondly, the k& nearest neighbors image
retrieval searches for similar scenes to test image from the training set by global deep features. After obtaining retrieval set, this work computes conditional
probabilities between adjacent superpixels. Finally, a soft restricted MRF model is constructed which integrates label score with priori probability between
adjacent superpixels. Through optimizing MRF energy function to refine initial CNNs model’s results.

location information. Tighe and Lazebnik [9] compute around
20 features (five types: shape, location, texture, color and
appearance) to describe superpixels. In addition to the above
RGB features, some research [11], [14] and [15] exploit 3D
features, such as 3D point clouds and depth maps. Brostow
et al. [11] propose a method based on 3D point clouds
derived from ego-motion. They design five cues (camera
height, closest distance to camera, surface orientation, track
density and back projection residual) to model patterns of
motion and 3D structure. Xiao et al. [14] propose a multi-
view parsing method for image sequences. Zhang ef al. [15]
compute the scene depth information from video sequence
through stereo reconstruction of dense depth maps. Peng et
al. [16] propose an unsupervised subspace learning method
which can automatically determine the optimal dimension of
feature space.

In addition to the above hand-crafted features, deep feature
is recently adopted to describe image. Compared to hand-
crafted features, it can learn high-level features and fill in
representation gap in some way. In an inchoate work, Grangier
[17] propose a supervised greedy leaning scheme based on
deep convolutional networks. The networks architecture can
extract texture, shape, and contextual information. Farabet et
al. [18] propose a method of learning hierarchical features

based on multi-scale convolutional networks. However, be-
cause of the lack of training set, this method does not acquire
a good results. Until 2014, Girshick et al. [19] solve this
problem by representation transfer. They propose a region
CNN (R-CNN), which use a high-capacity CNNs (AlexNet
[20]) to process region proposal for localizing and segmenting
object. Because the AlexNet’s parameters are trained on Ima-
geNet dataset, training model based on AlexNet can acquire its
robust feature representation. After that, many similar methods
exploit this strategy. Hariharan er al. [21] aim to detect all
instances of a category in an image, and their algorithm is
based on region proposals’ features by extracting from both the
region bounding box and the region foreground with a jointly
trained R-CNN and box CNN. Long et al. [22] propose a fully
convolutional networks based on AlexNet [20], VGG net [23]
and GoogLeNet [24], which only consists of convolutional
layers without original fully connected layers.

As for the contextual information, Markov Random Field
(MRF) and Conditional Random Field (CRF) models are
very popular solutions. Early methods (e.g. [8]) exploit local
feature information and smoothness prior adjacent pixels by
defining second-order potential. Tighe et al. [9] define a prior
conditional probability of adjacent superpixels as contextual
information. For exploiting more wide contextual information,
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Ladicky et al. [25] introduce object detector terms into CRF
function. Myeong et al. [26], [27] are based on [9] and model
contextual relationships. Through learning the relationship of
superpixels, the scheme transfer the object relationship from
retrieved images to test images. Yang et al. [28] incorporate
both local and global semantic context information via a feed-
back based mechanism to refine retrieval set and superpixels
matching.

Besides the above two probabilistic graphical models, con-
text and structure model is also a novel method. Generally
speaking, the contextual information propagates in the trees,
forests or networks. Sharma er al. [29] propose recursive
neural network architecture (contains four networks) for the
propagation of contextual information from a superpixel to
other one through binary tree. Kontschieder et al. [30] exploit
contextual and structural information in random forests by
integrating the structured output predictions into a concise,
global, semantic labeling. Long et al. [22] integrate appearance
representation with semantic information from a shallow and
a deep layer respectively. Peng et al. [31] propose a deep
subspace clustering methods, which incorporates the structured
global prior in representation learning.

In addition to the above two modules (feature extraction and
contextual smoothness), it is important to mention the related
works of data augmentation. In the real world, the objects’
proportions are imbalanced because of the “long tail effect”.
In the field of knowledge discovery, imbalanced learning is
a hot topic, which can affect the performance of learning
algorithms in the presence of underrepresented data [32].
Data augmentation is one of imbalanced learning methods
in the deep learning applications. For training AlexNet [20],
Krizhevsky et al. apply image translation and horizontal reflec-
tions. They also alter the intensities of the RGB channels in the
training images. Howard [33] extends image crops into extra
pixels to capture translation and refection invariance, and adds
randomly generated lighting which tries to capture invariance
to the lighting and minor color variation. Wu et al. [34] adopt
some color casting, vignetting and lens distortion to augment
dataset, which can improve the CNNs’ sensitivity to colors
that are caused by the illuminants of the scenes.

III. PRIORI S-CNNS BASED FEATURE LEARNING

This section mainly explains the training process. Based on
a typical CNNs model, we transfer a robust representation
to our specific application - scene labeling. For exploiting
prior information, we propose a priori based s-CNNs. And for
reducing dataset bias and getting a more balanced model, we
propose a hierarchical data augmentation strategy. Thus, our
CNNs model can learn rich and discriminative representations
to describe images.

A. Priori s-CNNs

Scene labeling is a task that needs to annotate per pixel,
but it is time-consuming to extract features for each pixel and
construct a large graph to optimize the MRF energy function.
We note that superpixel is a set of pixels that almost belong
to the same class and have similar appearance and texture.

Once a superpixel is classified as a label, the pixels in the
superpixel are assigned as the same label. If we can regard
each superpixel as a basic labeling unit, the time cost will
decrease significantly. Based on this consideration, we propose
a novel superpixel based CNNs, emphasizing the priori effect
in the scene labeling application.

Convolutional Neural Networks. In this paper, in order
to label street scenes datasets, we finetune AlexNet [20] that
is pre-trained on ImageNet Large Scale Visual Recognition
Challenge dataset (ILSVRC2012, 1.3 million images, 1000
object categories) by Caffe !. AlexNet consists of 5 convo-
lutional layers and 3 fully connected layers (the last is soft-
max layer). For finetuning it, a new soft-max layer replaces
the original soft-max layer to predict street scene labeling
classes (including the “void” class that is representative of
the unannotated regions in the datasets).

Superpixel Generation. In this work, superpixel is a basic
unit of labeling and each superpixel is produced by a typical
and efficient method: simple linear iterative clustering (named
as “SLIC”) [35]. It adopts a k-means clustering algorithm to
generate superpixels, which considers the color information
in CIE-LAB space and the position of each pixel. SLIC
has following advantages: 1) the boundaries of the generated
superpixels are accurately; 2) the generation speed is fast. In a
superpixel, nearly all pixels’ labels are uniform and belong to
the same class. Thus, it is reasonable to regard one superpixel
as a processing unit.

Priori Superpixel based Processing. After generating su-
perpixels, we don’t resize the them to the same dimension
as the input. Alternatively, each superpixel is remained in the
original image and the other outside areas are set as black
color. Afterwards, these superpixel images enter into the CNNs
model and the supervised parameter update is conducted
during the training stage. The reason for this operation is
explained as follows. In street scenes, we easily find that road
region is usually located at the image bottom and the sky
on the top. Taking full advantage of this location priori is
essential to rule out the false labeling. Therefore, we propose
this processing method, which can make CNNs learn location
prior of superpixels and more discriminative feature.

Furthermore, we discuss the effect of location priori in
the CNNs. In convolutional layers, because of the parameter
sharing and small sizes of convolution kernels (11 x 11, 5 x 5
or 3 x 3 in AlexNet), the kernel’s parameters are not changed
by this strategy and they are only sensitive to object class.
For example, a feature map O is a 3-D tensor with size of
H x W x H, which is output by a convolutional layer. Here,
H is height, W is width and C is the number of channel
in the feature map. The C-D vector at the i-th, j-th position
in first two dimension represent the appearance information
of the corresponding respective field in the input image. In
addition, the entire feature map O is viewed as a permutation
of the H x W C-D vectors. Such the permutation potentially
contains the location information. Then, fully connected layers
can integrate the last convolutional layer’s feature map into a
4096-dimensional feature vector by inner product operation.

Uhttp://caffe.berkeleyvision.org/
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Fig. 3. The exemplar display of multi-parameter data augmentation. The
number of superpixels is under each image.

Some neurons in these layers are sensitive to the data on the
specific channel (the data are output by the specific kernel
of the last convolutional layer) of the input. Thus, the fully
connected layers model a relationship between appearance
features and location priors. In other words, the neurons in
fully connected layers can response to specific classes that
often appear in specific regions while ignoring other classes.
In summary, the fully connected layer can learn location priori
for each superpixel.

B. Hierarchical Data Augmentation

In deep learning, overfitting caused by insufficient train-
ing data is a common phenomenon. One general method
to alleviate overfitting is data augmentation that artificially
expands the training set. Traditional strategies include image
flipping, rotation, translation, rescaling, shearing, and so on.
Unfortunately, these strategies share the same characteristic
that all training data are expanded randomly and equally. Thus
they cannot reduce dataset bias. Besides, some operations,
especially rotation and translation, may change the location
priori for the vehicle captured video. As a result, designing a
self-tailored augmentation method is necessary.

We notice that common street scenes are roughly symmetric
in the horizontal direction. Consequently, only horizontal
flipping is adopted to avoid location prior changes when
enlarging the training data. But this can not solve the dataset
bias. In order to get a more balanced training set, different
object classes should be augmented distinctively. Based on this
consideration, a hierarchical data augmentation mechanism is
presented to purposefully enlarge each class of training set.

To be specific, the objects in each training image are divided
into four categories.

1) Majority objects: some background objects, such as sky,
buildings and roads that count for the most part of an
image;

2) Common objects: objects with label proportion more
than 10% except “majority objects”;

3) Unusual objects: objects with label proportion more than
3% and less than 10%;

4) Scarce objects: objects with label proportion less than
3%.

The label proportion is defined as N; / >~ N;, where N is
J

number of pixels labeled as class ¢ in the training image,
and ) N, is the number of image pixels. All foreground

J
objects labels exist in the last three categories. As for the
above four levels, in order to enlarge them to different extents,

35% 30% 25% 20% 15% 10% 5% 0% 5% 10% 15% 20% 25% 30% 35%

M road B building sky N tree
car B sidewalk M fence W sign
pole M bicylist M pedestrian

Fig. 4. The label distribution histogram of CamVid dataset [11]. The left
is the label distribution of the original dataset before data augmentation,
which shows a “Long Tail Effect”. The right demonstrates a distribution after
hierarchical data augmentation, which is more balanced among the different
classes.

we present a multi-parameter data augmentation method to
generate training data and the concrete implementation is
described below.

In our work, the superpixel is obtained by SLIC [35]. Under
various parameters, each training image is over-segmented to
different number of superpixels. However, not all of them are
added to the training set, otherwise the dataset bias cannot be
reduced. For complementary augmentation, object with less
label proportion will acquire more augmentation with different
parameter segmentations. Thus the majority objects get the
least segmented superpixels as the training samples, while
the scarce objects get the most. Eventually, a more balanced
training set is achieved.

Actually, this multi-parameter augmentation also has the
multi-scale effect. For example, in Fig. 3 the same image
is segmented by different parameters of SLIC and some
foreground objects with distinctive appearances and sizes are
all involved in the training set. This makes the model learn
more diverse and rich features.

In order to illustrate the effect of this self-tailored augmen-
tation, we take CamVid [11] dataset as an example. The label
distribution histograms before and after data augmentation are
shown respectively in Fig. 4. The left part demonstrates clearly
the “long tail effect” before augmentation. As can be seen
from the bars, some background classes (sky, building and
road) account for more than 70% of all training data, but
the important foreground objects (person, pole, fence, sign,
etc.) only cover a few proportion. According to the proposed
augmentation strategy, we divide these objects into four cat-
egories and expand their numbers through horizontal flipping
and multi-parameter segmentation. The resulting proportion
histograms alleviate the “long tail effect” greatly, which can
be seen in the right part of Fig. 4. According to statistics,
the number of superpixels in the training set increases from
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around 60,000 to more than 130,000 and the proportions of
common, unusual and scarce objects raise greatly compared
to the original training set. Therefore, we can say a more
balanced training set is obtained after data augmentation.

C. Local Superpixel Labeling

With the above treatment, we can train the priori s-CNNs
effectively. Then given a test image, the soft-max layer outputs
a label score vector s for each superpixel, which represents the
probability of being labeled as each class. Selecting the label
with largest score as the superpixel’s label and combining all
the labels of superpixels in one test image forms the initial
labeling result. However, only exploiting local feature is not
enough, because the results may be noisy. Thus the initial
results should be refined further.

IV. SOFT RESTRICTED CONTEXT TRANSFER

In Section III-C, the initial labeling results are obtained.
Nonetheless, since the superpixels are individually examined,
the spatial coherence needs to be improved further. Super-
Parsing [9] propose an effective method to utilize contextual
information. It comprises two steps, nearest image retrieval
and MRF optimization. However, the nearest image retrieval
adopts hand-crafted features, which can not represent high-
level image information. What’s more, the traditional MRF
model can result in over-smoothness. For solving the question-
s, we exploit deep features to search neighbors and propose a
soft restricted MRF model, which can utilize internal differ-
ence in adjacent superpixels to alleviate the over-smoothness.

A. The k Nearest Image Retrieval

In order to transfer more accurate contextual information to
the test image, the scenes that contain similar content structure
should be considered. Thus we retrieve the k nearest images in
the training set for the examined test image and exploit their
contextual influence.

This system computes a deep global image features to
search neighbors, which is 4096-D vector from fc7 layer of
AlexNet. Here, the AlexNet is trained on Places Database
(scene-centric databases, more than 7 million images, includ-
ing 205 scenes categories), named as Places-CNN [36]. The
model can effectively extract global feature of scenes. For
each image in the training set, it will be ranked according
to the increasing order of Euclidean distance to the test image
on the computed 4096-D deep feature. Then the nearest k
neighbors of the test image are chosen to transfer the contex-
tual information in the next step (soft restricted MRF model
inference). Compared to some traditional methods such as
SuperParsing [9], deep features describe appearance and high-
level semantic information better than hand-crafted features
(More discussions about the advantages of deep features are
presented in Section V-H). Thus, the more accurate contextual
information is computed and transferred by Soft Restricted
MRF Model in the next section.

B. Soft Restricted MRF Model Inference

For transferring contextual information from the retrieval
set, the MRF model is a popular method. Given a superpixel,
traditional methods employ its adjacent superpixels to smooth
it equally. However, this is not a reasonable strategy. We think
a pair of similar superpixels should smooth each other more
than dissimilar pairs. Thus, we propose a soft restricted MRF
model, which weights each adjacent superpixel to measure its
contribution of spatial coherence.

We formulate an MRF energy function over the field of
superpixel labels 1 = {I;} as:

EM) = Y Ea(sili)+A X

s;€ESP (8i,85)€ew

E, (lialj)v (D)

where S P is the set of superpixels in the test image, superpixel
s; is adjacent to superpixel s;, €, is the set of edges of
adjacent superpixels, and A is a smoothing constant. The data
term Ey (s;,[;) denotes the cost of assigning superpixel s;
with label /; and the definition is:

By(si, i) = (A3, — AT (1), 2)

where A3 is the output label score vector for superpixel s;
from the prlorl s-CNNs, A7 (I;) is the observation value, an
indicator vector whose [; -th item is set as 1 and others 0.
Suppose that the p-th item of label score vector have largest
probability, if I; = p, the E4 (s;,1;) will be smallest and vice
versa. The smoothness term F,(l;,1;) stands for the cost of
a suerpixel smoothed by adjacent superpixels. If a pair of
adjacent superpixels appear in the retrieval set frequently, the
smoothness term should be small. This term is defined based
on probabilities of label co-occurrence statistics:

1) = )+ P ()

—w;; X log

5[l # 1],

3)
where P([;|l;) is the conditional probability of assigning label
l; to the superpixel given its neighbor has label [;, which
is estimated from its corresponding retrieval set. w; ; is a
soft restriction on the smoothness term, which represents the
contribution of each pair of adjacent superpixels. It is defined
as the squared Euclidean distance between label scores of two
adjacent superpixels:

wy = (43, - 4z)" )

where A5, and AS denote the label score of superpixel s; and
s;. The more alike the adjacent superpixels are, the smaller
w;; 1s, and vice versa. Thus, w;; enhances the smoothness
between similar superpixels and reduces the smoothness be-
tween distinguished superpixels. The last factor § [I; # [;] can
be considered as a Potts penalty, which is necessary to ensure
that this term is semi-metric [37]. It is defined as below:

_J O ifli=1;
5%%M{1 if LAl
If the assigned labels for the two adjacent superpixels are the
same, the smoothness term is not necessary and should be set
as 0.

Exploiting the prior conditional probability aims to reduce

(&)
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labeling errors. For example, if a superpixel is a part of
a person, it may be assigned with a label “pedestrian” or
“bicyclist”. But if its adjacent superpixels are likely to be
“sidewalk”, it is more probable to label it with “pedestrian”
according to the learned prior conditional probability from the
retrieval set. We perform MRF inference using an efficient
graph cut optimization®[37], [38], [39].

V. EXPERIMENT

In this section, we report experimental details and results
on the two challenging datasets: CamVid [11] and SIFT Flow
Street dataset. Section V-A shows the two evaluation criteria
in scene labeling. Section V-B presents some details and
characteristic of the two datasets. Section V-C gives parameter
setup and implementation details in the experiments. Then,
the results and discussions are presented in Section V-D and
V-E. Finally, we discuss the effects of the proposed priori
location, the advantages of the soft restricted MRF model, the
comparison between CNN and hand-crafted features in image
retrieval and convergence issues of the stepwise models in last
four sections (V-F, V-G, V-H and V-I).

A. Evaluation Criteria

In the scene labeling field, there are two metrics to evaluate
each algorithm’s performance: per-pixel accuracy and mean-
class accuracy. The former is defined as:

2 Mg
= =i 6
v 2 Zj Tij ©

where n;; is the number of pixels assigning label ¢ as label j,
> >_jmij and >, n;; stand for the total number of pixels
and total number of pixels that are assigned correct label,
respectively. However, because the label distribution suffers
from unbalanced problem in practice, only adopting the per-
pixel accuracy is not precise. Moreover, in the street scenes,
the foreground objects are essential to safe driving, but their
contribution to per-pixel accuracy is limited. Therefore, a more
reasonable criterion should be introduced. Specifically, the
mean-class accuracy is defined as below:
1 Nii

Te = 37 2i > (7)
where N denotes the number of the label classes. It is an
average of per-pixel accuracy of each class, so it can evaluate
the overall performance at the class level.

B. Dataset

1) CamVid Dataset: The Cambridge-driving Labeled Video
Database (CamVid)® is a challenging road driving scenes
dataset, which includes 4 video sequences (one video is
divided into 2 parts) with image size of 960 x 720 pixels.
Similar to [9], [40] and [30], we merge the 32 object classes
of the original dataset into 11 classes. They are road, building,

2The C++ code and MATLAB wrapper are developed by O. Veksler and
A. Delong and available at http://vision.csd.uwo.ca/code/gco-v3.0.zip
3http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/

sky, car, sign-symbol, tree, pedestrian, fence, column-pole,
sidewalk and bicyclist. Table I shows the detailed information
of CamVid dataset.

TABLE I
THE DETAIL INFORMATION OF CAMVID DATASET IS SHOWN AS BELOW,
INCLUDING SEQUENCE NAME, THE NUMBER OF FRAMES, DATA TYPE AND
SCENE CATEGORY.

Video sequence Frame no. Type  Scene

0001TP-1 62 train dusk
0016ES 305 train  daytime
0006RO 101 train  daytime

0001TP-2 62 test dusk
Seq05VD 171 test  daytime

2) SIFT Flow Street Dataset: The original SIFT Flow
dataset* consists of 2,688 images of 33-class outdoor scenes,
which is selected from LabeleME [41] and annotated by
LabelME’s users. These outdoor scenes include coast, forest,
highway, inside city, street scenes and so on, with a resolution
of 256 x 256. For doing the experiments in the specific street
context, we only choose a part of them as our dataset which
is called “SIFT Flow Street Dataset”.

To be specific, we select the highway and street scenes from
SIFT Flow dataset and remove those images that are not from
the perspective of vehicles. The new dataset consists of 529
images (491 training images and 38 testing images are selected
from original training and testing sets respectively). At the
same time, the original label classes are updated by removing
the unrelated labels. Eventually, there are 16 classes (road, sky,
sidewalk, building, tree, car, field, fence, person, crosswalk,
sign, streetlight, bus, bridge, window, and mountain) in the
SIFT Flow Street dataset.

C. Implementation Details & Settings

Settings of the priors s-CNNs. As for each image (training
or testing), it is resized to 256 x 256px to adapt to the CNNs
model and is oversegmented to ~ 150 superpixels (we treat
“~ 150" as “the main parameter”). In the training priori s-
CNNs stage, the learning rate is initialized at 10~ and reduced
ten times every ten thousand iterations. Our models are only
sensitive to the learning rate: the smaller value selection results
in the slower convergence speed and the higher loss. On the
contrary, setting the more larger learning rate does not makes
the model converge.

Settings of the hierarchical data augmentation. As for
the data augmentation, the majority objects are not enlarged;
the other training samples are horizontally flipped but they are
segmented by different parameters. Specifically, the common
objects are expanded under the main parameter; the unusual
objects are augmented under the parameters of 100, 125 and
200. In addition to the above parameters, the scarce objects are
expanded under more parameters, including 175, 130 and 170.
With this strategy, a more balanced training set is obtained.

Settings of the context transfer. In the & nearest image
retrieval, k is set as a default value 50 [9], which can achieve

4 Ihttp://people.csail mit.edu/celiu/Label Transfer/Label Transfer.rar
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Fig. 5. The red solid lines demonstrate the effects of our proposed soft
restricted MRF model under the different smoothness parameter A. The (a) is
on CamVid dataset, and the (b) is on SIFT Flow Street dataset.

the best mean-class accuracy. Another important parameter is
A in the soft restricted MRF model. Fig. 5 demonstrates the
performance under different \ choices on the two datasets.
As can be seen from the red lines, the mean-class accuracy
is almost stable at the beginning and decreases with the
increase of \. The per-pixel accuracy increases firstly and then
decreases. This is because with the increase of )\, the labels
with small area (e.g., foreground objects) are over-smoothed.
Therefore, a moderate A might be appropriate. Since it is more
important to obtain a high mean-class accuracy than per-pixel
accuracy for preserving the foreground objects, A is set to 0.5
in this work.

After setting the above parameters, the entire model will
perform automatically and without manual operation.

Settings of the compared algorithms. For showing the
superiority of our method, the five mainstream algorithms are
added to the comparison. They are SuperParing [9], LLD
[40], LOR [26], SLiRF [30], THSRT [27] and FCN [22].
The first five traditional approaches all exploit hand-crafted
features: SuperParsing, LOR and THSRT use 20 features to
represent superpixels; LLD designs a local label descriptor
by concatenating label histogram; and SLiRF exploits low-
level image features. The last two, FCN-32s and FCN-8s [22]
that are finetuned on AlexNet, exploit the fully convolutional
network to labeling scenes end-to-end. Because of no source
code, we do not test LLD [40] and SLiRF [30] on SIFT Flow
Street dataset.

D. Performance on CamVid Dataset

Table II shows the two metrics of different comparative
methods. At first, the baseline only uses the original data
to train CNNs model. Then the traditional data flipping and
our hierarchical data augmentation are added to the training
process respectively. The last one is the soft restricted MRF
inference based on the CNNs model with the hierarchical data
augmentation (called as “full model”).

TABLE 11

COMPARISON OF DIFFERENT APPROACHES ON CAMVID DATASET
Methods Per-pixel Mean-class
SuperPasing [9](Still Image)  78.6% 43.8%
LLD [40] 73.7% 36.6%
LOR [26] 72.5% 35.7%
THSRT [27] 73.1% 35.7%
SLiRF [30] 72.5% 51.4%
FCN-32s (AlexNet) [22] 80.1% 44.7%
FCN-8s (AlexNet) [22] 80.8% 47.4%
Ours methods:

Baseline 77.1% 45.6%
Data Flipping 77.2% 47.9%
Hierarchical Augmentation 76.8% 53.0%
Full Model 78.1% 53.2%

It can be seen that our per-pixel accuracy of 78.1% is not the
best, but for mean-class accuracy, our full model achieves the
best performance. Considering the above criteria collectively,
our results is the best in all of the methods. On the one hand,
compared with the traditional strategies, our priori s-CNNs can
learn more discriminative features to describe various objects.
Thus, more foreground objects are labeled accurately. On the
other hand, compared with the FCN-zs [22], our model labels
the foreground objects more accurately.

Next, we discuss the effects of hierarchical data augmen-
tation. Our proposed augmentation method can improve the
mean-class accuracy (from 45.6% to 53.2%, increasing by
16.7%) more significantly than traditional data flipping (from
45.6% to 47.9%, increasing by 5.0%). But for the per-pixel ac-
curacy, the improvement is not obvious. The reason is that the
labeling performance of foreground objects increases but the
background objects’ drops simultaneously. More discussions
will be presented in the next paragraph.

In order to analyze the labeling performance further, the
results of each class are shown in Table III. According
to the distribution of bold statistics, we find that the best
performance of almost all foreground classes are in the bottom
two rows which utilize the hierarchical data augmentation.
However, there is an exception, namely, “column-pole”, whose
performance is not good (2.2% versus the best 4.1% [40]).
The reason is that the “column-pole” training data can not be
segmented perfectly by SLIC and is not enlarged effectively
(as shown in Fig. 4). We also notice that the accuracy of the
majority objects (sky, building and road) decreases slightly
after data augmentation. This is because with the increase
of foreground labeling, the boundary pixels that previously
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Hierarchical Data
Augmentation

Full Model

Input Image Ground Truth Baseline Data Flipping

73.7/42.3 76.8/44.0 76.8/44.1 82.3/46.6

0001TP_009300 71.7/38.2 73.3/44.1 75.3/47.7 76.1/48.7
o aad 7

0001TP_009570 75.8.7/46.3 77.2/51.8 82.4/54.0 85.6/55.1

71.7/43.5 72.7/49.8 73.6/50.6 79.6/51.7

70.9/43.9 72.4/53.4 74.3/58.9 75.4/59.4

Seq05VD_f03060

Seq05VD_£03720 68 0/54.0 69 5/55.0 74.4/55.6 75.0/60.1
N Building [N Tree Sky Car [ sigh-Symbol NG Road
I redestrian Fence Column-Pole _ Sidewalk [N Bicyclist NN Void

Fig. 6. Exemplar results on CamVid dataset. We report the four comparative results, namely the baseline, baseline+data flipping, baseline+hierarchical
data augmentation and full model (baseline+hierarchical data augmentation+soft restricted MRF inference), respectively. The values under each image are
the per-pixel/mean-class accuracies. The test images of the first three rows are from dusk sequence “0001TP” and the others are selected from the daytime
sequence “Seq05VD”.

TABLE III
COMPARISON OF PER-CLASS ACCURACY WITH SUPERPASING [9], LLD [40], LOR [26] AND FCN [22] ON CAMVID DATASET.
° 2
£ o n?
M = %) @) wn ~ A~ = @) »n aa]

SuperPasing [9](Still Image) 84.8 65.1 94.7 47.5 24.6 96.2 8.3 9.1 34 43.7 3.9
LLD [40] 80.7 61.5 88.9 16.4 - 98.0 1.1 0.01 4.1 12.5 0.01
LOR [26] 84.3 29.4 93.1 45.6 1.0 94.0 1.3 0.5 1.3 39.5 2.6
THSRT [27] 87.2 27.7 91.9 43.2 0.4 93.9 1.4 0.03 0.4 434 3.1
FCN-32s (AlexNet) [22] 85.5 63.6 90.3 63.4 10.4 94.1 5.0 10.7 0.0 69.0 0.3
FCN-8s (AlexNet) [22] 82.3 67.8 922 66.0 15.3 94.2 7.1 22.0 0.1 71.8 2.6
Our methods:
Baseline 84.9 60.8 95.3 63.7 22.0 96.2 24.0 15.0 1.0 23.3 15.0
Data Flipping 79.1 70.0 94.2 67.4 26.6 95.2 28.3 16.9 2.1 30.5 17.0
Hierarchical Augmentation 704 739 936 688 310 924 389 327 23 50.3 28.4
Full Model 74.4 74.9 93.8 69.8 29.6 92.6 38.5 29.8 2.2 52.0 29.0
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belong to the background change their labels due to the
unprecise superpixel segmentation.

For reporting the advantages of the our algorithm, Fig.
6 shows six typical exemplar labeling results. At first, we
show the impacts of the hierarchical data augmentation on
the labeling results. Without the data augmentation, the “tree”
and “building” are prone to be mixed. After the hierarchical
data augmentation, they are distinguished more clearly. In
addition, more other foreground objects (sidewalk, pedestrian,
sign and so on) are also labeled. For example, in the first input
image, by our data augmentation the two signs are labeled
correctly; in the second, third and last input images, several
persons are labeled as “pedestrian” after data augmentation.
Secondly, we present the effects of soft restricted context
transfer. In the forth input image, the parts of the car are
mislabeled as building, bicyclist and column-pole without
the soft restricted MRF model inference. After considering
contextual information by the MRF model, the car can be
labeled entirely and accurately. In the fifth image, the left
building is recognized as fence, bicyclist, car, pedestrian and
so on. After smoothing this result, the error is mitigated
considerably.

E. Performance on SIFT Flow Street Dataset

The results of SuperParsing [9], LOR [26], THSRT [27],
FCN [22] and our models are listed in Table IV. From the
table, we can see our full model achieves an excellent result
(82.0% per-pixel accuracy and 41.1% mean-class accuracy).
Obviously, our mean-class accuracy of 41.2% outperforms the
SuperParsing (32.8%)[9], LOR (34.2%)[26], THSRT (33.2%)
[27] and FCN (36.8% and 37.2%) [22]. Compared with these
mainstream methods, our model is trained on a more balanced
dataset, which can learn rich and discriminative features to
describe various objects. Thus, our model achieves the best
mean-class accuracy. However, our per-pixel accuracy is not
the best but it is close to the best (best 84.7% [22]). As a
whole, our performance is competitive on the two criteria
compared to other popular methods.

TABLE IV
COMPARISON OF DIFFERENT APPROACHES ON SIFT FLOW STREET
DATASET.
Methods Per-pixel Mean-class
SuperParsing [9] 79.9% 32.8%
LOR [26] 84.3% 34.2%
THSRT [27] 83.7% 33.2%
FCN-32s (AlexNet) [22] 84.0% 36.8%
FCN-8s (AlexNet) [22] 84.7% 37.2%
Ours methods:
Baseline 80.9% 32.0%
Data Flipping 80.8% 36.3%
Hierarchical Augmentation  80.7% 40.1%
Full Model 82.0% 41.1%

In addition to the above comparison with other approaches,
we discuss the effects of different steps for the proposed
method. Obviously, the mean-class accuracy of the original

baseline is not very high. But after the traditional data flipping
which augment the training set, the performance increases
from 32% to 36.3%. The incensement becomes larger with
the hierarchical data augmentation for a more balanced data
augmentation (40.1%) and with a soft restricted MRF opti-
mization for a smoother labeling (41.1%). These statistics give
a hint that the proposed method is more effective than the
competitors.

Fig. 7 illustrates the per-pixel accuracy, overall per-pixel
accuracy and mean-class accuracy. The data statistics are
similar to that of CamVid dataset: the performance of back-
ground objects decrease a little, and many foreground objects
are promoted dramatically. The significant improvement of
foreground objects labeling benefits from our priori s-CNNs
trained on more foreground data after the hierarchical data
augmentation. However, some foreground objects are not
labeled correctly, such as “streetlight”, “bus” and “window”.
The “streetlight” is similar to the “pole” in CamVid dataset,
so it can not be segmented effectively and augmented. And
the “bus” can not be trained enough because the training data
are so rare that the effort of data augmentation is limited. The
“window” is misclassified as “building” in the labeling stage.

Four typical results are shown in Fig. 8 to explain the
effects of the hierarchical data augmentation and the soft
restricted MRF inference. From (b) and (c), the “sidewalk”
can be labeled more accurately with the hierarchical data
augmentation than the baseline and traditional data flipping.
In (c), the car in the right road is mislabeled as “road” by the
first two methods, but our proposed augmentation method can
label it correctly. In addition to the above intuitive displays, the
statistics under the labeling images also illustrate the advan-
tages of our augmentation strategy: the mean-class accuracy of
each of the above images is promoted significantly by our data
augmentation. As for the soft restricted MRF inference, in (b),
the region mislabeled as “road” sidewalk shrink significantly
because of its adjacent superpixels’ smoothness. Similarly,
some noises in the left (a) and (c) are reduced by contextual
smoothing.

FE. Effect of Prior s-CNNs

In the Section III-A, the learned location priors are ex-
plained theoretically. In order to show the effect of priori
s-CNNss intuitively, the verified experiments are added. For
comparison, the s-CNNs without location priors are trained on
the two datasets. To be specific, during the training and testing
stages, each superpixel is shifted by a random value at the =
and y axes respectively in the original image, which removes
the location priors from the superpixels input. In practice, the
input superpixel image, the shift values Az, Ay € [—255, 255]
(image size is 256 x 256) are generated randomly on the X and
Y-axis, respectively. If the superpixel is moved to the outside
of the image, the Az and Ay are regenerated until the new
location of the superpixel is still in the image. That way, in
an input image, all superpixels are move to a different random
location, which eliminates the location priors in the original
image. And the s-CNNs focuses on learning the features from
the appearance information. The quantitative results are shown
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Fig. 7. The performance of each class and two metrics in the four stages.

Input Image Ground Truth Baseline Data Flipping ~ Hierarchical Data Full Model
Augmentation

(a) highway_gre661 93.6/35.8 93.7/38.8 90.8/43.1 90.4/43.6

63.2/34.9 89.0/41.2

90.6/35.4

70.2/32.1 87.6/40.1

91.6/36.6 89.8/38.5 90.1/38.8

(d) highway_bost164 98.8/41.5 98.7/42.0 98.7/44.2 98.7/44.8
BN Bridge W Building MM Bus I Car W Crosswalk " Fence I Sky Streetlight
I Field [ Mountain Person [ Road MM Sidewalk Sign I Tree N \Window

Fig. 8. Exemplar results from SIFT Flow Street dataset. The value under the each image labeled is the percentage of per-pixel and mean-class accuracy
respectively.
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(a) CamVid dataset. (b) SIFT Flow Street dataset.

Fig. 9. Convergence curves of the stepwise models: s-CNNs without priors,
priori s-CNNs, data flipping CNNs and hierarchical augmentation CNNs. The
left and right present the results on CamVid and SIFT Flow Street dataset,
respectively.

as in Table V. Specifically, the performance of the proposed
priori s-CNNs is superior to that of s-CNNs without priors
on the two datasets, which verifies the effectiveness of the
former. In addition, the convergence curves of both models
during training stage are shown in Fig. 9. Obviously, the priori
s-CNNs converges a lower loss value than s-CNNs without
priors.

TABLE V
COMPARISON OF S-CNNS WITHOUT PRIORS AND PRIORI S-CNNS ON THE
TWO DATASETS.

Methods Per-pixel Mean-class
CamVid dataset

s-CNNs without priors 70.6% 35.2%
priori s-CNNs (Baseline) 77.1% 45.6 %
SIFT Flow Street dataset

s-CNNs without priors 79.8% 25.8%
priori s-CNNs (Baseline) 80.9 % 32.0%

G. Effect of Soft Restricted MRF

For explaining the advantage of the proposed soft restricted
MREF intuitively, the comparisons with traditional hard MRF
[9] on the two datasets are illustrated in Fig. 10. As can be
seen from the bar chart, our method obtains higher mean-class
accuracy than the traditional hard MRF, while the traditional
method achieves a better per-pixel accuracy. But for the
intelligent driving application, traditional hard MRF is not a
good strategy, which sacrifices the performance of foreground
labeling to get more overall per-pixel accuracy, because the
foreground objects are more essential to safe driving than
backgrounds. Therefore, the mean-class accuracy is more
important than per-pixel accuracy. From this perspective, our
model is much superior to the traditional model.

H. Comparison of CNNs v.s. Hand-crafted Features for Image
Retrieval

In the k£ nearest image retrieval, the deep features are
exploited instead of the hand-crafted global features, such as
spatial pyramids, GIST and RGB-color histograms in Super-
Parsing [9]. Because of classification capability of AlexNet,
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(a) CamVid dataset. (b) SIFT Flow Street dataset.

Fig. 10. Comparison of our proposed soft restricted MRF and traditional hard
MREF at the optimal lamda 0.5.

the 4,096-D feature in fc7 layer can represent the appearance
and semantic information better than traditional features. Thus,
the more accurate contextual information will be transferred
to test images.

In order to show advantages of deep features, we exploit
two types of features to find similar images and transfer
contextual information. Table VI shows the results of the
two types of features in the full model. From the results,
the improvement is not significant on CamVid dataset. To be
specific, the retrieval results by two types of features are not
so different. The main reason is that CamVid dataset includes
continuous and similar image sequence and the retrieval set
can be easily and accurately searched by hand-crafted features.
On the SIFT Flow Street dataset, the improvement is obvious
because of various scenes in the dataset so that the CNNs
features demonstrate significant superiority.

TABLE VI
COMPARISON OF CNNS V.S. HAND-CRAFTED FEATURES FOR IMAGE
RETRIEVAL.
Methods Per-pixel Mean-class
CamVid dataset
Hand-crafted features 77.7% 53.0%
CNNss features 78.1% 53.2%
SIFT Flow Street dataset
Hand-crafted features 81.4% 40.2%
CNNs features 82.0% 41.1%

For showing the difference of the two types of features
intuitively, we select two typical test images from the two
datasets and display respectively the retrieval results in Fig.
11. The left larger images are the query samples, and the
right small images are the retrieval sets. Because of the limited
space, the top-25 retrieved images are only displayed. About
the “0001TP_008910” image in CamVid dataset, although the
results of the two methods are similar as a whole, there are
some subtle difference. The hand-crafted features are so sensi-
tive to the color information that they ignore the images from
other scenes. However, the CNNs features’ results include
some images that have the same content with the test image
from other scenes. As for the test image “highway_1836030”
in SIFT Flow Street dataset, the KNN that exploits CNNs
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features finds more similar images than the KNN that adopts
three hand-crafted features. This is because the CNNs features
describe more higher-level image representation including ap-
pearance, contextual and structural information than traditional
hand-crafted features.

1. Convergence Analysis of the Stepwise Models

In this Section, we show the convergence curves of each
stepwise models during the training stage, namely s-CNNs
without priors, priori s-CNNs, data flipping CNNs and hi-
erarchical augmentation CNNs in Fig. 9. As can be seen
from the loss curves, the first three models converge after
around 20, 000 iterations. The last model on the two datasets,
however, converge at about 50,000 and 60,000 iterations,
respectively. The main reasons are aggravating imprecise seg-
mentation noises and increasing training samples caused by the
hierarchical data augmentation. But eventually, the hierarchical
data augmentation CNNs converges a lower training loss value
and achieves a higher classification performance on the test set
than the former three.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a joint framework of priori s-CNNs
and soft restricted context transfer for street scenes labeling.
The priori s-CNNs can fully exploit priori information through
preserving superpixels’ location in the image. Besides, it learns
rich and discriminative features by the proposed hierarchical
data augmentation. Compared with the traditional equal and
random data augmentation, the proposed strategy can not only
improve foreground objects labeling and mean-class accuracy
significantly but also maintain the background objects labeling
performance at the high level. In the context transfer, our
proposed soft restriction on the smooth term of the MRF

-ﬂaﬂﬁﬁﬂu‘,—m-ﬁm
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The exemplar display of the retrieval sets generated by different global image features (CNNs versus hand-crafted features).

energy function can effectively reduce over smoothness, which
makes the foreground objects not be improperly smoothed
by the adjacent background objects. Extensive experiments
have verified the effectiveness of the proposed method on
the street scene datasets. Not limited to these street scenes,
the proposed method also applies to other scenes (such as
indoor and clothing parsing scenes) because no specific scene
constraints are supposed in our approach.

With the proposed framework, the labeling accuracy of the
foreground objects increases significantly. Nevertheless, the
missing and false labeling phenomena are common in our
results. Thus, we will focus on integrating objects detector
into our model to enhance the labeling accuracy in the future.
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