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Abstract

The analysis of collective motion has attracted many re-
searchers in artificial intelligence. Though plenty of works
have been done on this topic, the achieved performance is
still unsatisfying due to the complex nature of collective mo-
tions. By investigating the similarity of individuals, this pa-
per proposes a novel framework for both quantifying and de-
tecting collective motions. Our main contributions are three-
fold: (1) the time-varying dynamics of individuals are deeply
investigated to better characterize the individual motion; (2)
a structure-based collectiveness measurement is designed to
precisely quantify both individual-level and scene-level prop-
erties of collective motions; (3) a multi-stage clustering s-
trategy is presented to discover a more comprehensive un-
derstanding of the crowd scenes, containing both local and
global collective motions. Extensive experimental results on
real world data sets show that our method is capable of han-
dling crowd scenes with complicated structures and various
dynamics, and demonstrate its superior performance against
state-of-the-art competitors.

Introduction
Collective motion, which is pervasive in crowd systems, has
been extensively studied in many disciplines, such as psy-
chology (Wheelan 2005), biologic (Ballerini 2008), physics
(Hughes 2003). It exists widely in natural and social scenar-
ios (e.g. Fig. 1(A)), and contains a lot of information about
the crowd phenomenon. In the artificial intelligence, collec-
tive motion is primarily about human crowds, and involves a
lot of applications such as multi-agent navigation (Godoy
et al. 2016), crowd tracking (Zhu, Wang, and Yu 2014;
Wang, Fang, and Yuan 2014; Fang, Wang, and Yuan 2014),
and crowd monitoring (Zhang et al. 2015). However, both
the quantification and detection of collective motions are
still difficult tasks because of the complex structures and
time-varying dynamics in crowd scenes.

Collectiveness is a fundamental descriptor of collective
motions firstly proposed by (Zhou et al. 2014) as a quan-
tification measure. Individual-level collectiveness indicates
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Figure 1: (a) Collective motion in pedestrians, fish shoal and
bison herd. (b) Crowd scenes with varying collectiveness.
(c) Local and Global consistency in crowd scenes.

an individual’s consistency with others, and scene-level
collectiveness measures the degree of individuals’ action-
s as an entirety in a crowd scene, as shown in Fig. 1(B).
As a comprehensive feature, collectiveness is practical to
quantify collective motions, and has demonstrated its mer-
it in crowd behavior analysis (Shao, Loy, and Wang 2014;
Li, Chen, and Wang 2016). Though many efforts have been
spent on the quantitative calculation of collectiveness, the
achieved performance is still far from ideal. This is because
existing works are either limited to utilize temporal informa-
tion or unable to handle collective motions with complicated
spatial structures.

The detection of collective motions is also a hot but chal-
lenging issue in the realm of artificial intelligence. Gen-
erally speaking, the objective of collective motion detec-
tion is to find individuals with high behavior consistency
from their time-series observations (Zhou, Tang, and Wang
2012), and the difficulty comes from two aspects. First,
because of occlusion and tracking noise, it’s not easy to
get the accurate time-series observations of individuals. To
avoid this problem, some works (Wu, Ye, and Zhao 2015;
Zhou et al. 2014) detect collective motions on each frame
separately, leading to an inadequate utilization of tempo-



ral information. Second, individuals in a collective mo-
tion may exhibit both local and global behavior consisten-
cy (e.g. Fig. 1(C)). Many previous works (Zhou et al. 2014;
Shao, Loy, and Wang 2014; Zhou, Tang, and Wang 2012;
Stauffer and Grimson 2000; Hassanein, Hussein, and Go-
maa 2016; Xu et al. 2015; Liu et al. 2016) focus on the mo-
tion correlation of individuals within a local region and are
limited to detect the global consistency.

In this study, we propose a framework, which is able to
handle complex real-world crowd systems, to measure col-
lectiveness accurately and detect collective motions precise-
ly. Our contributions are summarized as follows.

1. Time-varying dynamics are deeply explored to better
express the intrinsic characters of moving individuals. A hid-
den state-based model and a probability-based approach are
put forward to explore and compare the time-varying motion
dynamics of individuals.

2. A structure-based collectiveness measurement is de-
vised to quantify collective motions with variety of spa-
tial distributions. Instead of using the Euclidean structure, a
more suitable manifold topological structure is investigated
to calculate the individual/scene level collectiveness.

3. A multi-stage clustering strategy is proposed to detect
collective motions precisely. This ensures our method’s abil-
ity to discover collective motions with both local and global
consistency along time.

Related Work
In the realm of artificial intelligence, collective motion anal-
ysis has attracted many researchers. Among numerous ef-
forts towards this topic, we target on the works for measur-
ing collectiveness and detecting collective motions.

To quantify collective motions, several works are engaged
in calculating the collectiveness of crowd systems. Zhou et
al. (2014) and Ren et al. (2015) utilized path similarity to
measure collectiveness. Wu, Ye, and Zhao (2015) introduced
the concept of collective density to measure collectiveness.
However, the above three methods share the same problem
that they measure collectiveness just by one frame and ne-
glect the temporal correlation. Shao, Loy, and Wang (2014)
calculated collectiveness on the basis of group detection, but
it’s limited to deal with various crowd structures, as well as
the first three methods.

There are also many works focusing on detecting collec-
tive motions. Ali and Shah (2007) proposed a Lagrangian
Particle based approach to segment crowd flows. Wang et
al. (2014) detected coherent motion fields by spectral clus-
tering. Wu and Wong (2012) segmented crowd motions by
local-translational motion approximation. However, these
flow based methods fail when handling crowds with com-
plex patterns. Zhou et al. (2014) and Wu, Ye, and Zhao
(2015) performed group detection by utilizing the informa-
tion of just one frame, so they can’t deal with time-varying
collective motion. Some trajectories-based methods (Ge,
Collins, and Ruback 2012; Zhou, Tang, and Wang 2012;
Shao, Loy, and Wang 2014) achieved relatively better per-
formance on group detection, but they are easily influenced
by tracking failure and limited to detect global consistency.

Individually Time-Varying Dynamic Analysis
In crowd scenes, complex interaction among individual-
s makes it difficult to analyze collective motions directly.
Therefore, we start by investigating the individuals’ motions
and their correlations. Due to the complexity of extracting
pedestrians from crowd scenes, feature points are taken as
the study objects, which can be detected and tracked with
a generalized KLT (gKLT) tracker (Zhou et al. 2014). For
ease of understanding, feature points are written as individ-
uals in this section. First, a hidden state-based model is de-
signed to model the trajectories of individuals. After that, a
probability-based approach is put forward to calculate the
consistency of individuals’ motion dynamics.

Hidden state-based Model. We assume an individual’s
behavior is determined by its moving intention, instead of
random occurrence, which means the movement of each in-
dividual is driven by a hidden intention factor. Accordingly,
the behavior of each individual is considered to be dominat-
ed by a hidden state-based model. Given such a model, the
trajectory of an individual can be generated under its guid-
ance.

Considering the variety of individuals’ moving intention-
s, we build a hidden state-based model for each individu-
al separately to model their trajectories. In each model, a
hidden state variable is inferred from an observed data s-
ince the moving direction of a pedestrian is supposed to
be intention-orientated. In addition, considering the continu-
ity of a pedestrian’s moving intention, we assume the time-
series dependency of hidden state variables. Denoting point
i’s spatial location at time t as oti = [xi(t), yi(t)], the model
can be defined as

hti = Aih
t−1
i +N (0, Qi)

oti = hti +N (0, Ri)

hti ∼ N (µi, Si),

(1)

where hti ∈ R3 is the hidden state variable that encodes the
dynamics. Ai ∈ R3×3 is a state transition matrix and N is a
three-dimensional multivariate Gaussian distribution.Qi,Ri

and Si are covariances, and µi ∈ R3×1 is the mean value of
Gaussian distribution. Given the observed data of an individ-
ual i, the set of all parameters Θi = {Ai, Qi, Ri, µi, Si} can
be learned by Expectation Maximization (EM) algorithm
(Chan and Vasconcelos 2008). According to the time-series
dependency of hidden state variables, the log-likelihood of
the observed data under the system parameters is

log(p(o1:ni
i |Θi)) =

ni∑
t=1

log(p(oti|o1:t−1i ,Θi)), (2)

which can be effectively estimated with a Kalman smoother
(Shumway and Stoffer 1982). And ni is the length of i’s
trajectory.

Probability-based Similarity Calculation. To mea-
sure two individuals’ similarity, their neighbor relationship
should be taken into account. First, the kNN method is em-
ployed to find the individuals’ neighbor relationship on each
frame. Then, two individuals as considered as neighbors if
they are neighbors for more than three consecutive frames.
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Figure 2: Illustration of topological relevance. The red point
and the green point shows low similarity on spatial velocity,
but they keep high topological relevance to each other. Best
viewed in color.

For a pair of neighbor individuals i and j, if o1:nj

j has a high
log-likelihood to be generated under i’s model parameters
Θi, we can consequently say that the moving intention of j
is similar to that of i. So the similarity of i and j is defined
as

S(i, j) = min(
p(o

1:nj

j |Θi)

p(o1:ni
i |Θj)

,
p(o1:ni

i |Θi)

p(o
1:nj

j |Θj)
), (3)

where the min function restricts that the individuals with
high consistency must have high probability to be pro-
duced under the model of each other. For individuals with-
out neighbor relationship, their similarities are set to be 0.
By jointly combining kNN and the hidden state-based mod-
el, both spatial and temporal relationship of individuals are
successfully investigated.

Structure-Based Collective Motion
Quantification

Generally, individuals in crowd scenes tend to form mani-
fold structures (Yang et al. 2008; 2010; Peng et al. 2015),
and interactions between the individuals depend more on
their topological relationship than metric distance (Ballerini
2008). Therefore in this section, a manifold learning method
is introduced to explore the structures of crowds and calcu-
late collectiveness by learning the topological relationship
between individuals.

For two individuals, their spatial similarity may be low,
but their topological relevance to each other will be high if
they are linked by consecutive neighbors. As shown in Fig.
2, the red and the green points exhibit low similarity on spa-
tial location and velocity, but they are connected in the same
collective motion. Thus, if individual i and j keep high con-
sistency, their topological relevance to any other individual
is assumed to be similar.

Given the similarity of individuals, we aim to compute the
topological relationship between them. Based on the above
assumption, the cost function to guide the search of the topo-
logical relationship matrix Z ∈ RN×N is defined as

Q(Z) =

N∑
r=1

(
1

2

N∑
i,j=1

Wij ||Zri − Zrj ||2 + α

N∑
j=1

||Zrj − Irj ||2),

(4)

where r, i and j are individual indexes, Zri indicates the
individual i’s topological relevance to r, and the adjacency
matrix W ∈ RN×N is set as (S+ST )/2. I is a identity ma-
trix, and N is the total number of individuals in the scene..
The smoothness constraint (first term) is designed to satisfy
the proposed assumption, and the fitting constraint (second
term) prevents all the elements of Z to be equal. And param-
eter α balances the two terms. Then the optimal relevance
vector is

Z∗ = min
Z
Q(Z). (5)

Note that the problem (5) is independent for different r.
Thus, we can solve the following problem separately for
each r:

min
Zr

1

2

N∑
i,j=1

Wij ||Zri − Zrj ||2 + α

N∑
i=1

||Zri − Iri||2, (6)

where Zr is the r-th column of matrix Z. The optimal so-
lution Z∗r should satisfy that the derivative of Eq.(6) with
respect to Zr is equal to zero, so we have

LZ∗r + α(Z∗r − Ir) = 0, (7)
where L ∈ RN×N is the Laplacian matrix of W , and Ir
is the r-th column of I . Then we get the optimal relevance
vector as

Z∗r = (I + L/α)−1Ir, (8)
Since Ir is the r-th column of identity matrix I , it’s obvious
to see that Z∗r is the r-th column of (I + L/α)−1. Thus, the
optimal topological relationship matrix Z∗, which satisfies
Eq.(5), can be denoted as

Z∗ = (I + L/α)−1. (9)
With all the above derivations, the individual-level collec-

tiveness of i is defined as its topological relationship with all
the other individuals

φ(i) = [Z∗e]i, (10)
where e ∈ RN×1 is a column vector with all the elements
as 1, [·]i indicates the i-th element of a vector. The scene-
level collectiveness is denoted as the mean value of all the
individual-level collectiveness, which can be written as

Φ =
1

N
eTZ∗e. (11)

By exploring the topological relationship between individ-
uals, the proposed method is suitable to deal crowds with
various structure.

Multi-Stage Collective motion Detection
Local Clustering
Based on the topological matrix Z, we borrow an intu-
itive strategy to discover the local consistency, which sim-
ply thresholds the element values of Z∗. Specifically, if
Z∗(i, j) > z and Z∗(j, k) > z (z is set to be 0.5), the
three individuals are combined in to one cluster even if
Z∗(i, k) < z. The local clustering strategy performs well
on detecting local consistency in crowd scenes, but fails to
discover global consistency, as shown in Fig. 3. That’s why
we develop a further global clustering refinement.



(a) Local clustering result (b) Global clustering result

Figure 3: Results of local and global clustering. After global
clustering, coherent sub-clusters are precisely combined.

Global Clustering
For the purpose of merging sub-clusters, it’s essential to
measure the consistency according to their locations and
motions. Considering an individual iwith ni-length trajecto-
ry {[xi(1), yi(1)], · · · , [xi(ni), yi(ni)]}, its center position

is denoted as pi = [ 1
ni

ni∑
t=1

xi(t),
1
ni

ni∑
t=1

yi(t)] and its aver-

age motion is −→mi = 1
l

ni∑
t=1

−→
M i(t). Thus, for a sub-cluster C,

its location and motion are defined as

P (C) =
1

NC

∑
i∈C

pi (12)

−−→
Mot(C) =

1

NC

∑
i∈C

−→mi, (13)

where NC is the number of individuals belonging to C. We
assume two sub-clusters are likely to belong to the same col-
lective motion if one resides along the other’s moving direc-
tion. Besides, sub-clusters with close positions and similar
motions may keep high consistency. Based on these two as-
sumptions, the consistency between a pair of sub-clusters is
defined as

Con(C1, C2) = (1 + cos(
−−→
Mot(C1)+

−−→
Mot(C2)

2
,
−−−−−−−−−−−→
P (C1)− P (C2)))

×(1 + cos(
−−→
Mot(C1),

−−→
Mot(C2)))

×e−
2

max(w,h)
||
−−−−−−−−−−→
P (C1)−P (C2)||2 ,

(14)

where w and h are the width and height of the frame respec-
tively. In Eq.14, the first term is designed according to the
first assumption, and the remaining two terms comply with
the second assumption. If Cons(C1, C2) > c (c is a thresh-
old chosen as 0.6), C1 and C2 are considered to be consis-
tent and then merged into a new sub-cluster. By conducting
this procedure iteratively until there are no consistent sub-
clusters, the final clusters are obtained, which is also the re-
sult of collective motion detection. Since the order in which
sub-cluster pairs are visited will influence the final result, we
just merge those with the highest consistency in each itera-
tion.

The multi-stage clustering method has the ability to dis-
cover both local and global consistency. The incorporat-
ing of spatial-temporal topological relationship makes our
method sustain its performance along time-series.

(a) Selection of k (b) Selection of α

Figure 4: Video classification performance with varying k
and α. k is varied from 10 to 30 with a 5 spacing, and α is
varied from 0.1 to 1 with a 0.1 spacing.

Experiments

In this section, we conduct extensive experiments to evaluate
the effectiveness of the proposed method on two aspects:
collectiveness measurement and collective motion detection.

Selection of Parameters

In the beginning, there are several parameters to be set first.
For the hidden state-based model, µ is set as [0 0 0]T and
the state transition matrix A is initialized by the suboptimal
learning method (Chan and Vasconcelos 2008). The covari-
ances Q, R, S are initialized as [1 0 0; 0 1 0; 0 0 0], [0.1
0 0; 0 0.1 0; 0 0 0], and [1 0 0; 0 1 0; 0 0 1]. As for the
selection of kNN parameter k and the manifold learning pa-
rameter α, we have conducted the parametric experiments to
determine their choices. Under different k and α values, col-
lectiveness of video clips in the Collective Motion Database
is calculated. Then it is used to perform binary classifica-
tion of high-low, high-medium, and medium-low categories
(the details of this setup will be explained in Section ). The
obtained best accuracies is used as the criterion of choosing
parameters. In this training stage, the 100 video clips of the
dataset are selected randomly, and 30 frames in each select-
ed clips are used to train the parameters. All the rest frames
are used as testing set in the following section.

An appropriate choice of the kNN parameter is essen-
tial for a good result. When k is too small, the computed
collectiveness is inclined to be underestimated and the col-
lective motions will be divided into parts. Whereas, if k is
too large, individuals will be connected with those from far
away, which brings noise to the result. From Fig. 4(A), it can
be seen that the proposed method achieves relatively better
performance when k is 20. Thus, k = 20 is the best choice.

In addition, the manifold learning method is important for
exploring the topological relationship of individuals, which
directly influences both the collectiveness measurement and
collective motion detection. And the value of α affects how
close the individuals are connected from the aspect of topo-
logic. Therefore, it’s necessary to find the best choice of α.
As shown in Fig. 4(B), we finally choose α = 0.8 in this
work.



Our MCCCT
0.92 0.88 0.81
0.71 0.60 0.58
0.75 0.58 0.51

Precision
Recall

F-measure

High-Low
Our MCCCT
0.87 0.79 0.76
0.70 0.55 0.57
0.69 0.52 0.48

High-Low
Our MCCCT
0.83 0.73 0.74
0.72 0.49 0.47
0.65 0.44 0.40

High-Low

Table 1: Performance of our method, CT and MCC on video
classification. Best results are in bold face.

RM MCC
0.84 0.81
0.61 0.58
0.57 0.51

Precision
Recall

F-measure

High-Low
RM MCC RM MCC
0.81 0.76
0.63 0.57
0.59 0.48

0.72 0.74
0.62 0.47
0.51 0.40

High-Low High-Low

Table 2: Performance of MCC after and before replacing the
manifold learning with ours. Replaced MCC is written as
RM for short. Best results are in bold face.

Collectiveness Measurement Evaluation
To demonstrate the effectiveness of the proposed collective-
ness measurement method, we compute scene-level collec-
tiveness on Collective Motion Database (Zhou et al. 2014)
and compare its consistency with the human perception.

Data Set. Collective Motion Database contains 413
crowd video clips (100 frames per clip) captured from 62
different scenes with various densities and structures. Each
video clip is labeled with a ground truth score, which indi-
cates the degree of behavior consistency in the crowd scene.
And the clips are sorted in to high, medium, and low collec-
tiveness according to their scores.

Performance Evaluation. We calculate the scene-level
collectiveness Φ for each video, and perform binary clas-
sification of high-low, high-medium, and medium-low cat-
egories according to Φ. In order to show the effectiveness
of the proposed method, Collective Transition (CT) (Shao,
Loy, and Wang 2014) and Measuring Crowd Collectiveness
(MCC) (Zhou et al. 2014) representing the state-of-the-art
are taken for comparison. The precision-recall-F measure is

Medium

Score=1

Low

=0.19 Score=8 =0.46 Score=19 =0.86

Score=18 =0.90Score=10 =0.63Score=0 =0.17

High

Figure 5: Representative classified scenes with their mea-
sured scene-level collectiveness Φ (from 0 to 1) and ground
truth scores (from 0 to 20). It can be seen that Φ keeps con-
sistency with the ground truth score.

CDC

MCC

Our

15-th frame 31-st frame 48-th frame

Figure 7: Comparison of collective motion detection result-
s along time-series. Scatters with different colors indicate
different detected collective motions, and the red color in-
dicates outliers. Compared to CDC and MCC, our method
maintains better performance along time-series and detects
less outliers.

employed for evaluation. The averaged results are visualized
in Table 1. It is manifest that our method always achieves
higher precision, recall and F-measure than CT and MC-
C. CT learns a transition matrix of a detected group, and
uses the fitting errors of trajectories to measure collective-
ness. It neglects the structures of crowds. Based on the indi-
viduals’ topological relationship, MCC measures collective-
ness on each frame without utilizing temporal information.
It’s thus not able to quantify collective motions along time-
series. On the contrary, our method addresses these prob-
lems by proposing a structure-based collectiveness measure-
ment, and exploring the time-varying dynamics of individ-
uals. Consequently, the proposed one outperforms CT and
MCC. Some representative results are shown in Fig. 5.

The proposed manifold learning method in Section is also
compared with that in MCC. We replace the manifold learn-
ing method in MCC with ours, and compare their classifi-
cation performance. Experimental results are shown in Ta-
ble 2. Despite the lower precision in Mid-Low classification,
the replaced MCC shows superior performance than MCC.
The manifold learning method of MCC investigates topo-
logical relationship by accumulating similarities along al-
l paths between each pair of individuals. Some useless paths
are therefore included. Our method performs better because
it emphasizes the neighbor relationship between individu-
als, which complies with the theory that collective motions
are formed by the information propagation between neigh-
bors (Ballerini 2008). All these experiments indicate the pro-
posed collective calculation is more suitable for the real sit-
uations.

Collective Motion Detection Evaluation
To validate the superiority of our collective motion detec-
tion approach, we conduct experiments on CUHK Crowd
Dataset (Shao, Loy, and Wang 2014) and compare it with
state-of-the-art competitors. The parameters for detection



Ground truth Our CF CT CDC MCC

Figure 6: Representative comparison results of collective motion detection. Scatters with different colors indicate different
detected collective motions, and the red color indicates outliers. Our result is closer to the ground truth and can detect less
mislabeled outliers than the competitors.

Our CF
0.60 0.42
0.86 0.73
0.87 0.78

NMI
Purity

RI

CT CDC MCC
0.48 0.39
0.78 0.74
0.83 0.73

0.40
0.85
0.74

Comparison of Collective Motion Detection

Table 3: Quantitative comparison of collective motion detec-
tion methods. The best results are in bold face.

are the same as those used in collectiveness calculation.
Data Set. CUHK Crowd Dataset provides 474 crowd

videos for group detection, which are captured from real-
world crowd scenes with a variety of crowdness. It records
the labels of collective motions that each individual belongs
to, and individuals not belonging to any collective motion
are annotated as outliers.

Performance Evaluation. The detection results of the
proposed method are compared with four state-of-the-art
algorithms, namely, Coherent Filtering (CF) (Zhou, Tang,
and Wang 2012), Collective Transition (CT) (Shao, Loy, and
Wang 2014), Collective Density Clustering (CDC) (Wu, Ye,
and Zhao 2015), and Measuring Crowd Collectiveness (M-
CC) (Zhou et al. 2014).

The detection of collective motions can be considered as
the clustering of individuals in crowd scenes. So we evalu-
ate the results of different methods by adopting three wide-
ly used clustering metrics: Normalized Mutual information
(NMI) (Wu and Schölkopf 2006; Peng et al. 2016), Purity
(Aggarwal 2004), and Rand Index (RI) (Rand 1971). Quan-
titative comparison is shown in Table 3. It is clear that our
method achieves the highest NMI, Purity and RI, which val-
idates the superiority of the proposed collective motion de-
tection algorithm. Some representative detection results are
shown in Fig. 6. Since CF and CT detect collective motions
by locally clustering the trajectories of individuals, both of
them are limited to detect global consistency. This can be ob-

served in the second row in Fig. 6, where CF and CT mistak-
enly split a cluster of pedestrians moving in the same direc-
tion into two clusters. Instead, our method is more capable
of discovering global consistency because of the multi-stage
clustering method. MCC employs a manifold learning tech-
nique to detect collective motions, but shares the same short-
coming with CF and CT, as shown in the first row in Fig. 7.
CDC detects coherent motions by measuring crowd density
in crowd scenes. Nevertheless, both CDC and MCC detec-
t collective motions frame by frame separately, and neglect
the temporal smoothness. Thus they can’t maintain a stable
performance along time-series. As Fig. 7 visualizes, CDC
and MCC perform well at the 15th frame, but they can’t
maintain performance at the 31st and the 48th frame. Espe-
cially, at the 48th frame, both CDC and MCC fail to detect
the actural collective motion because of tracking failure. Our
method achieves stable performance on all frames because
of its successful exploration of time-varying dynamics.

Conclusion and Future Work
In this paper, we study the problem of quantifying and de-
tecting collective motions in crowd scenes. The time-varying
dynamics of individuals are sufficiently explored by a hid-
den state-based model. Then a structure-based collective-
ness measurement is developed to quantify collective mo-
tions and a multi-stage clustering strategy is introduced to
detect collective motions in crowd scenes. Experiments on
various real-world videos validate that our method yields
substantial boosts over state-of-the-art competitors.

In the future work, we would like to extend our method to
more applications in artificial intelligence, such as activity
recognition and video description. It’s also desirable to apply
our method in crowd behavior simulation.
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