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Abstract—Video-based vehicle detection and tracking is one
of the most important components for Intelligent Transportation
Systems (ITS). When it comes to road junctions, the problem
becomes even more difficult due to the occlusions and complex
interactions among vehicles. In order to get a precise detection
and tracking result, in this work we propose a novel tracking-
by-detection framework. In the detection stage, we present a
sequential detection model to deal with serious occlusions. In
the tracking stage, we model group behavior to treat complex
interactions with overlaps and ambiguities. The main contribu-
tions of this paper are twofold: 1) Shape prior is exploited in the
sequential detection model to tackle occlusions in crowded scene.
2) Traffic force is defined in the traffic scene to model group
behavior, and it can assist to handle complex interactions among
vehicles. We evaluate the proposed approach on real surveillance
videos at road junctions and the performance has demonstrated
the effectiveness of our method.

Index Terms—multi-target, vehicle detection, tracking, road
junction, sequential detection, group behavior

I. INTRODUCTION

Intelligent Transportation System (ITS) will be the de-
velopment direction of the future traffic system. With the
popularity of monitoring equipment, more and more traffic
videos and images have to be analyzed. Faced with the large
amount of data, traditional manual management has become
unrealistic and automatic analysis is incrementally necessary
as a consequence.

Among the various techniques that enable ITS, detecting
and tracking vehicles are fundamentally important. They can
help get the information of the primary traffic occupations and
infer the quantitative statistics of traffic status. The goal of
this work is to automatically detect and track each individual
vehicle in the surveillance video of a road junction, where the
traffic condition is more complex and achieving an effective
control is more essential.

Several challenges render this problem very difficult. First,
vehicles have complex dynamics in the field of camera view.
Second, occlusion is very serious between vehicles in the
real traffic scene. Third, road intersections have much more
kinds of objects and complex environment that will lead to
ambiguities during detecting vehicles. Under these difficulties,
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the first important thing is to detect most appeared vehicles
and then track their movements. Thus an excellent method
is supposed to detect and track targets as many as possible.
However, traditional trackers, such as [1], [2], either ignore
detection or many of them [3], [4], [5] annotate the target
by hand in the first frame of video sequence. These manual
methods are impractical for real traffic videos, because too
many targets exit in the field of view and new ones keep
emerging. As a result, discriminative tracking methods with
online learning [6], [7] are proposed. In such approaches,
a specific detector is trained in a semi-supervised fashion
and then used to find out the object in continuous frames.
However, these algorithms only focus on single target without
considering the multi-target situation. Several techniques [8],
[9], [10], [11] are consequently dished to deal with multi-target
tracking by optimizing detection assignments over a temporal
window. Such approaches apply off-line trained detectors to lo-
cate the targets and associate them with their tracks. Although
they can overcome several difficulties such as the uncertainty
in the number of targets and template drift, they are still
inadequate when facing occlusion. Particularly, when tracking
a crowd of vehicles in the traffic surveillance video, the data
association often fails in the aforementioned methods because
of partial occlusions and complex interactions with overlaps
and ambiguities. Similar to our approach, some methods use
Social Force Model [12] to improve tracking results, e.g. [13],
[14]. Our approach is different than [13], [14] in that we model
group behavior based on traffic force. The difference between
them will be discussed in III-B1.

In this work, we deal with such difficulties by proposing
a sequential detection model, which explores shape prior
segmentation, and integrates tracking with group behavior
context. While the deformable part-based model (DPM) [15]
has outstanding performance in VOC challenges [16], yet it
still has poor performance in crowded scenes. Since there are
more complex background and targets in actual environment,
it is hard to detect all the targets only with one detector. Our
sequential detection model utilizes the deformable part-based
model whose threshold value (η) is much smaller as a sieve to
obtain more candidates of targets. Meanwhile, to decrease the
inevitable false detections, a shape prior based segmentation
is put forward to refine the results of DPM.

Due to the lower threshold DPM, the partial occlusion can
be handled more robustly. However, complex dynamics still
bothers us. In the actual environment, each single vehicle is
impacted by the others and the speed of one vehicle will
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Fig. 1: Overview of the proposed tracking-by-detection framework.

be affected by its neighbors. In this case, traditional trackers
which track vehicles without taking their neighbors into ac-
count will be more likely to drift because they do not capture
the intrinsic properties of the vehicle movements. Therefore,
we model group behavior that simultaneously considers both
the individual vehicle and its neighboring context to improve
the performance of the tracker. Especially, our group model
acts on vehicles with the same direction. The group behavior
model is based on the distance between two vehicles. The
closer two vehicles are, the greater repulsive force between
them will be. Since the contextual information is added, the
group behavior model (GBM) will assist to predict possible
locations of target more reasonably.

The proposed tracking-by-detection framework consists of
the steps illustrated in Fig. 1. First, a general vehicle detec-
tor is used. The detector is supposed to provide candidates
of vehicles as many as possible on each frame, no matter
whether including false detections or not. In this work, we
utilize DPM as an example to implement vehicle detection.
Second, the shape prior information is employed to refine
the detection results. An energy function is formulated in
the graph-cut segmentation by incorporating the vehicle shape
prior. Through minimizing the energy function, vehicles can
be distinguished from false detections. After that, a GBM-
based tracker contributes to predicting locations of the de-
tected vehicles with taking the influences of the neighboring
vehicles into account. Owing to modeling group behavior, we
can obtain more reasonable vehicle locations. Finally, these
predicted locations will be assigned to trajectories and the
tracked vehicles will be updated.

In summary, faced with the actual scene of road junctions,
we extend traditional approaches so as to adapt to a crowded
scene. The main contributions of this paper are as follows.
First, we adopt a novel sequential detection model which
exploits a shape prior segmentation to tackle occlusion in
crowded scene. Second, the complex group behavior in traffic
scene is modeled by traffic force to handle influence of the
neighboring vehicles.

The rest of this paper is organized as follows. Section

II introduces the related work while Section III describes
the proposed approach. Experimental results are discussed in
Section IV and conclusion and future direction are presented
in Section V.

II. RELATED WORK

Object detection and tracking have a long history in com-
puter vision. Much progress has been made in recent years.
Since this work is mainly about multi-target detection and
tracking, we review existing works in terms of two main
categories: vehicle detection and multi-target tracking.

A. Vehicle Detection

Object detection has a very wide range of applications. In
this paper, we mainly discuss vehicles in the traffic scene,
so we will just review the vehicle detection methods instead
of general object detection. Vision-based vehicle detection for
traffic surveillance video has received considerable attention.
As a rigid target, vehicles have significant structural charac-
teristics, which is more stable than flexible objects. In this
paper, we follow the common two steps in vehicle detection
[17]: Hypothesis Generation (HG) and Hypothesis Verification
(HV).

1) Hypothesis Generation: The goal of HG step is to find
candidate vehicle locations in an image quickly for further
exploration. HG approaches can be mainly classified into
the following three types: knowledge-based, stereo-based and
motion-based.

Knowledge-based methods make use of a priori knowledge
to hypothesize target locations. Different kinds of priori infor-
mation are used to identify vehicles. Teoh et al. [18] study
symmetry. However, symmetry estimations are sensitive to
noise in homogeneous areas. Therefore, shadow information
is applied in [19] to hypothesize vehicle locations. Inevitably,
the intensity of the shadow is influenced by light conditions.
Shadow prior is destined not to have an excellent performance
for vehicle detection. Apart from shadow, the structural in-
formation is utilized in a large amount. Wu et al. [20] use
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edge detection to find moving vehicles on the road. Moreover,
color feature becomes popular after aggregate channel features
(ACF) are proposed in [21]. The ACF proposes 10 channel
features including 3 LUV color channels, and this feature is
outstanding in vehicle detection. Ohn-Bar et al. [22] employ
ACF and clustering method to narrow down the search area
for detecting vehicles.

Stereo vision-based methods [23], [24], [25] apply stereo
information for vehicle detection in two ways. One is disparity
map, while the other is Inverse Perspective Mapping (IPM),
an anti-perspective transformation. Lefebvre et al. [23] convert
the disparity map into a 3D map to extract 3D points, while
Bertozzi et al. [24] employ IPM to acquire stereo vision. Both
the disparity and IPM are employed to get contours of targets.
With the help of contour information, vehicles can be detected
on images.

Motion-based methods employ movement information of
vehicles to distinguish vehicles from background. Normally,
velocity is the most useful cue to take motion into consider-
ation. Since vehicles keep moving and background is always
static, objects and background can be separated according to
the difference of velocity. Martinez et al. [26] use optical
flow method to estimate velocity of each pixel in the image.
Afterwards, pixels which have the similar velocity will be
clustered together, and these clusters of pixels is the hypothesis
of vehicles. However, generating a displacement vector for
each pixel is time consuming. In contrast to pixel-based optical
flow, feature based methods, such as color features [27],
extract features from an image. And then optical flow of
feature points will be computed. By clustering optical flow of
feature points like pixels-based methods, vehicle hypotheses
are generated. Since not all the velocities of pixels need to
be estimated, this makes feature based methods faster than
pixel-based ones.

2) Hypothesis Verification: Compared with HG step, the
input of HV step is the set of hypothesized locations from
HG step. For this procedure, tests are performed to verify the
correctness of a hypothesis. There are mainly two types of HV
approaches: template-based and appearance-based.

Template-based approaches apply predefined patterns from
the vehicle class and perform correlation between the image
and the template. Li et al. [28] propose an And-Or model
that integrates context and occlusion for verifying hypotheses.
Felzenszwalb et al. [15] propose deformable part models
(DPM) to structure template model. Each model is composed
of different parts of the object. The system detects objects by
scoring each hypothesis according to the similarity between
hypothesis and DPM model and thresholding scores. Leon et
al. [29] put forward a template-based approach using mixture
of deformable parts models. They expand the original DPM
[15] to adapt to crowded scenes. Wang et al. [30] also propose
a probabilistic inference framework based on part models for
improving detection performance.

Appearance-based approaches learn the features of the ve-
hicles from a set of training images which should capture the
variability in vehicle appearance. Usually, appearance models
treat a two-class pattern classification problem: vehicle and
nonvehicle. Wu and Zhang [31] apply standard Principal

Components Analysis (PCA) for extracting global features to
detect vehicles. Owing to small training data set, it is difficult
to draw any meaningful conclusions. Li et al. [32] employ
segmentation and neural network classifier for distinguishing
vehicles from background. Khammari et al. [33] add depth
image to set up their appearance models. Apart from the
observed features, Zheng et al. [34] design image strip features
based on the vehicle structure for vehicle detection. Since
features come from the side view of the vehicle, their detector
is sensitive to the viewpoint.

B. Multi-Target Tracking

A significant amount of work has been reported for multi-
target tracking. There are two main representative approaches,
detection-based data association and energy minimization.

1) Detection-based Data Association: Detection-based data
association regards multi-target tracking as a data association
problem. Longer tracklets can be formed by detections be-
tween two continuous frames. The most classic framework of
this approach is proposed by Nevatia et al. [35]. They handle
data association in three levels. In the low-level, they connect
detection responses in continuous frames into short tracklets.
A threshold value would be used to exclude unreliable ones. In
the mid-level, they compute an affinity score for each reliable
tracklet obtained from low-level and connect short tracklets
into longer tracklets. In the high-level, a scene structure model
is estimated based on the tracklets provided by the middle
level. Afterward, with the help of scene knowledge, the long-
range trajectory association is performed.

Some work follows this basic framework. Zhang et al. [10]
define data association as a maximum-a-posteriori problem
given a set of object detection results as input observations,
while Brendel et al. [36] formulate data association problem
as finding the maximum-weight independent set of graph
that is built by pairs of detection responses from every two
consecutive frames.

2) Tracking via Energy Minimization: Many problems can
be transformed into an energy minimization problem. This
is true for multi-target tracking. In recent years, several
energy minimization-based tracking methods [37], [8] are
proposed. In these methods, detection responses are known
and solution space is the combination of tracklets that are
composed of these responses, which is different from common
data association methods whose current frame is inferred by
previous ones. Milan et al. [8] construct an energy function
that depends on the locations and motions of all targets in
all frames for obtaining globally optimal solution considering
physical constraints, such as target dynamics. By minimizing
the energy function, they get the final tracking result. Leibe
et al. [37] present a multi-object tracking approach which
considers object detection and space-time trajectory estimation
as an optimization problem. And the successful trajectory
hypotheses are fed back to guide detection in the future frames.
Since minimizing energy function is time-consuming, energy
minimization-based methods for multi-object tracking suffer
from low computational efficiency.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 4

III. OUR APPROACH

In this section, we will give a detailed explanation of
our tracking-by-detection framework. As mentioned before,
in the surveillance video of road intersections, occlusions
and complex interactions with overlapping and ambiguities
are the main difficulties. Hence, in the detection stage, we
present a sequential detection model that explores shape prior
segmentation to improve the detector in crowded scene. In the
tracking stage, on the other hand, traffic force is proposed to
model group behavior. Interactions between individual vehi-
cles are taken into consideration to tackle nonlinear dynamics
in vehicle tracking.

A. Sequential Detection Model

Though object detection has made much progress, existing
detection approaches are still not well tailored to crowded
scenes. Our motivation comes from boosting algorithm, in
which the single classifier does not work well but combining
several weak classifiers to a cascade classifier can achieve an
outstanding performance. In the same way, a single vehicle
detection algorithm cannot find out all the targets. Therefore,
we combine several basic algorithms having distinctive su-
periorities to produce a sequential detector. The Sequential
Detection Model consists of two main parts, DPM and shape
prior segmentation.

1) DPM: As shown in Fig. 1, a general detector is utilized
in our framework to get enough possible locations of targets.
The reason why we choose DPM are mainly as follows. First,
DPM can easily get shape templates with various viewpoints
and describe the target with abundant information. Second,
DPM is well suited for occlusions that are serious in the scene
of road intersections.

In DPM, the detection score of a hypothesis, score(hobj),
is given by the filter score at the examined location minus a
deformation cost that depends on the relative position of each
part with respect to the root filter plus the bias, as is shown
in Eq.1:

score(hobj) =

n∑
i=0

Fi −
n∑

i=1

Di + b, (1)

where b is a bias term, n is the number of parts, Di is the
deformation cost of part i, Fi is the score of each part and F0

represents the root part.
A score represents the similarity between pre-trained model

and a hypothesis. DPM get final detections by thresholding
score. However, different from the original DPM, we set a
low threshold value instead of self-generated one for DPM
in detection procedure. As a result, reducing threshold can
obtain vehicle candidates as many as possible. Due to the
significant low threshold value, the results of DPM have
both vehicle and nonvehicle targets. Though we improve the
recall rate of detecting vehicles, more false detections appear
inevitably. In order to exclude the false detections, a shape
prior segmentation is further applied.

2) Shape Prior Segmentation: As is implied by the name,
the shape prior segmentation takes shape information into con-

sideration so as to exclude the false detections. Each detection
window obtained from the DPM is processed independently.

Image segmentation can be regarded as a pixel labeling
problem actually. The label of the pixel depends on whether it
is in object or background and this process can be achieved by
minimizing the energy function through minimum graph cut.
Let L = {l1, l2, ..., li, ..., lm} be the label set of pixels, where
li is the label of the pixel i in the image. The pixel is assigned
label li = 1 if it belongs to object and li = 0 if it belongs
to background. The energy function for the shape prior based
graph cut is usually defined as the following equation [38],
[39]:

E(L) = R(L) +B(L) + Eshape, (2)

where, R(L) is the regional term, B(L) is the boundary term
and Eshape is the shape prior term. Compared to traditional
graph cut based segmentation, the shape prior term is added.
The goal of shape prior term is to segment targets with similar
shape to the template.

In sequential detection model of our framework, shape prior
segmentation is applied to distinguish vehicles from other
targets. Our shape prior segmentation is just like a refinement.
It can remove those false detections and extract vehicles. We
define the energy function of graph cut segmentation with
shape prior in the following way:

E(L) =
∑
p∈P

Dp(lp) +
∑

(i,j)∈Np:li ̸=lj

Vi,j(li, lj)

+
∑

(i,j)∈Np:li ̸=lj

Ei,j(li, lj),
(3)

where P is the set of all pixels and Np is the set of pixels in
the neighborhood of p. Dp(lp) is the penalty of assigning label
lp∈L to p, and Vi,j(li, lj) is the penalty of labelling the pair
i, j with labels li, lj∈L, respectively. Ei,j(li, lj) represents a
pairwise shape constraint term that penalizes the difference
between the shape template and the target.

To be specific, the region term Dp(lp) is:

Dp(lp = 1) = −logPr(Ip|obj), (4)
Dp(lp = 0) = −logPr(Ip|back), (5)

where Pr(Ip|obj) and Pr(Ip|back) are the probability distri-
butions that can be learned beforehand for both the object and
the background, and I represents the pixel intensity.

And the edge term which punishes those pixels with similar
intensities is defined as:

Vi,j(li, lj) = exp(− (Ii − Ij)
2

2α2
)

1

dis(i, j)
, (6)

where α can be seen as camera noise, and dis(i, j) is the
Euclidean distance between pixels i and j.

When applying adaptive shape prior, we employ the idea of
level-set template, and define shape energy term Ei,j(li, lj) in
Eq.(3) in the following way:

Ei,j(li, lj) = ϕ(
posi + posj

2
), (7)

where ϕ is a regular, unsigned distance function whose zero
level set corresponds to the shape template. posi and posj are
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Fig. 2: Examplar transformation from HOG template to our
binary template.

the locations of pixels. ϕ(posi) will be zero if li = 1, and
ϕ(posi) will be the shortest distance to the shape boundary if
li = 0. Since they are neighboring pixels, they will be along
the contour of shape, when minimizing Ei,j .

As for the definition of shape template, we employ binary
figures of the vehicles. Since we incorporate shape prior by
zero level set, a binary figure will speed up the computation.
For this purpose, the shape templates are generally supposed
to be trained by samples. Fortunately, DPM has trained multi-
parts from various viewpoints of the vehicle. In this work, we
adopt vehicle models trained by DPM and transform them into
binary templates. These models are trained by VOC-2007 [16]
dataset and our own data. As a result, when DPM detects a
vehicle by one of the parts, we can utilize the corresponding
binary figure as the shape template. Namely, different shapes
of the vehicle are applied depending on the maximum response
part used in the DPM detection stage. Fig. 2 shows some
examples of our shape templates.

By minimizing the energy function of Eq. 3, false detections
are removed and vehicles will be detected finally.

B. Tracking via Group Behavior Model

After obtaining the final detections, we employ these de-
tection windows as our observation targets for tracking. As
mentioned before, occlusions and complex motions will be
the challenges. Owing to part-based model, we can deal with
occlusions. However, complex motion model still troubles us.

Under the dynamics, it is hard for us to treat the motion of a
vehicle separately. Each vehicle is affected by its surroundings
and regarding the vehicles as a group in the scene of road
intersections is more reasonable. In view of the above fact,
we attempt to model the group behavior of vehicles to assist
tracking procedure. When tracking a vehicle in such a group,
we should consider not only the state of the vehicle itself, but
also the influence of other vehicles in the group.

1) Group Behavior Model: We first explain the difference
between the proposed tracking model and existing ones. Fig.
3(a) represents the traditional state-space model employed for
the generic object tracking. Formally, this state-space model
is defined as follows:

θt+1 = ft(θt),

Xt = gt(θt),
(8)

where θt is the state of the target at time t, and Xt is the obser-
vation. Thus, current state is only determined by the previous
state, and ft and gt are nonlinear unknown functions. Fig. 3(a)
graphically describes the link from θt to θt+1 and the link
from θt to Xt in Eq. 8. Along this line of consideration, we
model group behavior that includes surrounding information
for tracking. In our group behavior model, the movement of
each target is influenced by the neighboring ones. Fig. 3(b)
illustrates our group behavior model and in this case Eq. 8
can be rewritten as follows:

θt+1 = ft(θt, St+1),

St = (Pt, Vt),

Xt = gt(θt),

(9)

where St is the surrounding information, including the location
Pt and velocity Vt information.

As we all know, vehicles have to keep the minimum safe dis-
tance between each other according to the traffic regulations.
In other words, when two vehicles become too close, the back
one will have the tendency that it will keep away from the front
one. We assume that a potential repulsive force exists among
vehicles in this situation and this potential repulsive force
is named as traffic force (TF). The traffic force makes each
individual in the traffic scene hold a minimum distance from
others and avoid collision. We regard this behavior caused
by the traffic force as GBM. By building the GBM, we try
to simulate the behaviors among vehicles and improve our
tracker.

The traffic force between individuals is inversely related to
their distance. If the distance decreases, this force increases.
With this in mind, the distance between the predicted lo-
cations of targets can be used to calculate TF. Let Tft =
[tf1

t , tf
2
t , ..., tf

i
t , ...] be the vector of traffic force. We use tf i

t

to represent the TF of the ith target from its neighbors . And
the surrounding information sijt ∈ St is the jth target around
the target i. The overall force is defined as:

tf i
t =

∑
i ̸=j

µijw(s
ij
t ), (10)

where w(sijt ) is the force between the target i and its neigh-
boring target j. Each TF between the two vehicles is computed
as:

w(sijt ) = exp(
−d2ij(t)

2σ2
d

), (11)

where σd controls the distances of a vehicle to be avoided,
and dij is the Euclidean distance between the two targets. We
assume that target i has the predicted position prepit and its
neighboring target j has the predicted position prepjt :

dij(t) =
∥∥∥prepit − prepjt

∥∥∥ , (12)

Moreover, µij in Eq. (10) represents the influence of target
j in the overall TF on target i. It guarantees that different
vehicles will have different influences. The definition of µij

is:

µij = exp(
−
∥∥∥prepit−1 − prepjt−1

∥∥∥2
2σ2

w

), (13)
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(a) The state-space model of traditional tracking.
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(b) Our approach for modeling group behavior.

Fig. 3: Group Behavior Model.

where σw is the radius of targets influence.
By utilizing the traffic force Tft, we can take group

behavior cue into consideration for tracking multiple vehicles.
However, GBM here is different from social force model
(SFM)[12] in theory. There are three main differences between
GBM and SFM:

• GBM is calculated based on the whole object, while SFM
is calculated based on pixels.

• GBM is defined by the distance, while SFM is based on
the velocity.

• GBM cares more about the movement of the individual
target affected by the whole group. SFM, on the other
hand, focuses on the movement tendency of the whole
group.

2) GBM-Based Tracking: Our tracking model utilizes GBM
in the Kalman filter [40] to predict the locations of vehicles.
For the state prediction, our constraint of group behavior
model is applied in the following form:

θt = Tft · Ft · θt−1 +Bt · ut, (14)

where Ft is the process transition matrix, ut is the control
vector, and Bt converts control vector ut to state space. The
state θt will be predicted by θt−1 under the constraint of Tft.
Recalling the definition of w(sijt ) in III-B1, it is easy to know
that 0 < w < 1. The physical significance of w can be seen
as decelerating vehicles that are affected in the group. And
this constraint is reasonable due to the traffic regulations, in
which to keep the minimum safe distance between vehicles
and avoid collisions, vehicles have to slow down. From this
perspective, the modification to the Kalman filter is promising.
After obtaining predicted locations, these locations and new
detected ones will be assigned to existing trajectories. We
assign locations to trajectories by judging the motion tendency
of a vehicle. If one location is consistent with the motion
tendency and it is near the trajectory, the location will be
allocated to the trajectory and the trajectory will be updated. A
simple greedy algorithm will be employed to assign locations
to trajectories. If one location doesn’t belong to any trajectory.
It will be the start of a new trajectory.

The reasons why the Kalman is chosen are as follows: First,
Kalman filter has less computation price than other methods.
Second, vehicle velocity will not change violently in this traffic
context. Because of traffic light, most vehicles have similar
velocities. Thus, velocity has a Gaussian distribution that is

the necessary condition for Kalman filter. Therefore, Kalman
filter is suitable for this situation.

The whole tracking-by-detection procedure is summarized
in Algorithm 1.

Algorithm 1 GBM-based Tracking algorithm

procedure GBMTRACKER(videoseq)
1. Initialize tracker and detector
2. Get each frame from videoseq
3. Obtain possible locations as many as possible via

DPM with η = −0.78
4. Extract vehicles from possible locations via shape

segmentation Eq. 3-Eq. 7
5. Modeling group behavior via detection information

Eq. 9-Eq. 13
6. Predict locations Eq. 14
7. if new location belongs to existing trajectory

update assigned tracks
else

generate new tracks
end if

8. Display result
end procedure

IV. EXPERIMENT AND DISCUSSION

To demonstrate the capabilities of the presented approach,
extensive experiments are conducted and evaluated. In this
section, the experiments will be introduced from the following
aspects: data set, evaluation measure, parameter selection,
experimental results and analysis.

A. Data Set

Multiple object tracking has many public data sets. How-
ever, there are no surveillance videos in the road junctions.
For this reason, our experiments are performed on videos that
we collected. The data set contains one short video (Seq1) and
two long videos (Seq2 and Seq3). Seq1 involves 748 frames
(688×384) and 25 frames per second. It describes only two
opposite directions. Seq2 includes 6200 frames (1280×720),
while Seq3 includes 7908 frames (1280×720). Both of them
are 30 frames per second and describes all the possible
directions in road junctions.
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B. Evaluation Measure

Diverse evaluation measures are employed for different
stages in our approach.

1) Evaluating Detection: Precision-recall measure is
adopted to evaluate the detection performance. Precision (also
called positive predictive value) is the fraction of retrieved
instances that are relevant, while recall (also known as sensitiv-
ity) is the fraction of relevant instances that are retrieved. For
classification tasks, the terms true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) compare the
classifier results under test with trusted external judgements.
Based on these definitions, the two metrics are calculated as:

precision =
TP

TP + FP
, (15)

recall =
TP

TP + FN
, (16)

In our vehicle detection task, TP is the number of vehicles
that are correctly detected on all frames. FP is the ones that
are incorrectly detected as positives and FN is the ones that
are not detected but should have been detected.

2) Evaluating Tracking: We evaluate our tracking results
using the standard CLEAR MOT metrics [41]. The indexes of
CLEAR MOT metrics are MOTP (multiple object tracking
precision) and MOTA (multiple object tracking accuracy).
MOTP shows the ability of the tracker to estimate precise
object positions, independent of its skill at recognizing object
configurations, keeping consistent trajectories, and so forth.
Briefly, MOTP embodies the precision of the target locations.
It is defined as:

MOTP =

∑
i,t d

i
t∑

t ct
, (17)

where
∑

i,t d
i
t is the total error in estimated position for

matched object-hypothesis pairs over all frames, and
∑

t ct
is the total number of matches made.

Moreover, MOTA accounts for all object configuration
errors made by the tracker, false positives, misses, mismatches,
over all frames. Compared with MOTP, MOTA cares more
about the accuracy of the number of targets. MOTA can be
seen as derived from three error ratios:

MOTA = 1−
∑

t(mt + fpt +mmet)∑
t gt

, (18)

where
∑

t mt/
∑

t gt is the ratio of misses in the se-
quence,

∑
t fpt/

∑
t gt is the ratio of false positives and∑

t mmet/
∑

t gt is the ratio of mismatches. We count all
tracker hypotheses for which no real object exists as false
positives and count all occurrences where the tracking hy-
pothesis for an object changed compared to previous frames
as mismatch errors. All of them are computed over the total
number of objects present in all frames.

C. Parameter Selection

In our framework, some parameters play an important role
in the experiments. In order to obtain a significant perfor-
mance, the value of those parameters should be selected
meticulously.
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Fig. 4: Effect of varied η on the precision and recall results.
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Fig. 5: Effect of varied σw on the MOTP results.

1) Threshold η in Detection: As mentioned before, DPM
in our framework is used to obtain vehicle hypotheses as many
as possible. To this end, we are supposed to choose a much
smaller threshold η that is used to determine whether the pixel
area is object or not. However, the default η equals to -0.5.
This threshold cannot provide enough possible hypothesis in
road junctions. Therefore, we select another proper threshold
through experiment.

Fig. 4 displays how η is selected. As we all know that the
precision is inversely related to the recall. It is impossible
to make precision and recall the biggest simultaneously. In
Fig. 4, we can see that when η is smaller than −0.5, recall
of our detector increases significantly, but precision decreases
slowly. With the recall improving, false detections should have
increased and the precision should have decreased greatly.
However, the reason why the precision decreases slowly is
that our shape prior segmentation that is added into the
sequential detection model prevent it from being in steep
decline. According to the shape difference between vehicles
and other target, shape prior segmentation takes out many false
detections which is produced by a significant low threshold
value η. Proper exploring the shape prior segmentation makes
us seek out a point that has relatively high precision and recall
at the same time. Therefore, we finally choose η = −0.78.

2) Influence Radius σw of Each Target: In Section III-B,
each vehicle in our tracking model has its own influence
radius. In theory, each vehicle will be affected by its neigh-
boring ones from all directions. However, due to the limitation
of viewpoint, the influence from various direction seems
different. Given this actual situation, our influence radius of
vehicles is selected by experiment.

Fig. 5 shows our experimental curve of selecting σw. With
the increase of σw, the MOTP of our tracker improves first but
decreases after the peak value. We attempt to explain the result
through the phenomenon of the realistic traffic scene: When
the influence area of a vehicle is too small, the relationship
between vehicles become weak. Our tracker will degenerate
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(a) DPM detector (b) Detecting with shape prior

(c) DPM detector (d) Detecting with shape prior

Fig. 6: The first column is the detection result with original DPM detector, while the second column shows the result of the
proposed sequential detector with shape prior.

into a conventional tracker that only consider the vehicle itself.
This will lead to a poor performance. On the contrary, if
a vehicle influences much large areas, more vehicles will
be affected. That is to say, not only the neighboring ones
are affected, the others are also influenced. This will be
contradictory to our assumption that vehicles can only affect
their neighboring ones. The performance is also unsatisfying.
Hence, we finally select σw = 8.0 for our group behavior
model.

D. Result exhibition

With the parameters presented at section IV-C, a more
detailed analysis of our experiment will be presented in the
following sections respectively.

1) Sequential Detection with Shape Prior: Employing
shape prior segmentation in detection makes our detector
unique. Fig. 6 reveals our experiment results of sequential
detection. Fig. 6(a) employs original DPM with its common
threshold η = −0.5, while Fig. 6(b), Fig. 6(c) and Fig. 6(d)
utilize our detector that has a lower threshold η = −0.78
with shape information of vehicles. When not applying shape
information of vehicles, we will get fewer targets in Fig. 6(a)
or more overlapping bounding boxes in Fig. 6(c). After making
use of shape prior, Fig. 6(b) demonstrates we can obtain more
targets, while Fig. 6(d) shows another superiority of shape
prior that can remove false detections.

The advantages of our detecting method are as follows:
First, we use a significant low threshold value. In original
DPM, this low threshold value will lead to lots of false detec-
tions and duplicate bounding boxes. However, we don’t have
this trouble. We just regard the output of DPM as proposals,
while they are final detection results in original DPM. With
this low threshold value, we can get candidates of vehicles as
many as possible without considering the false detection. Sec-
ond, shape prior is added to the segmentation. The significant

low threshold value allows us to detect more targets in theory,
while the shape prior segmentation guarantees the feasibility of
detecting more targets in practice. We employ this shape prior
segmentation to deal with the proposals obtained by DPM.
Owing to applying shape information of the vehicle, we can
easily distinguish correct vehicles from false detections.

We compare our detector with DPM [15], AOG [28] and
ACF-based detectors (Subcat [22] and ACF [21]) . Both DPM
and AOG deal with occlusion very well, while ACF (Aggre-
gate Channel Features) is popular in recent years because of its
speediness and high efficiency. Subcat make vehicle detection
much faster, due to classifying vehicles into subcategories.
Fig. 7(a) and Fig. 7(b) shows the result of comparison. ROC
(receiver operating characteristic) is a graphical plot that
illustrates the performance of a binary classifier system as
its discrimination threshold is varied. FPPI represents false
positives per image and TPR (true positive rate) has the same
value with recall in Eq. 16.

Nevertheless, different from results in public data set, ACF-
based detectors [22], [21] have a poor performance in road in-
tersections. The reason is that ACF detectors doesn’t specially
aim at occlusion that is quite serious in our traffic surveillance
video. On the other hand, AOG and DPM has similar perfor-
mance taking occlusions into account. And our detector, which
divide detection problem into detecting and segmentation, own
the best performance in such a real scene, since we have more
candidates and make full use of shape information of the
vehicle. The result also proves our thought that aggregating
several basic techniques can reach a significant performance.

Despite that the performance of our sequential detection is
outstanding. There are still some problems to be discussed.
One of the controversial problems is that whether we should
detect all the vehicles in a frame or not. That is to say, for
those distant targets whose size is quite small, is it necessary
to detect them all? Early in our research, we tried to detect



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pre
cis

ion
 

 

Our detector
DPM
AOG
Subcat
ACF

(a) Comparison with ROC curve.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fppi

tpr

 

 

Our detector
DPM
AOG
Subcat
ACF

(b) Comparison with FPPI curve.

Fig. 7: Comparison between five detection methods, including our sequential detector, DPM detector, AOG detector, original
ACF detector and Subcat detector.

(a) frame#161 (b) frame#171

(c) frame#161 (d) frame#171

Fig. 8: The first row is the tracking result without modeling social behavior, while the second row shows the result with GBM.
Different number of the bounding box indicates the different vehicles.

all the vehicles regardless of their size. Unfortunately, it is
really difficult to detect all the vehicle, especially for tiny
ones. They are even hard to identify the structure. Therefore,
we only focus on those vehicles near the intersection. When
those distant vehicles come to near, we can also detect them.
On the other hand, the traffic junction is an accident black
spot. Detecting those distant vehicles seems to be meaningless.
Moreover, those distant vehicles may be near ones compared
to other camera. In consequence, we only detect those near
target in this work. It is sufficient for surveillance video of
road junction. Another controversial problem is that since the
templates of shape prior segmentation are from the training of
DPM, will the results from DPM and shape prior segmentation
be correlated and detection errors be reinforced? Though the
DPM models are correlated to the templates of shape prior
segmentation, the detection errors cannot be reinforced. DPM
models are more concerned about the relationship between
the various parts of the object, however, shape templates only
care about the similarity of the whole object. They influence
detection results in different aspects. Fig. 6(c) and Fig. 6(d)
also prove this point of view. The traffic light detected in Fig.
6(c) is removed by shape prior segmentation in Fig. 6(d).

2) GBM-Based Tracking: Modeling group behavior of ve-
hicles contributes to tracking in road junctions and taking
interplay of targets into consideration makes our result more
reasonable. Fig. 8 reveals one of the advantages of modeling
group behavior, which can relieve the drift of targets. In Fig.
8(a) and Fig. 8(b), the tracker regards bounding boxes in blue
circle as the same vehicle. Obviously, they are different targets
and the vehicle’s number in the red circle changes from 16 to
9. That means drift happens during the tracking course. After
modeling group behavior in our tracking model, we no longer
track a vehicle separately. Each vehicle’s state is influenced
by its surroundings which is relatively stable in the actual
situation of real world. Therefore, in Fig.8(c) and Fig. 8(d), we
can see that the vehicle in blue circle keep the same number.
In our GBM, when interaction occurs between vehicles, GBM
restricts each target in the group to follow its trajectory. Since
each vehicle is restrained by its surroundings, drifting becomes
difficult.

By the same token, another advantage of GBM is that our
tracker is better suited to complex movement of vehicles.
Interplay between vehicles can be ignored in some simple
scene. But for the traffic scene, it is impossible. When a vehicle
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crosses the view of camera, the movement of its surroundings
will also be taken into account. Thus, we treat these vehicles
as a group. They can not only affect each other, but also have
their own trajectory.

Since methods of multi-target tracking by minimizing en-
ergy function are popular in recent years, we compare our
result with some typical methods CEM [8] and DCO [42].
The baseline tracking results are from Kalman Filter(without
the traffic force). CEM focus on designing an energy that
corresponds to a more complete representation of the problem,
rather than one that is amenable to global optimization. It takes
into account physical constraints, such as target dynamics,
mutual exclusion, and track persistence. In addition, partial
image evidence is handled with explicit occlusion reasoning,
and different targets are disambiguated with an appearance
model in CEM. On the other hand, DCO proposes a discrete-
continuous optimization method for minimizing energy func-
tion. In DCO, data association is performed using discrete
optimization with label costs, yielding near optimality. And
trajectory estimation is posed as a continuous fitting problem
with a simple closed-form solution, which is used in turn
to update the label costs. Due to not need to pre-compute
trajectories, the accuracy of estimating trajectories improves.

Although CEM and DCO have great performance in some
public data sets, they still handle targets individually. The
relationship between targets is ignored. Compared with these
trackers, our GBM model group behavior to handle interac-
tions among targets. GBM will help to predict locations more
accurately in traffic video due to considering both vehicles
and their surroundings. TABLE III shows the final results
of the experiments, while TABLE I and TABLE II exhibit
the MOTP and MOTA in three test sequences, respectively.
In GBM, each target belongs to a group. It will be affected
by group members. The influence between vehicles prevents
them from drifting, and it makes targets follow regular motion
model. However, both CEM and DCO haven’t applied group
information. They just tracking vehicles individually. There-
fore, our MOTP value is obviously higher. We have to admit
that our MOTA is not superior. Since there are many targets in
traffic video sequence, improving accuracy without any other
modifying of tracker is difficult. This problem maybe remit in
our future work.

Tracking Algorithm Seq1 Seq2 Seq3
Our approach 80.6 % 82.1 % 81.2 %

CEM [8] 72.8 % 76.0 % 76.8 %
DCO [42] 72.4 % 74.3 % 74.7 %

Baseline(Kalman Filter) 59.8 % 62.4 % 62.0%

TABLE I: The MOTP in different test sequences.

Tracking Algorithm Seq1 Seq2 Seq3
Our approach 63.8 % 65.1 % 64.6 %

CEM [8] 60.5 % 62.1 % 61.6 %
DCO [42] 58.7 % 60.2 % 59.9 %

Baseline(Kalman Filter) 48.6 % 50.1 % 50.7 %

TABLE II: The MOTA in different test sequences.

V. CONCLUSION AND FUTURE WORK

In summary, a novel tracking-by-detection framework is
proposed in this paper. Our approach captures rich information
about road junctions, such as vehicle shape and motion priors.
As a consequence, the proposed approach has higher efficiency
than traditional tracking algorithms in crowded scenes. Though
our approach is tested in road intersections, by applying
pedestrian detectors the proposed method is also suitable for
other crowded situations, such as supermarket and subway
station. The main contributions of this work are as follows.
First, we exploit shape prior in the sequential detection model
to tackle occlusions in crowded scene. Second, Traffic force
is defined to model group behavior in the traffic scene. With
GBM, we can handle the influence of neighboring vehicles and
obtain more precise localizations. The proposed framework is
evaluated on real traffic videos and has shown its significant
performance through intensive comparisons and analyses.

However, the proposed tracking-by-detection framework
still can be improved. A faster vehicle detector particularly
designed for the traffic scene is expected in the future work.
Besides, we also plan to judge whether the vehicles violate
the traffic rules on the basis of this work in the future.
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