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Anomaly Detection in Traffic Scenes via
Spatial-Aware Motion Reconstruction

Yuan Yuan, Senior Member, IEEE, Dong Wang, and Qi Wang, Senior Member, IEEE

Abstract—Anomaly detection from a driver’s perspective when
driving is important to autonomous vehicles. As a part of Ad-
vanced Driver Assistance Systems (ADAS), it can remind the
driver about dangers in a timely manner. Compared with tra-
ditional studied scenes such as a university campus and market
surveillance videos, it is difficult to detect an abnormal event from
a driver’s perspective due to camera waggle, abidingly moving
background, drastic change of vehicle velocity, etc. To tackle these
specific problems, this paper proposes a spatial localization con-
strained sparse coding approach for anomaly detection in traffic
scenes, which first measures the abnormality of motion orientation
and magnitude, respectively, and then fuses these two aspects
to obtain a robust detection result. The main contributions are
threefold, as follows. 1) This work describes the motion orientation
and magnitude of the object, respectively, in a new way, which is
demonstrated to be better than the traditional motion descriptors.
2) The spatial localization of an object is taken into account con-
sidering the sparse reconstruction framework, which utilizes the
scene’s structural information and outperforms the conventional
sparse coding methods. 3) Results of motion orientation and mag-
nitude are adaptively weighted and fused by a Bayesian model,
which makes the proposed method more robust and able to handle
more kinds of abnormal events. The efficiency and effectiveness
of the proposed method are validated by testing on nine difficult
video sequences that we captured ourselves. Observed from the
experimental results, the proposed method is more effective and
efficient than the popular competitors and yields a higher perfor-
mance.

Index Terms—Computer vision, video analysis, anomaly detec-
tion, motion analysis, sparse reconstruction, crowded scenes.

I. INTRODUCTION

THERE are many potential dangers when driving, such as
unsafe driver behavior, sudden pedestrian crossing, and

vehicle overtaking. Fig. 1 shows some typical exemplars having
potential dangers. Since the driver’s attention can’t focus in
every second and notice all dangers, many traffic accidents
occur every day. Therefore, it is necessary to auto-detecting
potential dangers from a driver’s perspective, and a surge of
interests has been motivated in computer vision community.
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Fig. 1. Typical examples of anomaly in traffic scenes. (a) Pedestrian crossing
the road. (b) Cyclists and motorcyclists on the road. (c) Vehicle overtaking.
(d) Sudden appearance of animals. It is noticed that the abnormal objects have
a different motion pattern compared to their neighboring object.

But it is almost impossible to design a system that can detect
faultlessly all kinds of abnormal event, because the anomaly
definition might be distinctive in different situations. Therefore,
many researchers simplify the problem by focusing on specific
objects and events, such as pedestrians, vehicles and crossing
behaviors.

To tackle the above simplified problem, training object
detectors is a straightforward method. To name only a few,
Xu et al. [1] focus on detecting the sudden crossing pedestrians
when driving, and learn a pedestrian detector to detect crossing
pedestrians as early as possible. Sivaraman and Trivedi [2] pro-
pose a part-based vehicle detector to detect cars when driving.
Moreover, to improving accuracy of the detector, Garcia et al.
[3], [4] fuse vision-based pedestrian detection results and laser
data to estimate the frontal pedestrian. Apart from these tradi-
tional methods, over recent years, the landscape of computer
vision has been drastically altered and pushed forward through
the adoption of deep learning, especially the Convolutional
Neural Network (CNN) [5]. The CNN-based object detectors
achieve state-of-the-art results in almost all object detection
benchmarks. As an example, Region-based CNN [6] achieves
excellent object detection accuracy by using deep ConvNet to
classify object proposals. Based on the similar framework, there
are quite a few works to speed up R-CNN such as Spatial
Pyramid Pooling networks (SPPnets) [7] and Fast R-CNN [8].
Though the CNN-based object detection method is outstanding
in static image, the trained models only capture appearance
information and cannot be used to recognize specific actions
immediately.

There is another clue to classification of different behaviors
by contrast with static image, i.e., object motion information. A
slice of papers investigate for action detections in this direction.
Early work by Alonso et al. [9] detects the overtaking cars
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in reference to the motion orientation of vehicles, which is
obtained by calculating the optical flow of every frame. Along
similar line, Kohler et al. [10] propose a Motion Contour image
based on HOG-like descriptor (MCHOG) in combination with
a SVM learning algorithm that decides within the initial step
if a pedestrian at the curb will enter the traffic lane. Aside
from these motion flow based methods, object trajectory is
another technique for describing object motion information.
As an example, Bonnin et al. [11] propose a generic model
to predict pedestrians crossing behavior in inner-city, which
predicts the pedestrain’s motion orientation by tracking for a
while. However, because object tracking is not credible all
the time in fickle scenes, the object trajectory is misleading
to object localization. This limitation makes it unfavorable in
traffic scene. Besides, the tracking technique usually needs the
target to be detected as an initial step, which makes the method
also object-related.

A desirable property of a system which is able to identify
threats when driving is to disentangle specific object classes.
The detector-based and tracking-based methods invariably pour
attention into quite a few object. Consequently, this work
resorts to the motion flow based method. However, in order
to make motion flow based method feasible, there are several
difficulties should be considered carefully. First, since the cam-
era is mounted on the moving vehicle, it is almost shaking all
the time and the captured video is usually blurred. This makes
the estimated motion information noisy and unstable. Second,
in contrast to the static camera, the background of scene is
all moving due to its relative movement to the camera, which
makes the motion patterns of the scene very complex. Addi-
tionally, the ever-changing background makes the influence of
background more serious. Third, there is some drastic variation
of vehicle velocity, aggravating the difference of relative move-
ments between objects. Due to dynamic uncertainty, the same
behaviors such as sudden vehicle crossing, may show totally
different motion patterns with different vehicle velocities.

In order to tackle the above problems, this work calculates
two histograms to represent motion magnitude and orientation
respectively, which makes a more comprehensive description
of local motion pattern, and the separate descriptors have a
clearer expression of motion patterns resulting in resistance of
motion noise. Additionally, two anomaly maps are generated
by spatial-aware reconstruction, which can alleviate the influ-
ence of dynamic background via spatial constraint. Finally, a
Bayesian integration model is employed to fuse previously obtai-
ned anomaly maps to calculate the final anomaly map, which is
robust to the drastic changes of vehicle velocity. Based on the ob-
tained final anomaly map, the abnormal objects can be located.

The reminder of this paper is organized as follows: Section II
reviews previous work on anomaly detection in computer
vision. The main steps and contributions of the proposed
method are clarified briefly in Section III. Section IV de-
scribes the strategy for motion region segmentation. Section V
proposes the anomaly detection and localization using sparse
reconstruction. The Bayesian-based integration method is elab-
orated in Section VI and experiments and discussions are
given Section VII. The conclusion is finally summarized in
Section VIII.

II. RELATED WORK

The proposed framework in this paper bears some resem-
blance to region of interest (ROI) generation and selection
methods, and measures the degree of anomaly via sparse recon-
struction cost in conjunction with the integration of two motion
clues that is inspired by multi-saliency evaluation. Hence the
literature review for this work begins from these three aspects.

In the realm of the relative works for ROI generation and
selection, there are several efforts [12]–[15] creating a relatively
small set of candidate ROIs that cover the objects in the image.
The “selective search” algorithm of van de Sande et al. [12]
computes hierarchical segmentations of superpixel [16] and
places bounding boxes around them. EdgeBoxes [13] outputs
high-quality rectangular (box) proposals quickly, which are
selected readily with a simple box objectness score computed
from the contours wholly enclosed in a candidate bounding
box. Additionally, BING [14] trains a two stages cascaded
SVM [17] to measure generic objectness, and then produces a
small set of candidate object windows. Finally, recent R-CNN
[15] applies high-capacity convolutional networks to bottom-up
region proposals in order to localize and segment objects, and
gives more than a 50% relative improvement on PASCAL VOC.
Our approach is inspired by the success of these ROI selection
methods, and the difference is we filtrate ROIs according to
measuring abnormality, rather than objectness.

There are quite a few alternatives to model the degree of
anomaly, such as mixture of probabilistic principal component
analysis (MPPCA) model [18], social force model [19], sparse
basis [20]–[23], etc. However, based on the sparsity of unusual
events, more and more sparsity based methods have emerged
in this field recently. Cong et al. [20] calculate a multiscale
histogram of optical flow to represent the local motion patterns
for image sequences. Whether a testing sample is abnormal
or not is determined by its sparse reconstruction cost, through
a weighted linear reconstruction of the over-complete normal
basis set. Zhao et al. [22] propose a fully unsupervised dynamic
sparse coding approach for detecting unusual events in videos
based on online sparse reconstructibility of query signals from
an automatically learned event dictionary, which forms a sparse
coding bases. Moreover, recent research has observed and
validated that locality is more essential than sparsity [24]–[26].
The locality-constrained linear coding (LLC) [38] is a great
advance in this aspect, which applies locality constraint to
select similar basis of local image descriptors. Inspired by this
work, we measure abnormality by spatial locality-constrained
sparse reconstruction.

For obtaining robust and superior results, integration of
multiple clues or factors is usually adopted in computer vision
and machine learning community. Because of close similarity
between anomaly map and saliency map, we review some work
about multi-saliency fusion here. The straightforward and most
intuitive scheme is linear fusion. Evangelopoulos et al. [27]
apply this framework to fuse aural, visual and textual saliency.
For more elaborate fusion, a Support Vector Machine is trained
and used to predict the quality of each saliency map in [28],
and then saliency maps are fused linearly using the quality
measure of each map. Besides, Xie et al. [29] merge low and
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Fig. 2. Pipeline of the proposed method. First, with the obtained motion estimation, which is computed by a state-of-the-art dense flow method [31], the optical
flow field is separated into two motion fields, i.e., motion orientation field and motion magnitude field. Then SLIC [32] superpixel segmentation is utilized to
oversegment each motion field into superpixels. Second, with the superpixel motion features of both motion fields, this work learns two dictionaries, respectively,
for the motion orientation and magnitude and updates the learned dictionaries to adapt to dynamic scenes. The newly observed superpixel motion feature is
reconstructed by its top K nearest elements of the corresponding dictionary. The superpixel motion features with a large reconstruction error are not used to
update the corresponding dictionary. Third, in order to give a more robust anomaly estimation, this work integrates the obtained two anomaly maps based on
Bayes’ model, which makes use of the complementarity between motion orientation and magnitude. In the end, the detected anomaly regions are superimposed
on the original color image.

mid level visual saliency within the Bayesian framework, which
generates more discriminative saliency map. Furthermore, the
Bayesian integration method is also employed in [30] and
performs better than the conventional integration strategy.

III. OVERVIEW

In this paper, an effective anomaly detection method for
traffic scenes is designed, which is robust to the change of the
camera movement. And the components and contributions of
this method is illuminated schematically in this section.

A. Components of the Proposed Method

The main components are illustrated in Fig. 2, with a detailed
description as follows.

1) Complementary Motion Description: Given a video se-
quence, this work calculates the optical flow field of each frame,
which represents the motion characteristics of each pixel as
a two-dimensional vector. With the obtained optical flow, the
motion orientation and magnitude of each pixel is calculated
and gathered together to form the motion orientation filed
(MOF) and motion magnitude field (MMF) respectively. Since
different parts of an object may have similar motion character-
istics, the superpixel technique is employed to over-segment the
obtained MOF and MMF, which can separate different objects
well by preserving coherence of local motion patterns. With the
segmented results, this work calculates a histogram for every
superpixel to represent its motion orientation and magnitude.
Because this technique takes these two aspects into consider-
ation, the proposed method can detect motion orientation and
magnitude anomaly simultaneously.

2) Abnormality Measurement Via Spatial-Aware Recon-
struction: With the obtained motion orientation and magnitude
histogram, this work detects the motion orientation and mag-
nitude anomaly simultaneously via a dictionary-based method.

To be specific, this work learns two normal dictionaries re-
spectively for motion orientation and magnitude description by
an incremental learning method, which finds the representative
samples (histogram of motion orientation or magnitude) in
the normal motion pattern set. And then we construct the
dictionary via taking them as the bases of the learned dictionary.
For the reason that the location of motion feature (i.e., the
spatial location of the corresponding superpixel) is essential
to anomaly detection in traffic scene, this work reconstructs
the newly observed motion feature over the spatial-near subset
of the learned dictionary, which is inspired by the locality-
constrained linear coding (LLC) [24] method in image classi-
fication. Besides, in order to measure the difference of motion
features more reasonably, the earth mover’s distance (EMD)
[33] is employed instead of traditional χ2 distance. According
to the reconstruction cost, two anomaly maps are generated
and indicate abnormality of motion orientation and magnitude
respectively.

3) Bayesian-Based Integration of Anomaly Detection: As
mentioned above, this work measures the abnormality of mo-
tion orientation and motion magnitude simultaneously, and the
behind idea is that some abnormal behaviors show a different
motion orientation but some is motion magnitude, which is
mainly caused by drastic changes of vehicle velocity. In order to
tackle this problem, we integrate the two anomaly maps based
on a Bayesian integration model via adaptive weights, which
can make use of the complementarity between these two maps
and obtain a robust detection result.

B. Contributions

In this work, we tackle the anomaly detection in traffic
scenes via measuring the change of motion orientation and
motion magnitude simultaneously and integrating these two
complementarity aspects together to relieve the mobile camera
problem. Additionally, the proposed method does not need any
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extra training video to pre-learn a off-line model. The main
contributions of this paper are described as follows.

1) Explore different effects of motion orientation and mag-
nitude on anomaly detection respectively and model them
using a histogram-based method, which is suitable and
reasonable to describe motion patterns in traffic video
with mobile camera. Compared with the application
scenes of traditional anomaly methods, which usually
contain several simple motion patterns because of the
static camera, the motion patterns in our scenery are more
complex and noisy. The reason behind this is that the
camera is shaking when driving and not in a constant ve-
locity. Therefore, in order to increase the discriminability
of the descriptor, this work calculates two histograms to
represent motion orientation and magnitude respectively,
which can eliminate the noise more easily.

2) Propose a spatial-aware spare reconstruction method to
measure the abnormity of local motion patterns, which
is achieved by reconstructing the newly observed mo-
tion pattern over its spatial-near dictionary elements. In
previous literatures on anomaly detection, sparse recon-
struction is utilized in some efforts, but they almost do
not take the spatial information into consideration for the
simplicity of application scenes. On the contrary, since
the motion patterns in traffic video usually have a strong
relationship with its spatial location, we reconstruct them
with its spatial-near dictionary elements. It can eliminate
the dynamic background influence and outperform the
traditional sparse reconstruction method.

3) Introduce a Bayesian integration method to adaptively
fuse the anomaly results from motion orientation and
magnitude. Since the obtained two results usually have
different efforts in different scenarios and are comple-
mentary to each other, this work integrates these prelim-
inary results into a final detection result. Compared with
the conventional integration strategy, such as addition
and multiplication, which usually predetermine the in-
tegration weights, the employed Bayesian-based method
takes the video content into consideration and allocate
integration weights adaptively. Therefore, the Bayesian
integration method can better reflect the video content
and handle drastic changes of vehicle velocity.

IV. COMPLEMENTARY MOTION DESCRIPTION

As we all know, traffic scenes are typically crowded. There
is much occlusion when you driving on a road, which makes
the trajectory-based approaches infeasible in this situation. As
a main alternative, motion-based approaches show a promising
result for anomaly detection. Therefore, our proposed approach
makes use of motion information instead of tracking individuals
in the scene. For describing motion patterns effectively, optical
flow method [31] is employed.

A. Superpixel Motion Segmentation

Since motion orientation and magnitude of different parts
that belong to one object are homologous, the superpixel tech-

Fig. 3. Flowchart for motion feature extraction.

Fig. 4. Two abnormal events in traffic scenes, which show the complementarity
of motion orientation and magnitude. (a) Original color image. The red circles
denote the abnormal objects. (b) Optical flow field. It represents the motion
information of every pixel. (c) Motion magnitude field. Different colors repre-
sent different motion magnitudes. (d) Motion orientation field. Different colors
represent different motion orientations. It is obvious that motion orientation is
more discriminative than motion magnitude in the first scenario, and motion
magnitude is more important in the second scenario.

nique, which has a powerful ability for preserving image local
coherence, is employed to segment different motion regions. To
be specific, the optical flow field is separated into motion orien-
tation field and motion magnitude field and the superpixels are
obtained from both fields respectively. In detail, as illustrated
in Fig. 3, these two motion fields are converted into two gray-
scale images, and then SLIC method [32] is employed to over-
segment these two “images” because of its low computational
cost and high performance.

B. Complementary Motion Representation

With the obtained superpixels, a histogram-based descriptor
is calculated to represent motion information. The traditional
histogram of orientated optical flow (THOOF) [34] sums the
magnitude of optical flow according to its orientation followed
by a normalization operation, which loses the motion magni-
tude clue[35]. Considering that the anomaly definition in traffic
scenes is usually different, as illustrated in Fig. 4, these two
factors are measured simultaneously and integrated to detect
anomaly efficiently.

Suppose the motion orientation field image is over-
segmented into N superpixels. For i-th superpixel spoi, i = 1,
. . . , N , its motion feature is denoted as yoi ∈ R1×d, where
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d indicates the histogram dimension. In addition, the spatial
location of i-th superpixel centroid is represented by a two-
dimensional coordinate zoi ∈ R2. And the whole set of these
superpixels are denoted as Yo and Zo. Similarly, the i-th su-
perpixel of motion magnitude field is denoted as spmi, and its
motion feature and spatial location are denoted as ymi and zmi,
whose whole sets are denoted as Ym and Zm respectively.

The distance measurement between histograms is essential
in the histogram-based method. Since the extracted optical
flows are inevitably noisy and uncertainty, we adopt the earth
mover’s distance (EMD) as histogram distance function, which
is a well-known robust metric in case of noisy histogram
comparison. Specifically, the EMD between histogram P and
Q is denoted as:

EMD(P,Q) = min
fij>0

d∑

i=1

d∑

j=1

fijDisij

s.t.
d∑

i=1

fij ≤ Pj ,

d∑

j=1

fij ≤ Qi (1)

where fij denotes a flow from bin P (i) to Q(j), and Disij is
their ground distance. In general, the ground distance Disij
can be any distance measurement, such as l1 and l2. For
simplification, l1 distance is employed in this work, which is:

Disij = |i− j|. (2)

For reducing computation cost, we utilizes the EMD-l1 instead
of original EMD with l1 ground distance. The equivalence of
these two distances was verified in [33] and the EMD-l1 has a
lower time complexity.

V. ABNORMALITY MEASUREMENT VIA

SPATIAL-AWARE RECONSTRUCTION

With the separated motion fields, the following task is to
detect anomaly by measuring motion inconsistency. This paper
formulates the problem of anomaly detection as the recon-
struction of the newly observed local motion pattern by the
historically collected normal motion patterns. Inspired by the
Locality-constrained Linear Coding (LLC), more emphasis is
laid on the spatial priors of the dictionary element. Moreover,
the spatial prior is essential to alleviate the influence of the
background motion patterns. Therefore, the reconstruction error
of each superpixel’s motion pattern is calculated by its spatially
near elements in the dictionary, which is learned [36] via finding
the representative normal motion patterns. In the following, the
dictionary learning method is introduced firstly, and then the
estimation approach of anomaly via spatial neighbor recon-
struction is presented.

A. Dictionary Learning via Finding the Representative
Motion Patterns

For the camera captured video in traffic scene, the motion
pattern has a strong spatial dependency. Certain motion patterns
usually arise at specific spatial locations and different regions

are prone to show different motion prototypes. In order to
describe them, we find a few representative motion patterns and
retain its corresponding spatial localization.

To be specific, we measure the superpixel motion pattern’s
ability to reconstruct other normal motion patterns according to
corresponding reconstruction coefficient, which is obtained by
minimizing the reconstruction error of the all superpixel motion
patterns. Similar to sparse reconstruction problem, the above
optimization problem can be formalized as:

min
C

1
2
‖Y − Y C‖2F s.t. ‖C‖1,2 < ε, diag(C) = 0 (3)

where Y ∈ Rc×N denotes the normal superpixels’ motion
patterns, c the dimensionality of motion feature and N the
number of normal superpixels respectively. ‖C‖1,2 is defined as∑N

i=1 ‖ci‖2, which is the sum of l2 norms of rows in coefficient
matrix C. Moreover, the constraint diag(C) = 0 forces the
diagonal elements of matrix C to be 0, which is to avoid self-
reconstruction.

After solving the above optimization problem, the obtained
coefficient matrix C is used to find the representative motion
patterns. In detail, the ith row of matrix C denoted as ci,
indicates the reconstruction coefficient of the ith motion fea-
ture in matrix Y . Therefore, the motion feature in matrix Y
whose corresponding reconstruction coefficient is nonzero has
certain efforts to reconstruct other motion features and can be
chosen as the representatives. Besides, the optimal coefficient
matrix C also provides information about ranking, i.e., relative
importance of the representatives to describe the other normal
superpixels’ motion patterns. More precisely, a representative
is essential to reconstruct many superpixels’ motion patterns.
Thus, its corresponding row in the optimal coefficient matrix
C contains many nonzero elements with large values. On the
other hand, a representative only takes part in the reconstruction
of few superpixels’ motion pattern, hence, its corresponding
row of C contains a few nonzero elements with smaller values.
Therefore, we rank m representatives yi1 , . . . ,yim according
to the relative importance, i.e., yi1 has the highest rank and yim

has the lowest rank. Whenever for the corresponding rows of C
we have

‖ci1‖2 ≥ ‖ci2‖2 ≥ · · · ≥ ‖cim‖2. (4)

According to the ranking result, we select the top M repre-
sentatives to form the normal dictionary D, and the spatial
localizations of the selected representatives denoted as L, are
collected in the same order. Finally, the proposed optimization
programs in Eq. (3) can be written as

min
C

λ1‖C‖1,2 +
1
2
‖Y − Y C‖2F s.t. diag(C) = 0 (5)

in practice.

B. Spatial-Aware Reconstruction for Abnormality
Measurement

Denote the learned motion orientation dictionary as Dt
o at

time t. For a newly observed superpixel motion orientation
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feature ytoi, we first calculate the spatial distance between
this superpixel and every element in the dictionary, and then
select the top K nearest elements to form a new spatial-near
dictionary Dt

ol. To determine the motion orientation anomaly,
the superpixel motion feature ytoi is reconstructed by Dt

ol and
the reconstruction cost is viewed as anomaly degree of the
examined superpixel. To be specific, the anomaly is defined as:

atoi = EMD
(
ytoi, D

t
olα

t
oi

)
(6)

where atoi is the anomaly degree of the ith superpixel in the flow
orientation field and αt

oi is optimal solution of the following
sparse reconstruction problem:

αt
oi = argmin

α

∥∥ytoi −Dt
olα

∥∥2

F
+ λ2‖α‖1. (7)

With the calculated atoi of each superpixel, we utilize the
max-min normalizer to put atoi into the range of [0, 1]. The
anomaly degrees of all superpixels are gathered to construct a
motion orientation anomaly map SO

t for the tth frame in motion
orientation level.

As for motion magnitude anomaly measurement, since the
video is captured on a moving vehicle, their demonstrated
motion is relative. This makes the abnormal motion magnitude
might be very similar to the normal ones and utilizing the
reconstruction strategy is unable to fulfill this task. In order to
alleviate this problem, the abnormality of motion magnitude is
measured by the difference between abnormal motion magni-
tude feature and elements of its spatial-near dictionary. More-
over, the highest weight is set to the nearest elements. In detail,
suppose the ytmi denotes the superpixel’s motion magnitude
feature and Dt

ml denotes corresponding spatial-near dictionary,
the anomaly degree of superpixel in motion magnitude field is
calculated as follows:

atmi =
1
K

K∑

j=1

wij × EMD
(
ytmi, D

t
mlj

)
(8)

where Dt
mlj denotes the jth element of spatial-near dictionary

and wij = e−‖z
t
oi−ltmlj‖2

2 gives the nearest element the highest
weight. Similarly, after the normalization operation, we gather
all the anomaly degrees of superpixels to construct a motion
magnitude map SM

t . Besides, for easier combination and vi-
sualization of the following Bayesian integration, we harness
max-min normalizer to put SO

t and SM
t into range [0, 1]. The

final anomaly map is generated by integrating these two maps
and the integration strategy is described in Section VI.

To alleviate the influence of dynamic scene, the dictionaries
need to be updated. We incrementally cumulate the new normal
superpixels’ motion features Ynor and get the updated training
set Ynew = [De Ynor], where De is the old dictionary. The
obtained Ynew will subject to the dictionary learning procedure
to obtain the updated dictionary every T frame, as discussed in
Section V-A.

Fig. 5. Bayesian integration of anomaly maps. The two anomaly maps are
measured via motion orientation and magnitude, respectively, denoted by SO

and SM .

VI. BAYESIAN-BASED INTEGRATION

OF ANOMALY DETECTION

For anomaly detection in traffic scenes, the motion orienta-
tion and magnitude usually have different efforts in different
cases, and are usually complementary to each other. Therefore,
this work integrates the previously obtained two anomaly maps
to generate the final anomaly map, which can address the
change of vehicle velocity problem to some extent. To make
full use of the complementarity between motion orientation
and magnitude, this work employs an integration method based
on Bayesian inference [30]. The posterior probability is for-
mulated as:

p (A|S(z))= p (S(z)|A) p(A)
p(A)p (S(z)|A)+(1−p(A)) p (S(z)|N)

(9)

where the prior probability p(F ) is a anomaly map, A(z) is
the anomaly degree of pixel z, p(S(z)|A) and p(S(z)|N) rep-
resent the detected abnormal and normal likelihood of pixel z,
respectively. It is noted that the prior probability and the likeli-
hood probabilities are the key points for the result.

Given the motion orientation anomaly map SO and the
motion magnitude anomaly map SM , we treat one of them as
the prior Si(i ∈ {M,O}) and use the other one Sj(i �= j, j ∈
{M,O}) to compute the likelihood, as shown in Fig. 5. Specif-
ically, first, Si is thresholded by its mean anomaly value and
a binary map Bi is obtained, the regions that having the value
of 1 in binary map are denoted as Ai, which means abnormal
regions. And the residual regions are normal regions, denoted
as Ni. In each region, the likelihood probability at pixel z
is calculated as:

p
(
Sj(z)|Ai

)
=

NAib(sj(z))

NAi

p
(
Sj(z)|Ni

)
=

NNib(sj(z))

NNi

(10)
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Fig. 6. Typical frameshots of the detected results by different competitors for each sequence. (a) Original color image. (b) Ground-truth anomaly. (c) Motion
orientation anomaly map. (d) Motion magnitude anomaly map. (e) Integrated anomaly map.

where NAi
and NNi

are the number of the pixels in the
detected abnormal region Ai and the normal region Ni in
motion orientation map Si. Moreover, the range [0, 1] divides
into m intervals, and thus the i-th, (i = 1, 2, . . . ,m) interval is
[(i − 1)/m, i/m]. b(sj(z)) represents the interval where sj(z)
falls into its range. NAib(Sj(z)) denotes the number of detected
abnormal region’s pixels whose value falls into b(sj(z)). Sim-
ilarly, NNib(Sj(z)) represents the number of normal region’s
pixels whose values fall into b(sj(z)).

Consequently, the posterior probability is computed with Si

as the prior by

p
(
Ai|Sj(z)

)
=

Si(z)p
(
Sj(z)|Ai

)

Si(z)p (Sj(z)|Ai)+(1−Si(z)) p (Sj(z)|Ni)
.

(11)

Similarly, we can also get p(Aj |Si(z)) by treating the two maps
as the other. After obtaining the two posterior probabilities and
specifying i, j with O,M , we compute an integrated anomaly
map S(SO(z), SM (z)), based on Bayesian integration:

S
(
SO(z), SM (z)

)
=

(
p
(
AO|SM (z)

)
+ p

(
AM |SO(z)

))
/2.
(12)

The proposed Bayesian integration of anomaly maps is il-
lustrated in Fig 5. It should be noted that Bayesian integration
serve these two maps as the prior in turn and cooperate with
each other in an effective manner, which uniformly highlights
abnormal objects in a frame.

VII. EXPERIMENTS AND DISCUSSION

In this section, we first introduce the datasets and imple-
mentation setups for the experiments. Then for demonstrating
the effectiveness of the proposed method, we conduct experi-
ments and compare the results with other competitors. Finally,
analyses and discussions are made to explain the experimental
results.

A. Datasets

Since the publicly available datasets are almost captured by a
static camera, such as the car accident [37] dataset and QMUL
Junction [38] dataset, this paper provides a dataset consisted of
nine driving videos, which contains several kinds of abnormal
events. The videos are captured by a vehicle mounted camera
for daily driving, and its view of angle is consistent with the
driver’s. The anomaly that we considered here is a kind of
threats, which have potential dangers, such as vehicle over-
taking. To be more specific, based on the anomaly types, the
captured video sequences can be divided into three categories:
1) “Three sequences have the vehicle overtaking (VT) behavior
(We name them as VT-1,VT-2, and VT-3)”, 2) “Four sequences
consist of vehicle crossing (VC) behavior (They are named as
VC-1, VC-2, VC-3, and VC-4)”, 3) “Two sequences contain
pedestrian crossing and motorcyclists crossing (PC) behaviors
(They are denoted as PC-1 and PC-2)”. Due to the online
application of our method, we do not split the overall dataset
into training and test part. And the first 10 frames of sequences,
which are always normal situation, are treated as training data
for this sequence and the rest are utilized to test. There are 180
frames in each sequence averagely, and the frameshots of the
video sequences are demonstrated in Fig. 6, some of which are
very difficult for road anomaly detection because of complex
background. In the captured dataset, the resolution of each
frame is 480 × 640. The ground truth of each video sequence
is manually labeled by ourselves.

B. Implementation Setup

1) Metrics: In order to prove the efficiency of the proposed
method, the qualitative and quantitative evaluations are both
considered. For qualitative evaluation, we demonstrate several
typical snapshots of the detected anomaly in each video se-
quence. As for the quantitative evaluation, pixel-wise receiver
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TABLE I
AUC (%) COMPARISON OF DIFFERENT DESCRIPTORS AND CLASSIFICATION METHODS FOR

A CLEAR AND FAIRER COMPARISON. THE BOLD ONE IS THE BEST RESULT

of characteristics (ROC) and area under ROC (AUC) are em-
ployed. Among them, ROC represents the detection ability of
the proposed method, and its indexes are specified as:

TPR = TP/P, FPR = FP/N (13)

where TP denotes the number of the pixels truly detected, FP
is the number of pixels falsely detected, P and N represent the
positive pixel number and negative pixel number, respectively.

2) Parameters: In our work, the SLIC superpixel [32] is
employed, in which δ represents the compactness and N the
number of the superpixels. The larger δ is, the more compact the
superpixels are. In this paper, δ and N are set as 10 and 125 for
all sequences respectively. The dimension of the motion feature
c is specified as 30. Furthermore, the parameters λ1 and λ2 in
Eq. (5) and Eq. (7) are set as 0.5 and 0.5 in all experiments,
respectively. The number of basis M in the dictionary is set
as 300 and the dictionary updating period T is set as 5, which
makes the dictionary over-complete all the time. Additionally,
the size of spatial-near dictionary K is set as 10.

3) Comparisons: Since the proposed method is fulfilled by
the collaboration of the motion orientation and magnitude, the
effectiveness of motion anomaly detection technique is firstly
evaluated. In order to demonstrate the advantage of the pro-
posed two-path motion description method, denoted as TPMD.
we replace the proposed motion histograms with traditional
histogram of oriented optical flow (THOOF) and measure
the abnormality based on the proposed spatial-aware sparse
reconstruction (SSRC-THOOF). Apart from spatial-near sparse
reconstruction, we also make a comparison with other popular
one class classification method. To be specific, we investigate
one class SVM and Isolation Forest (IF) [39], which is a popular
anomaly detection model based on random forest. These two
variants are referred as SVM-THOOF and IF-THOOF respec-
tively. Similarly, we retain TPMD and replace the proposed
spatial-aware reconstruction method with traditional sparse re-
construction (SRC) [20], one class SVM and Isolation Forest
(IF),which are denoted by SRC-TPMD, SVM-TPMD and IF-
TPMD respectively. It should be noted that these three variants
do not take the spatial information into consideration. Finally,
we refer to our method as SSRC-TPMD and make a comparison
between performances the proposed method and the above two
variants and do some analysis according to the results.

As the second part of the proposed method, we integrate
the two aspects to get the final result. To further validate the
proposed integration method, we compare the detection results
without integration and with different integration methods.

Fig. 7. AUC value comparison of SVM, IF, SRC [20], and our method for each
sequence.

To be specific, the competitors are motion Magnitude (M)
detection result, motion Orientation (O) detection result,
integration result using inner-product of motion magnitude and
motion orientation (MO), integration result using our Bayes’
model (B-MO).

Last but not the least, for demonstrating the superiority of
our method, it is in comparison with recent region proposal-
based object detector Faster-RCNN [40], which outperforms
significantly traditional object detection method. And it is noted
that region proposal-based object detection technique can boost
our system and achieve a higher performance.

C. Evaluation of Motion Anomaly Detection

1) Descriptor Comparison: The first experiment evaluates
the benefits of the two-path motion descriptor (TPMD). The
THOOF descriptor [34] is proposed to describe motion charac-
teristic of sequences, and it pours attention into motion direc-
tion information [35]. Our motion utilization strategy is inspired
by THOOF, and compute another histogram to describe motion
energy information precisely. Therefore, in order to justify the
superiority of the proposed TPMD, we combine these two
descriptors with several popular classifiers, and average AUC
values for each behavior category are listed in Table I. For a
better visualized comparison, Fig. 7 illustrates the difference
between THOOF and TPMD, and the performance of every
method is represented by the average AUC value over the total
nine sequences. It can be seen that every TPMD-based method
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Fig. 8. Performance of all competitors. For a detailed comparison, the average AUC value of every category is plotted. (a) Performance of THOOF-based variants.
(b) Performance of TPMD-based variants.

outperforms the corresponding THOOF-based variants, and
there are 3.9% improvement medially. From this performance
comparison, the superiority of our TPMD is apparently verified.

2) Classifier Comparison: We next investigated the ad-
vantage of the spatial-aware sparse reconstruction, with the
Bayesian integration method. Apart from sparse reconstruction,
there are a slice of wide-used classification methods, such as
Support Vector Machine (SVM), Artificial Neural Network
(ANN) and Random Forest (RF). Because ANN is usually uti-
lized to classify two or more classes, and it is not suited for one
class problem, in addition to traditional sparse reconstruction
(SRC) [20], the SVM and RF are selected as competitors. In
detail, traditional SRC, one-class SVM in [41] and Isolation
Forest (IF) [39] replace the sparse-aware reconstruction, and
other parts stay the same. IF explores the concept of isolation
with random forest for anomaly detection and achieves plea-
surable performances in many application. It should be noted
that these three competitors do not take spatial information into
consideration. The performance of overall dataset is summa-
rized in Fig. 8. From the shown results, our method generates
favorable accuracy for every behavior category regardless of
the adopted descriptor. To be specific, in the right sub-figure
in Fig. 8, our method performs best for VT behavior, and is
comparable with best performer for other behaviors. A strong
competitor is IF-TPMD and generates superior results in several
sequences, but it is not robust to anomaly type. In particular,
the IF classification method performs worse than our method in
detecting vehicle overtaking, while our method is independent
of specific events. Moreover, because our spatial-aware sparse
reconstruction makes modification to traditional SRC, we con-
duct a comparison between SRC and SSRC. As shown in Fig. 8,
SSRC significantly outperforms SRC in almost every behaviour
(improvement of AUC by as much as 7 percent), and this
suggests the spatial information is crucial to higher accuracy.

Similar conclusion comes with the left sub-figure in Fig. 8,
where the THOOF is treated as motion descriptor. In addition,
the SVM-based variants perform worse than others whatever
the descriptor was used. This is not totally surprising, given the
instability of optical flow. In other words, the noise of optical

TABLE II
AUC (%) COMPARISON OF DIFFERENT CLUES AND INTEGRATION

METHODS FOR A CLEAR AND FAIRER COMPARISON.
THE BOLD ONE IS THE BEST RESULT

flow, which is caused by camera motion and dynamic back-
ground, makes SVM ineffective in this case. That is to say, our
method can eliminate the influence of noise.

D. Evaluation of Integration Method

To further explore the effectiveness of the Bayesian inte-
grated model, the performance comparisons are presented in
Table II. It can be seen that the Bayesian integration model is
superior to the other integration techniques. In addition, we also
make a comparison between motion magnitude (M) and motion
orientation (O) anomaly detection result, and it is noticed that
motion magnitude and orientation have different importance in
different sequences. Specifically, for the sequences containing
vehicle overtaking behavior, (i.e., VT-1, VT-2, and VT-3,) the
motion orientation anomaly detection result is usually superior
to the motion magnitude anomaly detection result, i.e., O > M .
The reason is that the motion orientation of abnormal object is
very different from the background or normal object. However,
the motion magnitude may be very similar to background. But
on the other hand, the motion magnitude anomaly detection
result has a higher performance in other sequences. The reason
is that motion magnitude of abnormal object is very different
from background or normal object, but the motion orientation
not. The above phenomenon is caused by the different relative
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TABLE III
AUC (%) COMPARISON OF SSRC-TPMD AND FASTER-RCNN

FOR A CLEAR AND FAIRER COMPARISON. THE BOLD

ONE IS THE AVERAGE VALUE

speed between the abnormal object and the mobile camera.
Generally, the overtaking vehicle usually has a faster speed than
the camera. Therefore, the estimated optical flow can represent
motion magnitude and motion orientation well. However, for
vehicle crossing behavior, the crossing objects usually have a
slower speed than the camera. Therefore, the estimated optical
flow can only represent motion magnitude well, as illustrated in
Fig. 4. Besides, it is noticed that the motion magnitude anomaly
detection result has a high performance in all sequences, and
it demonstrates the proposed motion magnitude descriptor is
effective. In general, the method using only motion magnitude
or motion orientation can not handle all kinds of abnormal
events in traffic scenes because of the different relative speeds
between abnormal object and the camera. In order to make
use of these two aspects simultaneously, this work reasonably
integrates both detection results.

For this purpose, this work integrates the motion magnitude
and orientation detection results based on a Bayesian model. In
order to demonstrate its effectiveness of the Bayesian model,
we make a comparison between Bayesian integration (B-MO)
and naive integration technique (MO), which is achieved by
making inner-product using both aspects. It is manifest in
Table II that the performance of MO sometimes is lower than
M or O (for example, VC-1, VC-2, VC-3). This implies that
the naive integration technique can not boost the performance,
but weaken it. The reason is that a high performance using
inner-product needs high performances in both aspects, but it
is impossible for some sequences to get satisfying results in
both aspects. In order to make use of their complementarity, this
work integrates both detection results based on Bayesian model.
From Table II, it can be seen that the performances based on
Bayesian model are almost the highest in most sequences.
Therefore, the integration technique can generate a high per-
formance even though one single aspect has a very low perfor-
mance. According to the above analysis, we can conclude that
the Bayesian integration model is better than the naive method.

E. Performance Comparison

Recently, region proposal technique achieves a great success
in detecting objects from a image and is adopted in different
works such as Markus Enzweiler’s pedestrian detector [42],
Will Zou’s work on regionlets [43], etc. For demonstrating the
superiority of our method, region proposal-based object detec-
tor is regarded as competitor. Specifically, the Faster-RCNN is
tested on dataset and its performances are listed in Table III.
There are several reasons behind selecting Faster-RCNN as
competitor, in the first place, the CNN-based Faster R-CNN
achieves state-of-the-art performances on almost all public

object detection datasets and outperforms Markus Enzweiler’s
pedestrian detector as well as Will Zou’s work on regionlets.
There is one more point, I should touch on, that traditional
object detection methods are very dependent on specific dataset
and is difficult to transfer to another dataset. Therefore, because
of insufficient training data of our dataset, Faster-RCNN is our
best choice. The last but not the least, albeit we do not fine-
tune Faster-RCNN with our own data, the pre-trained model is
robust to changing scenes and generates a promising results in
our dataset. As shown in Table III, the performance of Faster-
RCNN is inferior to our method with only 1 percent, and
superiority of our algorithm is demonstrated.

Furthermore, because only appearance information is
processed in Faster-RCNN, it is beneficial to incorporate it into
our method, which just utilizes the motion information. From
Table III, there is a significantly improvement after incorpora-
tion. As for incorporating strategy, we just add the object detec-
tion score on anomaly map and re-normalize it into range [0, 1].

F. Discussions

1) Range of Moving Objects’ Speed: The motion estimation
in our algorithm is highly dependent on the object’s speed,
and one basic assumption behind optical flow method is that
object’s movement is small between continuous two frames.
Therefore, it is important to specify the range of moving
objects’ speed. Because we can not estimate the speeds of all
objects in the scene accurately, we just record the speed of
the camera. Moreover, there is two point that can explain the
rationality of replacing objects’ speed with camera’s. First, the
moving objects is quite fewer than static objects in the video
frames, and their speeds in the video is just camera speed.
Moreover, the moving objects’s speeds in the videos are usually
lower than static objects’, and the reason behind this that objects
almost are moving in the same direction as camera. Therefore,
camera speed usually represents the highest speed in the frame
and can be used to specify the range of moving objects’ speed.
Another important reason behind the collection of camera speed
is that the absolute speeds of objects are useless. In detail, due to
the mobile camera, the object moving speed in captured video
is relative speed. For example, the static building is moving at
40 km/h in video when camera speed is 40 km/h. Therefore,
instead of specifications of the range of moving objects’ speed,
camera speed, which is obtained according to the vehicle’s
speedometer, is recorded to explain the system’s robustness
to motion speed. Numerically, the camera speed varies from
0 km/h to 60 km/h in dataset video, which almost cover the
highest speed limitation in urban road, and there is no problem
with our system in this speed range. The effectiveness of our
method with higher camera speed is not probed now, and a
deeper investigation will be done in the future.

2) Runtime: In this paper, our method is achieved by a
MATLAB-implementation on a machine with Intel i5-3470
3.2GHz CPU and 4 GB RAM. The main consumption is taken
by SLIC superpixel segmentation whose average runtime at
125 superpixels is about 0.353 s. The spatial-aware recon-
struction is very fast and only costs 0.083 s, and Bayesian
integration of two anomaly maps takes away 0.169 s. Despite
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our work requires computing two anomaly maps, the superpixel
segmentation and spatial-aware reconstruction are running in
parallel, and will not double the time. Therefore, the total aver-
age runtime of this work is 0.605 s without code optimization.
Albeit our method cannot achieve real-time speed, it is faster
than many pedestrian detectors, such as ChnFtrs (0.845 s) [44],
LatSvm-V2 (1.589 s) [45] and MultiFtr+CSS (37 s) [46]. For a
real-time consideration, we will use some accelerating strategy
to make the method perform in real-time.

VIII. CONCLUSION

This work addresses the problem of anomaly detection in
traffic scenes from a driver’s perspective, which is important
to autonomous vehicles in intelligent transportation systems.
In order to tackle three main difficulties caused by the mobile
camera, this work describes motion magnitude and orienta-
tion respectively, and by measuring the abnormality of these
two aspects simultaneously in conjunction with an adaptively
weighted integration, the proposed method can alleviate the
influence of the ever-changing scene and camera movement.
Specifically, a new motion descriptor is presented to repre-
sent the motion magnitude and orientation by calculating a
histogram respectively. It performs better than THOOF, which
only describes the motion orientation information. With this
motion descriptor, the motion anomaly is measured by the
reconstruction cost of the spatial-near dictionary, and then these
two clues are integrated by a Bayesian model to get a robust
result. From the experimental results, the effectiveness and
efficiency of the proposed method are proved. Some conclu-
sions can be summarized through this work: 1) For describing
the motion information more effectively, the calculated two
motion histograms can describe motion magnitude and mo-
tion orientation respectively, and it is better than the THOOF.
2) Compared with the traditional anomaly detection, the spatial
locations of motion patterns play an essential role in traffic
scene anomaly detection. In order to utilize this spatial location
information, this work measures the abnormality of the motion
orientation and magnitude by reconstructing it over its spatial-
near dictionary, and the experimental results demonstrates the
rationality of the proposed method. Moreover, the influence of
dynamic background is eliminated to some extent. 3) With the
obtained two motion anomaly maps, this work fuses them based
on a Bayesian-based integration method, which makes use of
the complementarity of the two anomaly maps and the obtained
result is robust to the change of vehicle velocity.

In the future, we would like to use more clues, for example,
near-infrared information, depth information and so on, to im-
prove the performance and robustness of the proposed method.
Based on these new information, we would like to extend our
method to handle more kinds of abnormal events. The key
point is how to use these clues reasonably and integrate them
efficiently.
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