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Abstract
Linear Discriminant Analysis (LDA) is a popu-
lar technique for supervised dimensionality reduc-
tion, and its performance is satisfying when deal-
ing with Gaussian distributed data. However, the
neglect of local data structure makes LDA inap-
plicable to many real-world situations. So some
works focus on the discriminant analysis between
neighbor points, which can be easily affected by
the noise in the original data space. In this paper,
we propose a new supervised dimensionality reduc-
tion method, Locality Adaptive Discriminant Anal-
ysis (LADA), to learn a representative subspace of
the data. Compared to LDA and its variants, the
proposed method has three salient advantages: (1)
it finds the principle projection directions without
imposing any assumption on the data distribution;
(2) it’s able to exploit the local manifold structure
of data in the desired subspace; (3) it exploits the
points’ neighbor relationship automatically without
introducing any additional parameter to be tuned.
Performance on synthetic datasets and real-world
benchmark datasets demonstrate the superiority of
the proposed method.

1 Introduction
Dimensionality reduction is fundamentally important for an-
alyzing high-dimensional data, and have received sufficient
attention in the filed of artificial intelligence [Zhang et al.,
2011; Peng et al., 2016]. The goal of dimensionality reduc-
tion is to embed the data into a low-dimensional subspace,
while retaining the desired discriminant information. Among
the numerous dimensionality reduction algorithms, Principal
Component Analysis (PCA) [Wold et al., 1987] and Linear
Discriminant Analysis (LDA) [Friedman and Kandel, 1999]
are the most widely used techniques. Here we mainly focus
on the LDA, since it outperforms PCA in many cases.

As the most popular supervised dimensionality reduction
method, LDA aims to find a linear transformation matrix
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W which minimizes the separation within each class and si-
multaneously maximizes the discrepancy between different
classes. However, it has three major disadvantages. First,
LDA suffers from the over-reducing problem [Wan et al.,
2015]. Denoting the number of classes as C, the rank of
the between-class scatter matrix Sb is at most C − 1 [Wan
et al., 2015]. As a result, LDA could find at most C − 1 pro-
jection directions, which are insufficient for tasks with just a
few classes, such as binary classification. Second, the Small
Sample Size (SSS) problem [Lu et al., 2005] often occurs.
When the dimension of data exceeds the number of training
samples, the within-class scatter matrix Sw becomes singular,
which makes LDA unsuitable for the data with very high di-
mensionality. Third, LDA assumes that the input data obeys
the Gaussian distribution globally. However, in real world ap-
plications, the data may be multimodally distributed, which
means that each class has a unique distribution. LDA fails in
these occasions because it can’t capture the underlying data
structure in the local area.

In the past several decades, plenty of methods are proposed
to address the above drawbacks. Among them, a number
of works [Sharma and Paliwal, 2015; Kumar and Agrawal,
2016; Wan et al., 2015] have been conducted to avoid the
over-reducing and SSS problems, and the achieved perfor-
mance is satisfying. However, the third problem of LDA is
not well-solved yet. Though many algorithms are developed
to investigate the local data structure by applying LDA to
neighbor points, they share the same problem that the neigh-
bors found in the original data space are not reliable to reveal
the intrinsic local structure, especially when the noise is large.

In this paper, a new supervised dimensionality reduction
method, Locality Adaptive Discriminant Analysis (LADA),
is proposed to investigate the geometry of local data struc-
ture. Similar to the existing locality-aware approaches, the
proposed LADA focuses on the data points with close re-
lationship. The major difference is that LADA exploits the
points’ local relationship adaptively in the learned subspace,
and doesn’t involve a kNN procedure. Moreover, benefiting
from the new objective function and the optimization strategy,
LADA replaces Sb with the covariance matrix, and it doesn’t
calculate the inverse of the within-class scatter matrix, so the
over-reducing and SSS problems don’t exist naturally. The
salient merits of LADA are summarized as follows:

1. LADA doesn’t rely on any arbitrary assumption about



the data distribution, and doesn’t have the over-reducing and
SSS problems.

2. LADA has the capability to capture the neighbor rela-
tionship of data points in the desired subspace, and exploit
the intrinsic local structure of data manifold.

3. LADA doesn’t involve a kNN processing, so no addi-
tional efforts are needed to tune the parameter k.

2 Review of LDA and its Locality-Aware
Variants

In this section, we briefly review the classical LDA. There
are many variants of LDA [Suzuki and Sugiyama, 2013;
Flamary et al., 2016; Ren et al., 2015; Xu et al., 2017], we
mainly discuss the some locality-aware techniques which are
proposed to investigate the local data structure.

2.1 Linear Discriminant Analysis
Given the data matrix X = [x1, x2, · · · , xn], xj ∈ Rd×1 with
C classes, the purpose of LDA is to learn a linear transforma-
tion matrix W ∈ Rd×m (m � d) to map the d-dimensional
data xj to a m-dimensional vector:

yi =WTxi. (1)

LDA supposes that a optimal transformation should push
the data points from different classes far away from each other
while pulling those within the same class close to each other.
So the objective of LDA can be written as

max
W

C∑
i=1

ni||WT (µi − µ)||22
C∑
i=1

ni∑
j=1

||WT (xij − µi)||22
, (2)

where ni is the number of samples in class i, µi is the mean
of the samples in class i, µ is the mean of all the samples,
and xij is the j-th sample in class i. Denote the between-class
scatter matrix Sb and the within-class scatter matrix Sw as

Sb =

C∑
i=1

ni(µ
i − µ)(µi − µ)T , (3)

Sw =

C∑
i=1

ni∑
j=1

(xij − µi)(xij − µi)
T
, (4)

then the problem 2 can be rewritten into a concise form:

max
W

tr(WTSbW )

tr(WTSwW )
, (5)

where tr() indicates the trace operator. Due to the complex-
ity to solve the above trace ratio problem, many researchers
transform it into a ratio trace form,

max
W

tr(
WTSbW

WTSwW
). (6)

From the objective function, it can be clearly seen that
LDA just emphasizes the global relationship of data, which
makes it unable to discover the local structure. So some
locality-aware variants are proposed to address this draw-
back.

2.2 Locality-Aware Variants of LDA
To deal with multimodally distributed data, it’s essential to
investigate the local structure of data manifold [Nie et al.,
2009]. For this purpose, some researchers perform discrimi-
nant analysis in the local data space instead.

Bressan and Vitria [2003] redefined the between-class scat-
ter matrix Sb as the distances between the data points and
their extra-class nearest neighbors, and defined the within-
class scatter matrix Sw as those for the intra-class nearest
neighbors. Sugiyama [2006] learned a maximum margin be-
tween the extra-class and intra-class k neighbors, and trans-
formed the objective into a ratio trace form, which leads to the
suboptimal solution [Jia et al., 2009]. Cai et al. [2007] found
the k nearest neighbors of each point, and used the neighbors
to replace the data center in original LDA. Similar to LSDA,
Nie et al. [2007] also learned a maximum margin between
the extra-class and intra-class k neighbors, but it formulated
the objective function as a trace ratio problem and solved it in
an efficient way, so it achieved relatively better performance.
Weinberger and Saul [2009] put forward a cost function to
penalize the large distances between a point and it k near-
est neighbors. Different from the above methods, Fan et al.
[2011] found the k nearest neighbors of a test sample from the
training set, and learned a transformation matrix for each test
sample separately, so it’s time-consuming when the number
of test samples is large.

A shortcoming shared by all these methods is that they find
the neighbors of points based on their distances in the origi-
nal data space, which is unreliable. The intrinsically similar
points may be far away from each other in the original space,
especially for data with large noise. So these methods are
sensitive to the data noise.

3 Locality Adaptive Discriminant Analysis
In this section, the Locality Adaptive Discriminant Analysis
(LADA) method for dimensionality reduction is presented.
First, the objective function of LADA is described and the-
oretically analyzed. Then, an adaptive learning strategy is
designed to obtain the optimal solution.

3.1 Problem Formulation
In real-world applications, such as face classification, the in-
put data may be multimodally distributed. So it’s essential to
capture the local structure of data manifold. Our goal is to
learn an optimal transformation matrix W to pull the simi-
lar points together while pushing the dissimilar ones far away
from each other.

Given the data points X = [x1, x2, · · · , xn], xj ∈ Rd×1,
the objective function is defined as

min
W,s

C∑
i=1

ni

ni∑
j=1

ni∑
k=1

sijk
2‖WT (xi

j−x
i
k)‖22

1
n

n∑
j=1

n∑
k=1

‖WT (xj−xk)‖22

s.t.WTW = I,
ni∑
k=1

sijk = 1, sijk ≥ 0,

(7)

where n is the number of samples, s is a weighted matrix,
sijk means the weight between the j-th and k-th sample in



class i, and the remaining definitions are the same as those in
LDA. In the above function, s is squared to avoid the trivial
solution. Note that, xj is the j-th sample in the whole data
set, and it’s different from xij .

In problem (7), the weighted matrix s is introduced to cap-
ture the local relationship between data points. The con-
straints on s avoids the case that some rows of s are all ze-
ros. Supposing the transformationW is already obtained, sijk
will be large if the transformed distance ||WT (xij − xik)||22
is small, which means xij and xik are similar in the learned
subspace. In the next step, if we fix s and optimize W again,
the objective function will emphasize the similar points in the
previously learned subspace. Consequently, the points’ rela-
tionship in the desired subspace can be learned by optimizing
s and W iteratively.

3.2 Optimization Strategy
Here an adaptive learning strategy is presented to solve prob-
lem (7). First, the weight of the points in the class i is ini-
tialized as 1

ni
, and the weight of points from different classes

is set to 0. Then the optimal solution can be computed by
solving W and s iteratively.

When s is fixed, denoting S̃t and S̃w as

S̃t =
1

n

n∑
j=1

n∑
k=1

(xj − xk)(xj − xk)T , (8)

S̃w =

C∑
i=1

ni

ni∑
j=1

ni∑
k=1

sijk
2
(xij − xik)(xij − xik)

T
, (9)

then problem (7) becomes

min
WTW=I

tr(WT S̃wW )

tr(WT S̃tW )
, (10)

where tr() indicates the trace operator. The above trace ratio
problem can be efficiently solved by the optimization algo-
rithm in [Nie et al., 2007].

WhenW is fixed, the objective function (7) can be reduced
to

min
s

C∑
i=1

ni∑
j=1

ni∑
k=1

sijk
2||WT (xij − xik)||22

s.t.
ni∑
k=1

sijk = 1, sijk ≥ 0,

(11)

which is equivalent to the following problem

min
sij

ni∑
k=1

sijk
2||WT (xij − xik)||22

s.t.
ni∑
k=1

sijk = 1, sijk ≥ 0,
(12)

where sij is a column vector with its k-th element equal to
sijk. Denoting a column vector α equal to sij , and denoting vk
equal to ||WT (xij − xik)||22, the above problem is simplified
to

min
αT 1=1,α≥0

ni∑
k=1

α2
kvk. (13)

Defining a diagonal matrix V with Vkk equal to vk, problem
(13) becomes

min
αT 1=1,α≥0

αTV α. (14)

Without the second constraint α ≥ 0, the Lagrangian function
of problem (14) is

L(α, η) = αTV α− η(αT1− 1), (15)

where η is the Lagrangian multiplier. Taking the derivative of
Eq. (15) w.r.t. α and setting it to zero, we get

2V α− η1 = 0. (16)

Together with the constraint αT1 = 1, the α can be computed
as

αk =
1

vk
× (

ni∑
t=1

1

vt
)−1. (17)

Fortunately, the above α satisfies the constraint α ≥ 0, so it’s
also the optimal solution to the problem (14). Accordingly,
the optimal solution to the problem (11) is

sijk =
1

||WT (xij − xik)||22
× (

ni∑
t=1

1

||WT (xij − xit)||22
)−1.

(18)
By optimizing W and s iteratively, our method is capa-

ble of quantifying the data points’ local relationship in the
desired subspace. Unlike existing locality-aware algorithms,
our method is totally self-weighted, and saves the efforts to
tune parameters. The complete algorithm is shown in Alg. 1.

Algorithm 1 The algorithm of LADA for dimensionality re-
duction
Input: Data matrix X = [x1, x2, · · · , xn], xj ∈ Rd×1, de-

sired dimension m
1: Initialize weight matrix s
2: repeat
3: compute the optimal W of problem (10)
4: update s with Eq. (18)
5: until Converge
6: Y =WTX

Output: Y = [y1, y2, · · · , yn], yj ∈ Rm×1

The objective is monotonically decreased in each iteration,
and converges to the lower bound finally. In addition, for
LADA, the over-reducing problem doesn’t exist because S̃b
is of full rank. And the Small Sample Size problem is also
avoided because our learning algorithm doesn’t calculate the
inverse of S̃w.

4 Connection to LDA
In this section, we show the close connection between the
proposed LADA and the original LDA. LADA and LDA
share the similar goals to maximize the between-class scat-
ter matrix while minimizing the within-class scatter matrix.
In fact, when the sijk in problem (7) is set as 1/ni, LADA be-
comes equivalent to LDA. A theorem is proposed to support
this statement.
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Figure 1: Projection directions of LDA (dashed) and LADA.
LDA finds the correct direction when the class density is
unimodal (a), but fails on mutimodally distributed data (b).
LADA works well on both cases.

Theorem 1. When sijk equals to 1
ni

, S̃w equals to 2× Sw.

Proof. If sijk = 1
ni

, S̃w can be derived into the following
form

S̃w

=
C∑
i=1

ni
ni∑
j=1

ni∑
k=1

( 1
ni
)
2
(xij − xik)(xij − xik)

T

=
C∑
i=1

1
ni

ni∑
j=1

ni∑
k=1

(xijx
i
j
T
+ xikx

i
k
T − 2xijx

i
k
T
)

=
C∑
i=1

(
ni∑
j=1

xijx
i
j
T
+

ni∑
j=1

xikx
i
k
T − 1

ni

ni∑
j=1

ni∑
k=1

2xijx
i
k
T
)

= 2
C∑
i=1

(
ni∑
j=1

xijx
i
j
T − 1

ni

ni∑
j=1

ni∑
k=1

xijx
i
k
T
)

= 2
C∑
i=1

(
ni∑
j=1

xijx
i
j
T − 1

ni

ni∑
j=1

xij
ni∑
k=1

xik
T
).

(19)
And Sw can be derived as
Sw

=
C∑
i=1

ni∑
j=1

(xij − µi)(xij − µi)
T

=
C∑
i=1

ni∑
j=1

(xij − 1
ni

ni∑
k=1

xik)(x
i
j − 1

ni

ni∑
k=1

xik)
T

=
C∑
i=1

ni∑
j=1

(xijx
i
j
T − 2

ni
xij

ni∑
k=1

xik
T
+ 1

ni
2

ni∑
j=1

xij
ni∑
k=1

xik
T
)

=
C∑
i=1

(
ni∑
j=1

xijx
i
j
T − 2

ni

ni∑
j=1

xij
ni∑
k=1

xik
T
+ 1
ni

ni∑
j=1

xij
ni∑
k=1

xik
T
)

=
C∑
i=1

(
ni∑
j=1

xijx
i
j
T − 1

ni

ni∑
j=1

xij
ni∑
k=1

xik
T
).

(20)
From Eq. (19) and (20), we can see S̃w = 2Sw.

According to the above proof, the scatter matrix S̃t can be
written as

S̃t

= 1
n

n∑
j=1

n∑
k=1

(xj − xk)(xj − xk)T

= 2
n∑
j=1

(xj − µ)(xj − µ)T .

(21)

It’s easy to prove that Sw + Sb =
n∑
j=1

(xj − µ)(xj − µ)T , so

we have
S̃t = 2(Sw + Sb). (22)

Thus, when sijk = 1
ni

, the objective function of LADA can
be transformed into

min
WTW=I

tr(WTSwW )

tr(WT (Sw + Sb)W )
, (23)

which is equivalent to the problem (5) in LDA.
However, compared with LDA, the proposed method

doesn’t pull the far away points within the same class closer,
and it emphasizes more on the local structure of data mani-
fold. So LADA is able to handle data with multimodal distri-
bution. To illustrate this point, a toy example is provided. As
shown in Figure 1(a), both LDA and LADA find the correct
projection directions on unimodally distributed data. How-
ever, when the data distribution is multimodal, as shown in
Figure 1(b), LDA fails while LADA still works well.

5 Experiments
In this section, the proposed LADA is evaluated on a toy
dataset and five real-world datasets. Throughout the exper-
iments, we let the competitors utilize their respective optimal
parameters.

5.1 Performance on Toy Dataset
In this work, two toy datasets are built to validate the effec-
tiveness of LADA.

Dataset: As Figure 2 visualizes, each dataset consists of
data from three classes. In the first two dimensions, the data
points are distributed in concentric circles, while the other
eight dimensions are noises, which are randomly generated
in the range of 0 and c. For the two datasets, the noise c is set
as 1 and 100 respectively.

Competitors: The proposed LADA is compared with
LDA [Friedman and Kandel, 1999], and a state-of-the-art
locality-aware method Neighborhood MinMax Projections
(NMMP) [Nie et al., 2007].

Performance: Figure 2 shows the two-dimensional sub-
spaces found by LDA, NMMP and LADA. It’s manifest that
the subspace of LADA preserves the manifold structure of
original data with more discriminability. LDA focuses on
the global aspect, and imposes the far away points within
the same class to be close to each other, so it can’t capture
the local data structure. Because of the investigation of lo-
cal structure, NMMP performs well when the noise is small.
However, since NMMP relies on the points’ distances in the
original data space, consequently, it fails when the noise is
large. The proposed LADA adaptively captures the points’
local relationship in the learned subspace, so it shows robust-
ness to the noise and learns the discriminant subspace suc-
cessfully.

5.2 Performance on Real-World Dataset
In this part, experiments are conducted on various real-world
datasets to demonstrate the usefulness of LADA. First, the
input data is transformed into a low-dimensional subspace.
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Figure 2: (a) and (e) are the first two dimensions of the two datasets. (b)-(e) and (f)-(h) show the two-dimensional subspaces
learned by LDA, NMMP and LADA on the two datasets. The performance of LDA is unsatisfying due to the neglect of local
manifold structure. NMMP fails when noise is 100, because it can’t find the correct neighbor points. Under different noises,
LADA is able to find the discriminant subspace while preserving the manifold structure.

USPS Mnist

class number

training number

ALLAMLYale Face AR Face

testing number

input dimensionality

dimensionality after PCA

5 6

180

256

79

5244

784

283

6000

30012

15

6400

88

120

45

50

4980

508

350

950

7129

2

20

52

66

Table 1: Description of the real-world datasets.

USPS Mnist

91.6±0.68 

83.1±2.26 

Baseline

LDA

ALLAMLYale Face AR Face

87.1±1.25 

86.3±0.99 

86.7±1.74 

NDA

LLDA

LSDA

LFDA

NMMP

LADA

84.6±1.58 

90.7±0.86 

90.4±0.87 

96.4±6.01 

19.1±8.35 

96.3±9.56 

81.3±7.63 

95.9±8.34 

75.8±9.40 

78.6±7.94 

96.8±6.33 

71.9±6.19 

72.4±5.40 

72.3±5.31 

76.9±5.43 

59.0±6.97 

74.2±5.87 

92.4±2.89 

93.8±3.52 

41.6±1.38

52.3±2.33

71.7±9.93 

57.8±2.73 

49.6±2.17 

70.6±8.59 

73.3±1.76 

83.4±1.60 

80.6±5.49

58.9±9.56

78.3±6.38

76.4±7.05

80.5±7.79

76.3±8.20

84.6±6.60

86.2±5.60

Table 2: Average classification accuracy over 30 random splits of different datasets (mean±standard deviation%). Best results
are in bold face, and the second-best results are underlined. The results show that the proposed LADA achieves satisfying
performance on different kinds of data.



Then the nearest neighbor classifier is used to classify the ob-
tained low-dimensional data. For each dataset, we randomly
choose several samples for training, and use the remaining
samples for testing. After 30 random splits, the averaged clas-
sification accuracies [Wang et al., 2017] and standard devia-
tions are reported.

Datasets: The proposed LADA is evaluated on five stan-
dard benchmarks, USPS [Hull, 1994], Mnist [LeCun et al.,
1998], Yale Face [Georghiades et al., 2001], AR Face [Ding
and Martinez, 2010], and AMLALL [Golub et al., 1999].
USPS is a handwritten digit image dataset, and the size of
each image is 16×16. We use the digits 1, 2, 3, 4 and 5
as the five classes for classification. The Mnist dataset con-
sists of 70000 handwritten digit images, and the image size is
28×28. Digits 1, 2, 3, 4, 5 and 6 are employed in the exper-
iments. Yale Face dataset contains 165 face images of 15 in-
diviudals under different facial expressions and facial details
[Nie et al., 2007]. Each image is of size 112×92, and we
down-sample them into 80×80 in the simulation. AR face
includes over 4000 color images of 126 persons’ faces (70
males and 56 males). Each individual has 26 image, and the
image size is 165×120. In our experiments, we choose the
images of the first 50 males for classification. The color im-
ages are down-sampled into 83×60, and transformed into 256
gray levels. The ALLAML dataset consists of 7129 probes of
human genes for cancer classification. There are 47 samples
from the acute lymphoblastic leukemia (ALL) type and 25
samples from the acute myeloid leukemia (AML) type. A
brief description of the datasets is shown in Table 1. For all
the datasets, Principal Component Analysis (PCA) [Wold et
al., 1987] is performed as the preprocessing step to speed up,
and the desired projection direction number is set as 60.

Competitors: To verify the superority of LADA, LDA
[Friedman and Kandel, 1999] and five state-of-the-art
locality-aware methods Nonparametric discriminant analysis
(NDA) [Bressan and Vitria, 2003], Local Linear Discriminant
Analysis (LLDA) [Fan et al., 2011], Locality Sensitive Dis-
criminant Analysis (LSDA) [Cai et al., 2007], Local Fisher
Discriminant Analysis (LFDA) [Sugiyama, 2006] and Neigh-
borhood MinMax Projections (NMMP) [Nie et al., 2007] are
taken for comparison. Moreover, The classification result di-
rectly performed after PCA is taken as the baseline.

Performance: Table 2 illustrates the averaged classifica-
tion accuracies and standard deviations of different methods.
It can be seen that the proposed LADA achieves the best per-
formance on Mnist, Yale Face, AR Face and ALLAML, and
obtains the second best result on USPS. LDA and LLDA both
fail on the Mnist, AR Face and ALLAML because the over-
reducing problem occurs, so they can only find limited num-
ber of projection directions, which are insufficient to clas-
sify the samples correctly. Even though, LLDA works a lit-
tle better than LDA because it exploits the local data struc-
ture. NMMP outperforms the other neighbor-based methods
in most cases because it finds the global optimal solution by
solving a trace ratio problem, but it’s inferior to the proposed
LADA because of data noise. On the AR Face dataset, the
baseline result is unsatisfying, which indicates the large data
noise. Thus, the good performance of LADA validates its
robustness to noise.
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Figure 3: Average classification accuracy on (a) Mnist1 and
(b) Mnist2 with varying k. It can be seen that the performance
of NMMP and LFDA change with k.

In addition, all of the above locality-aware methods rely
on a kNN processing. However, the choice of the parame-
ter k may affect the final results, so these methods are not
so practical as LADA. For a better interpretation, we com-
pare the performance of NMMP and LFDA under different
occasions. The experiments are conducted on two subsets of
Mnist dataset, as shown in Figure 3, Mnist1 contains the dig-
its images of 1, 2, 3, 4, 5 and 6, and Mnist2 includes the im-
ages of 7, 8, 9 and 0. Figure 3 shows that the performance of
NMMP and LFDA change with k, so the decision of a proper
k is the basis of these two methods. However, even on Mnist1
and Mnist2, which belong to the same dataset, the optimal k
of NMMP is different. Therefore, it’s impractical to chose
a k that works well for various applications. The proposed
LADA produces good results steadily because it doesn’t de-
pend on any additional parameter.

6 Conclusion
In this work, we propose a new supervised dimensionality re-
duction method called Locality Adaptive Discriminant Anal-
ysis (LADA). LADA focuses on the points which are intrin-
sically similar, and then pulls them close to each other af-
ter the linear transformation. So it is able to discover the
underlying local structure of data manifold. Compared to
classical LDA, the proposed LADA is more suitable to deal
with multimodally distributed data. In comparison with ex-
isting locality-aware algorithms, LADA is more robust to the
data noise, and saves the efforts to tune additional parame-
ters. Furthermore, the well-known over-reducing and Small
Sample Size problems don’t exist naturally in our method.
Experimental results on various datasets demonstrate that our
method outperforms the state-of-the-art techniques. In the fu-
ture work, we would like to extend our method to non-linear
discriminant analysis by introducing a kernel function. In ad-
dition, it’s also desirable to apply LADA in more real-world
applications.
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