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Abstract— Video-based traffic sign detection, tracking, and
recognition is one of the important components for the intelligent
transport systems. Extensive research has shown that pretty good
performance can be obtained on public data sets by various
state-of-the-art approaches, especially the deep learning methods.
However, deep learning methods require extensive computing
resources. In addition, these approaches mostly concentrate on
single image detection and recognition task, which is not applica-
ble in real-world applications. Different from previous research,
we introduce a unified incremental computational framework
for traffic sign detection, tracking, and recognition task using
the mono-camera mounted on a moving vehicle under non-
stationary environments. The main contributions of this paper
are threefold: 1) to enhance detection performance by utilizing
the contextual information, this paper innovatively utilizes the
spatial distribution prior of the traffic signs; 2) to improve
the tracking performance and localization accuracy under non-
stationary environments, a new efficient incremental framework
containing off-line detector, online detector, and motion model
predictor together is designed for traffic sign detection and
tracking simultaneously; and 3) to get a more stable classification
output, a scale-based intra-frame fusion method is proposed.
We evaluate our method on two public data sets and the
performance has shown that the proposed system can obtain
results comparable with the deep learning method with less
computing resource in a near-real-time manner.

Index Terms— Machine learning, traffic sign, detection,
tracking, recognition, incremental learning, ITS.

I. INTRODUCTION

INTELLIGENT Transportation Systems (ITS) aim to enable
various traffic users to be better informed and make safer

use of transport networks. Considerable techniques have been
proposed in ITS during the past years [1], [2]. Among them,
automated detection and recognition of traffic signs has been
an important component for the reason that traffic signs can
inform drivers of dangerous situations such as icy roads and
pavement collapse, and provide the navigation information or
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transport states to make the driving safe and efficient. Because
of its usefulness, traffic sign detection and recognition can be
applied to several intelligent applications such as autonomous
driving [3], advanced driver assistance systems (ADAS) [4],
and mobile mapping [5].

Traffic signs are rigid objects designed to be noticeable
and distinguishable for humans. They provide traffic infor-
mation by different shapes, colors, and pictograms. These
properties make them suitable to be processed by computer
vision system automatically. Traffic Sign Recognition (TSR)
has been studied for several decades. Plenty of public traffic
sign data sets have been released such as German TSR
Benchmark (GTSRB) [6], KUL Belgium Traffic Signs data
set [5], Swedish Traffic Signs Data set (STS Data set) [7],
and MASTIF data set [8]. On these data sets, a considerable
number of algorithms have obtained state-of-the-art results.
For example, [9] obtains a better-than-human recognition
rate of 99.46%, and [10] demonstrates that existing methods
for pedestrian detection, face detection or other rigid object
detection can reach 95% ∼ 99% precision rate.

While previous research have achieved nearly a solution to
the TSR task on some public data sets, these TSR systems
may not work so well in the real world applications. One
reason is that traffic signs may appear in various scenarios in
the real world as shown by Fig. 1a, which are more complex
than public data sets. Another reason is that few work have
provided simultaneous solutions to the detection, tracking and
classification for realistic real world images [11]. In the real-
world applications, the TSR systems should not only detect
the individual signs, but also keep track of them to know
whether a detection is the same physical sign with the previous
detections. As a result, the system can react to these detec-
tions correctly and not blindly handle the same physical sign
more than once. However, this temporal correlation is usually
ignored by many researchers. Furthermore, the appearance of
traffic signs may vary dramatically because of the background,
illumination or occlusion as Fig. 1b shows.

To cope with these variabilities, many machine learning
approaches try to obtain a large enough data set which con-
tains samples under different conditions as many as possible.
However, gathering so many samples under diverse conditions
will surely cost expensive resources, and it does not take the
background changes into consideration.

Another alternative is to track these signs between frames,
[12] proposed an adaptive learning based traffic sign detector
which can capture the appearance changes by online gathering
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Fig. 1. (a) shows the various scenarios in which traffic signs may appear;
(b) shows the appearance changes of traffic signs caused by occlusion and
illumination.

of training samples. Online gathering samples can exploit the
rich information contained in the samples detected and tracked
in recent frames, but how to effectively integrate this to an
unified TSR framework is still under-utilized.

To sum up, existing approaches have four main problems:
(1) Detect or classify traffic signs on single images, while
involving tracking stage in videos is more worthy of attention;
(2) Study traffic sign detection, tracking and recognition
respectively, no unified framework is proposed, which can
get higher performance; (3) Poor generalization ability over
unseen environments; (4) Deep learning methods may obtain
good results but with high computing resource, i.e., with GPU
acceleration. Against these issues above, in this work, we
study a unified computational framework which is capable of
detecting, tracking and recognizing traffic signs under chang-
ing environments. The whole computational framework, which
can obtain the traffic sign detection,tracking and recognition
performance comparable to deep learning methods, is the main
contribution of this work. For clearly demonstration, this paper
introduces these three components respectively:

A. Prior Knowledge to Improve Detection Performance

In this work, the camera of the TSR system is fixed on
the vehicle, and the heights of the vehicles only have a small
range of variation. So the spatial distribution of traffic signs
in the captured images is a strong prior knowledge which can
be exploited. For the first time, we explore this distribution in
this work and shows the usefulness in the experiments.

B. Incremental Framework to Increase Tracking Capability

To build a real-world application, off-line learned detector
can not capture the variation of the target especially under non-
stationary environments, so the limitation is obvious. Unlike
previous tracking approaches used in TSR systems, an incre-
mental tracking and detection framework using motion and
appearance model simultaneously is introduced in this work.
We study the suitable tracker and on-line updating strategy
considering the efficiency and computation complexity.

C. Scale-Based Fusion to Strengthen Classification Precision

The classification result of the individual frame is not accu-
rate because of the classification errors caused by localization
drift, motion blur, and so forth. Fusing the classification results
together of multiple detections might improve the accuracy.
Considering that larger scale contains richer information, we
propose a scale-based voting method which is different from
traditional fusion strategies to improve the final classification
performance of the TSR system.

The rest of this paper is organized as follows. Related work
is reviewed in Section II. The detail of our framework is given
in Section III. The performance of our approach is evaluated
in Section IV. Finally, we conclude this paper and present our
further work to improve the TSR systems in Section V.

II. RELATED WORK

Since the TSR system is important and has great application
potential, an enormous amount of research has been published.
The typical traffic sign detection and recognition task usually
consists of two components: traffic sign detection and clas-
sification. In order to improve the recognition performance,
some research has shown tracking is also an indispensable
component for TSR systems.

There are many different methods for traffic sign detec-
tion. Because of the particular color and shape of the signs,
a lot of color segmentation approaches are adopted [13]–[19].
These methods usually convert the RGB space to other color
spaces to reduce the sensitivity to illumination, and then use
color thresholding or color enhancement to extract regions of
interest. For example [20] proposed CPM model to detect
signs and then use SVM to filter out background. Many
shape-based methods such as Hough Transform [21], [22],
corner detection or radial symmetry voting [23]–[25] are
popular in TSR systems. Generalized Hough Transform can
be used to detect circle, triangle, or rectangle shapes, so this
approach is also widely used for traffic sign detection. Because
color segmentation and shape-based methods are sensitive to
external factors such as shadows, extreme weather conditions
or crowed scenarios, these methods are commonly used as
a preprocessing step of TSR systems. For instance, [26] use
color segmentation to locate the signs roughly and then rule
out the false candidates by the shape information.

Besides these color and shape based methods, machine
learning approaches are effective and increasingly used for
traffic sign detection. These methods treat detection as a
classification task, by training two-class classifiers using



1920 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 7, JULY 2017

Fig. 2. Overview of the components of our TSR framework.

SVM [13], [27], cascade classifier [8], [10]. Viola-Jones detec-
tor is a good choice for real-time object detection. Motivated
by this, a vast number of approaches are based on the
cascade of boosted classifiers. These methods usually focus
on the design of more representative features, such as Aggre-
gated Channel Features [28], and dissociated dipoles [29].
Reference [10] has surveyed them on two large data sets.
However, if the training data set is not large enough to contain
various appearance changes, they may fail for the unseen
targets and backgrounds. Unfortunately, it is almost impossible
to build a large enough data set for real-world applications like
TSR systems. So the limitation is obvious.

As for the tracking stage, some approaches have been
adopted to track the detected signs. For instance, [30] uses
Kalman Filter to track the detected signs and integrate detec-
tion results from individual frames. Reference [31]–[33] adopt
Kalman Filter [34] to track the detected signs to get a credible
result by deleting the detections that cannot be identified
for consecutive frames. Others [31] also use the tracker to
reduce the computation of the detection task and to fuse the
classification results of multiple frames for better performance.
To reduce the false detections, [8] exploits the spatial and
temporal constrains by training trajectories classifier to sup-
press the false positive detections. Reference [35] adopts a
modified Tracking-Learning-Detection (TLD) framework to
track the traffic signs in real time. However, these methods
merely consider either the motion model, or the appearance
model. Consequently, they may fail in some difficult situations
and the performance will drop.

For the classification stage, a vast number of classification
methods are used for traffic signs classification. Essentially,
traffic sign classification is a rigid object classification prob-
lem, so the algorithms that are used for other types of
objects can be applied to traffic sign classification. After
feature extraction, some variants of SVM [13], [27], neural
networks [36], variants of random forests [37], or sparse
representation classifier [38], [10], [39] will be used to classify
the processed feature vectors. Some deep learning methods

also have been used to extract features for the classification
stage. For example, Multi-Scale CNNs [40] and the committee
of conventional neural networks [40] have reached 98.31% and
99.46% classification rate.

III. OUR APPROACH

The overview of our method is shown in Fig. 2. With an
input video frame, the off-line trained detector is used to detect
traffic signs firstly, and the detection results which can be
viewed as measurements will be used to estimate a motion
model. When processing the subsequent frames, the motion
model is updated and used to predict the tracking results.
Meanwhile the on-line sample collection algorithm will exam-
ine the credibility of the predicted results by the motion
model. If confident, the tracking results then will be used as
on-line samples to train an on-line detector incrementally.
If not confident, the on-line detector is utilized to detect locally
and the result will be used to update the motion model. The
final detection and tracking results are the output of the motion
model when confident or the on-line detection results when
not confident. Along with the detection and tracking stage,
the tracked results are classified and fused together to get a
final recognition output incrementally.

In this section, we will introduce our approach from five
stages: improved traffic sign detection, motion tracking, on-
line samples collection, incremental detector, and recognition
results fusion.

A. Off-Line Detection by Prior Knowledge

For a new input video frame, an off-line detector will
be applied to detect the candidate traffic signs. The detec-
tor is trained beforehand and stays unchanged during the
whole procedure. This can ensure a stable character of the
whole framework while the adaptive part will be tackled
by the following on-line consideration. By intuition, color is
an important cue for object detection as discussed in [41].
Considering that traffic signs are rigid object with rich color
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Fig. 3. Illustration of 10 feature channels computed during the training of three kinds of traffic signs. They consist of 6 orientation channels, 1 gradient
magnitude, and 3 LUV channels.

Fig. 4. Illustration of false positives examples because of the similar
appearance, including triangle, circle, and rectangle shapes. Similar color may
also cause false detections.

and shape information, we design the traffic sign detector
based on the Aggregated Channel Features proposed by [28].

The ACF detection [28] is based on a cascade of boosted
week tree classifiers which are trained using 10 channel
features: 1 gradient magnitude, 6 histograms of oriented
gradients, and 3 LUV color channels. The feature extraction
of ACF detection framework can be accelerated by adopting
the integral image data structure and fast feature pyramids as
described in [28]. With 640 × 480 image, it runs at 100 fps
on a PC for computing the feature channels and at 50 fps
for feature pyramids approximation. Fig. 3 shows examples
of the 10 channels. As this feature extraction is fast and
effective for traffic sign detection, we train our traffic sign
detector by adaboost with the aggregated channel features. The
final output of our detector is a weighted cascade of boosted
classifiers

H (x) = sign

(
T∑

t=1

αt ht (x)

)
, (1)

where ht (x) is the decision tree classifier with the max depth
of 5 and αt is the learned weight.

Although [10] has shown the efficiency of channel features
detector, it still has limitations. In the congested traffic sce-
narios, there may be many objects that are similar to traffic
signs in appearance including color and shape. Consequently,
the detector may incorrectly detect them. Fig. 4 shows some
examples of incorrectly detected “traffic signs”. Fortunately,
we notice that the positions of traffic signs appeared in the
videos have apparent statistical characteristics. We analyse its

Fig. 5. (a) Statistical map of the traffic sign distribution. (b) Probability
density map obtained by Parzen-window estimation. (c) The density map on
y-axis. (c) The density map on x-axis.

statistical distribution map and find that most traffic signs
appear in the middle of the image and a few in the top with
relatively large scales. Considering that, we can improve the
performance by applying the prior knowledge to this specific
application, i.e., videos are captured by vehicle-mounted cam-
eras in this work. Fig.5a shows the statistical distribution map
of traffic signs positions of 17175 ground truth from training
set videos. In order to quantitatively calculate the prior, we
define the probability density function as Pspat ial(x, y) and
it is estimated by the 2-dimensional Parzen-window density
estimation using Gaussian kernel and normalized to [0,1].
Fig.5b shows the estimated distribution model. With the input
position (x, y), the output is the probability ranging from 0 to 1
of a traffic sign appearing on that position. Fig. 5c 5d project
the two-dimensional distribution respectively to one dimension
for a clear representation.

After adopting the probability density function, the final
output is

H (x) = sign

(
T∑

t=1

αt ht (x) + (Pspat ial(x, y) − 1

2
) · λ

)
, (2)
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Fig. 6. The process of tracking traffic signs using Kalman Filter.

where λ is a variable to adjust the degree of final output
influenced by the probability density function Pspat ial(x, y).

B. Tracking the Signs Using Motion Model

Video based TSR systems provide more valuable informa-
tion than detecting signs in the individual images. In this paper,
we combine the tracking results using motion model obtained
by kalman filter with the appearance detection to get a more
accurate localization of traffic signs.

Object tracking has been studied for years, there are many
trackers with good performance. While among them we choose
the relatively simple one, i.e., KF to track the signs in our
work. There are two reasons: first, Kalman Filter is simple
but effective for some applications such as traffic sign tracking
because of the less-complex motion model; second, Kalman
Filter does not need high computation and storage price so it is
suitable for real time applications. With two phases: “predict”
and “update”, it can estimate the state with small computation
price.

1) Prediction: The prediction stage contains the state pre-
diction and the error covariance prediction.

(1) For the state prediction, KF makes a prediction from
state xk−1|k−1 to state xk|k−1. In this application, the
state vector is presented as [x, y, w, h] because the posi-
tion and scale of the traffic sign is what we concentrate
on. Here x , y are the coordinates of the traffic signs
center, and the scale is determined by w and h.

(2) For error covariance prediction, KF predict the state
covariance matrix from Pk−1|k−1 to Pk|k−1.

2) Update: The update phase has two main steps.

(1) Compute the Kalman gain and update state estimate.
Correct the estimate of state from Xk|k−1 to Xk|k by the
Kalman gain and the observationzk.

(2) Update estimated covariance from Pk|k−1 to Pk|k by
using the Kalman gain.

We illustrate the whole update process by Fig. 6.
For most videos captured from vehicle-mounted camera,

the car is driving smoothly. Thus, the motion model is not
complex in most cases. Moreover, KF can handle the missing
detections naturally. With this knowledge of the system, KF
can be effective and time-saving for this application compared
to many other trackers.

Fig. 7. Example of traffic sign symmetry calculation. For an input region
of interest, rotation invariant features (Fi and Fj ) are first extracted and then
normalized (ki and k j ) to match their mirrors (mi and m j ). After that, the
measurement outputs the magnitude of symmetry ranging from 0 to 1.

However, when the motion model changes sharply or the
off-line trained detector fails to detect, the tracking perfor-
mance will degrade. So we introduce our incremental detection
and tracking framework in the following sections.

C. On-Line Sample Collection

On-line learning is effective in object tracking and detection
fields under non-stationary environments. For on-line learning,
it is critical to collect the positive and negative samples
correctly to prevent the on-line detector training from noise.
As to this issue, an unsupervised on-line sample collection
strategy will be presented in this section. It is different from
traditional collection mechanism in that we do not search for
samples using sliding windows. Instead, we effectively make
use of the detection and tracking results of every frame, and
examine the credibility of it being a real target or not.

To be specific, after the previous two steps of prior based
detection and motion model based prediction, there are four
kinds of candidates fk :

(1) Correctly detected and predicted traffic signs;
(2) Incorrectly detected but correctly predicted traffic signs;
(3) Incorrectly detected and predicted traffic signs;
(4) Correctly detected but incorrectly predicted traffic signs.
For these four kinds of targets, we collect the first two as

positive samples and the last two as negative ones. So the key
question is how to know whether the prediction made by KF
is correct. For this purpose, our collection strategy takes three
aspects into consideration.

First, the symmetry property of signs. Traffic signs are
usually designed with regular symmetric shapes, which is an
important cue for traffic sign detection. Considering the sym-
metry property of traffic signs, we use the rotation invariant
SIFT descriptor to match the feature pairs and compute the
symmetry magnitude. An example of the bilateral symmetry
calculation of the signs is shown in Fig. 7. For more details
of computing the image symmetry magnitude, we turn the
readers to [42]. The finally computed symmetry magnitude is
denoted by symm( fk) in our work, which is the reciprocal of
the symmetry magnitude.
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Second, the change of predicted appearance against the
mean of previously established target signs. Considering the
computation complexity, we use the Perceptual Hashing [43]
to compute the fingerprints of the coming candidate and
the mean image of the previous k − 1 targets to measure
the appearance deviation. The appearance deviation between
coming candidate and the mean image should not be large for
a positive candidate. We use pph( fkmean , fk) to represent the
deviation.

Third, the distance between the locations of the candidate
and previously established target. pposit ion( fk−1, fk) is used
to denote this index and a smaller Euclidean distance is also
expected for a positive candidate.

Then we combine the three characteristics to get a unified
judgement:

L posit ive( fk)=symm( fk) · pph( fkmean , fk)· ppos( fk−1, fk).

(3)

L posit ive( fk) is a comprehensive evaluation of the predicted
candidate. If L posit ive( fk) < τ , the candidate is taken as
a positive sample; otherwise a negative one. Here τ is a
predefined threshold.

D. Fast Detection Using Incremental Detector

There are three situations when the approach introduced
in section III-B fails: (1) The off-line detector fails but the
system motion pattern is unchanged. Off-line detector can not
work well when the appearance of signs change significantly.
When the off-line appearance based detection fails, the motion
based prediction may correct the final result to a certain
extent, but the deviation will accumulate through iterations.
(2) The system motion pattern changes. When the system
motion pattern changes, such as the vehicle is running from
straight to curve, the motion model predictions will deviate
before the model converges, thus the detection and tracking
performance will degrade. (3) The off-line detector fails and
the system motion pattern changes. In this case the obtained
results may be totally negative. If these situations happen, the
on-line detector will be applied to detect and update the motion
model.

With the on-line sample collection strategy, we can
acquire the positive and negative samples from the previ-
ous T frames near the examined frame. Then an on-line
detector that is more suitable for the current situations is
trained. The obtained discriminant detector is utilized to
detect the target signs adequately, as well as update the
KF model.

1) On-Line Training: Incremental Support Vector
Machines (SVM) [44] is instrumental for on-line learning,
and SVMs do well in handling 2-class classification problems
as our detection task. So we train an Incremental SVMs
for on-line detector. In the beginning of our method, the
on-line detector is initialized by the off-line samples. Suppose
the initially trained on-line detector is Mon . When the new
samples are collected, these weights of all the samples in
the enlarged dataset will be updated to obtain an optimal
solution. Note that the new coming sample st = (xt , yt ) is

Algorithm 1 On-line Detector Training
Input: off-line data newly collected sample st

On-line Update:
tracked sample st = (xt , yt )
if L posit ive(st ) > τ

Incremental Learning:
Read sample st = (xt , yt )
update incremental svm classifier Mon

end if

Algorithm 2 On-line Detection
Given: on-line detector Mon ,
current state st ,
position and scale prediction st+1,
for si = (xt − n, yt − n, widtht , heightt )

to (xt+1 + n, yt+1 + n, widtht+1, heightt+1)
search for the max P(Mon(si ) = 1)

end for

the estimation of KF no matter whether it is confident or not.
Algorithm 1 summarizes the pseudo code of the training
stage.

2) On-Line Detection: With the KF predicted state
st = (xt , yt , widtht , heightt ), the most promising traffic signs
can be found near st considering the system motion model.
So we intend to detect the target precisely in the range of (xt −
n, yt −n, widtht , heightt ) to (xt +n, yt +n, widtht , heightt ),
where n is the stride size controlling the range
around st . Thus the search is not conducted directly by sliding
window strategy in the whole image which is not efficient
enough, and this is very important for real-time applications.
For the on-line detection stage, the on-line model Mon will
be used to re-localize the sign around the prediction state,
and the detected result (xt+1, yt+1, widtht+1, heightt+1)
is the final detection result in this frame and also will
be utilized as a better observation to update the KF
parameters. The on-line detection procedure is summarized
in Algorithm 2.

The whole detection and tracking framework is shown by
Algorithm 3.

E. Scale-Based Recognition Results Fusion

Since this work is not focusing on the multi-class clas-
sification task, we just utilize the multi-class SVM [45]
to recognize the tracked signs (KF’s final output at every
frame) and do not study the effect of using other kinds of
classifiers. However, our fusion strategy is not coupled with a
specific kind of classifier. One can take any other classifiers
in use. To take advantage of the spatial-temporal constraints
in videos, we fuse the results of multiple frames that belong
to the same physical sign together to get a better precision.
Considering the strong intuition that signs with larger scale
contains richer information for classifying them correctly,
we adopt a Gaussian-based weighting function to fuse the
classification results at multiple scales together for getting a
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Algorithm 3 Overall Detection and Tracking
Given: The pre-trained ACF detector with spatial priori

Mo f f , the kth input frame fk , the kt off-line detection
result smk a measurement input of KF, the kth

prediction of KF spk , the kth on-line detection result
smax as the final detection result of this frame, the kth

estimation of KF sek , final detection and tracking result
of kth frame s f k

Initialize:
for i=1 to m do

Read sample si = (xi , yi )
update incremental svm classifier Mon

end for
save model Mon

While( fk):
off-line detection Mof f ( fk): smk = (xmk, ymk, wmk , hmk)
Kalman Filter Process:

Prediction phase:
spk =

(x pk, ypk, wpk, h pk) =
(F Xse(k−1) + Buk)

Pk|k−1 = F Pk−1|k−1 FT + Q
On-line Learning: Call Algorithm1 with input spk

if L posit ive(spk) < τ
On-line Detection:Call Algorithm2 get smax

Final result of frame k: s f k = smax

Update phase:

Kk = Pk|k−1 H T (H Pk|k−1 H T + Rk)
−1

sek = smax + Kk(smax − H )spk

else
Update phase:

Kk = Pk|k−1 H T (H Pk|k−1 H T + Rk)
−1

sek = spk + Kk(smk − H spk)

Final result of frame k: s f k = sek

end if
end While

more credible result. We formulate this intuition as:

classi f y(XT ) = arg max
c∈{1,2,...,C}

T∑
t=1

wt P(c|xt ) (4)

where classi f y(XT ) is the classification result combining T
frames of a tracked candidate, P(c|xt ) is the probability of
the t th frame candidate belonging to class c. P(c|xt ) is got
by mapping the SVM scores toward probabilities based on a
softmax function. C is the total class number. wt is:

wt = 1

δ
√

2π
exp

(
− (st − sc)

2

2δ2

)
(5)

where sc is the scale used to train the classifier, st is the scale
of the t th frame candidate, and δ is an experimental variable.

IV. EXPERIMENTS

In this section, we first introduce the data sets and evaluation
measure that will be used for our experiments. Then the
parameter setup is detailed before conducting the experiments.
In the end, we will analyse the performance of the proposed
framework and the influence of the main components.

A. Data Set

For video based TSR systems, our evaluation should be
carried out on data sets containing video sequences captured
by vehicle-mounted cameras. So in order to evaluate the
performance of the proposed system, we employ the MASTIF
TS2009, TS2010 and TS2011 data sets released by [8]. These
three data sets are named with respect to the year in which
they were constructed. Each sign in these data sets is annotated
4-5 times at different distances from the vehicle. TS2009
contains around 6000 cropped sign images, and we use this
data set as training set for our detector and classifier in
all experiments. TS2010 contains a fully annotated video,
which consists of around 3000 signs. For TS2011, there are 4
annotated videos with around 1000 signs. These two data sets
are used for testing.

B. Evaluation Measure

Three evaluation measures are employed for different stages
of the system pipeline. To evaluate the detection performance,
the precision-recall measure [46] is adopted. For the tracking
and on-line detection stage, we use the normalized non-
overlapping area [8] to measure the localization accuracy.
At last, we use the classification rate to assess the traffic sign
classification stage.

The precision-recall is a parametric curve that represents
the trade-off between accuracy and noise. For the binary
classification problem in pattern recognition and information
retrieval, precision is the fraction of retrieved instances that
are relevant, while recall is the fraction of relevant instances
that are retrieved. The formulation of the two metrics are

precision = T P

T P + F P
, recall = T P

T P + F N
. (6)

Inspired by the work of [19], we take the localization
accuracy into consideration. For the reason that the localization
accuracy of traffic sign detection is important for the subse-
quent classification stage, we define the detection at time t as
a rectangular window dt , where dt is a four dimension vector
[x, y, width, height]. We employed the distance metric which
measures a normalized non-overlapping area between the two
windows dt and dgt .

distance(dt , dgt ) = 1 − area(dt ∩ dgt)

max(area(dt), area(dgt))
, (7)

where dgt is the ground truth labels.
To evaluate the final classification result, we use the correct

classification rate to measure the classification accuracy of the
tracked traffic signs.
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Fig. 8. Selection of the parameter τ experiment.

C. Parameters Setup

In our experiments, we base our detection implementation
on the toolbox provided by [28], and the best detection
results is obtained with the model of 28×28 pixel. In the
following, we will present the parameter settings of λ, τ , n,
sc, and θ .

In section III-A, the parameter settings of λ is decisive for
adjusting the influence of the prior distribution map. When the
weights of the ACF detector αt have been learned and fixed
by boosting algorithm, then λ can be learned by minimizing
the L2 loss function:

J (λ) = 1

2

M∑
i=1

(Hλ(xi) − yi )
2

(8)

where m is the number of samples in the training set
D = {si = (xi , yi )}k

i=1. Note that ACF detector is trained
with the cropped traffic signs with no localization information,
but λ is learned on the dataset with annotated images. In our
experiments, training data with cropped traffic signs are much
more than which with full annotated images. So we learn the
αt and λ respectively.

For the parameters τ and n introduced in section III-D,
we have done considerable experiments to determine them.
As described in that section, τ is the threshold to judge
whether the collected sample is a positive one or negative one
in an unsupervised manner. In our implementation, we have
done a lot of experiments to tune the parameter τ for a proper
threshold. We choose 100 traffic signs of frame k in different
scenarios and extract 20 patches around each sign in frame
k + 1. Then we compute the L posit ive( fk) with different τ
to search the proper threshold. As shown by Fig. 8, finally
we set τ to 15 with the best correct collection rate. As to n,
it influences the size of search area. We set it to 20 pixels
empirically.

In section III-E, we introduced the parameters sc and θ . sc

is the mean of the Gaussian distribution scale used to train
our classifier, and in our experiments, it is 48. θ is to control
the distribution of the weights. In our experiments, we find
that the fusion result is not sensitive to θ when θ is set to a
moderate value 15 ∼ 30. Then we can get an improvement on
classification fusion performance.

Fig. 9. Comparison between five detection methods, including the
Viola-Jones+HOG detector, ACF detector, ACF detection with KF tracking,
ACF detection with spatial distribution prior, and ACf detection with prior
and KF tracking.

D. Experimental Results

With the parameters presented at section IV-C, we have
conducted intensive experiments to fulfill the traffic sign
classification task. We will present a more detailed analysis
of our method in the following sections respectively.

Remarkably, for individual image based traffic sign detec-
tion, the true positives (TP) are signs correctly detected on all
images in the data set, the false positives (FP) are the ones
incorrectly detected as positive ones, and false negatives (FN)
are signs not detected but should have been detected. When
it comes to video-based traffic sign detection task, algorithms
are evaluated on every frame of a video. So the true positives
and the false positives are the signs correctly or incorrectly
detected in every frame, and the false negatives are the signs
that should be detected in the whole video.

1) Improved Detection by Spatial Distribution Map: Our
system is based on the aggregated channel features, so in this
section we will demonstrate the performance improvement of
raw detection results as well as the detection with tracking
results by using the prior spatial distribution knowledge.
Additionally, we also compare the detection results with the
VJ+HOG detector. TS2011 is employed to conduct this detec-
tion performance evaluation. The detection performance is
shown in Fig. 9. VJ+HOG yields poor detection performance
because of excessive false detections. The reason for that may
be the neglect of the HOG descriptor compared to the channel
features used in ACF detector. The detection performance is
shown in Fig. 9.

• Improved raw detection performance. We show an exam-
ple of the incorrectly detected signs by Fig. 10. The
incorrectly detected samples (red) and the true traffic
sign (yellow) are similar in color and shape. But if the
detected candidates are with low detection scores and are
in the locations where traffic signs are not likely to appear,
they may be false detections. Thus considering the prior
spatial distribution knowledge, the detector can get rid
of these false detections and obtain better performance.
What is worth mentioning is that the spatial distribution
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Fig. 10. (a) Detection result of a frame in TS2011. (b) False detected
candidates by the ACF detector.

is not only suitable for a specific data set, but also useful
for all data sets whose videos are captured by vehicle-
mounted camera. As shown in Fig. 9, the “ACF” and
“ACF + Prior” represent the raw detection result and
the detection result using prior distribution knowledge.
We can see that the performance is improved by reducing
the false detections.

• Improved detection-with-tracking performance. Many
approaches claim that tracking can improve the detec-
tion performance by suppressing the unreliable tracks.
Nonetheless, if the appearance of false candidates are
similar to the true signs, tracking will treat these false
positive samples as true signs. As a result, the whole
detection performance might drop. As Fig. 9 shows,
“ACF + KF” represents the detection result using ACF
detector and KF tracker, and its performance is below
the raw ACF detection in our experiments. While the
whole detection performance of “ACF + KF” drops, the
tracking stage is still necessary for predicting the missed
detections and keep track of the detection process of the
physical signs. Fortunately, our experiments of “ACF +
KF + Prior” shows that by adopting the prior spatial
distribution knowledge, the detection performance can be
improved satisfactorily.

2) Better Localization Accuracy With On-Line Detector:
Tracking is a pivotal stage in our TSR system, for the reason
that it keeps track of the detections of the same physical
sign and the final classification stage depends on it. In our
system, Kalman Filter is used for this purpose, but from our
experiments we notice that although the KF works well for
linear motion, there are still two situations when the KF tracker
fails. First, system motion model is non-linear such as the

Fig. 11. The normalized non-overlapping area distribution of tracking
by (a) KF and (b) KF +on-line detector.

shake of the camera, the sharp turn of the vehicle, and so
on. Second, the off-line trained detector fails for too long
time which causes the parameters of KF can not be updated
correctly. Considering that the localization accuracy is crucial
to the subsequent classification stage, we compare the results
of the KF tracker with and without the assistance of the on-line
detector.

Since Kalman Filter will fail at same situations, the local-
ization accuracy will degrade. We use Eq. 7 to measure
the localization accuracy. The smaller the distance is, the
better the accuracy will be. To compare the effect of the on-
line detector, we make all the other parameters fixed. The
comparative experiment is carried out on TS2010 data set, and
the histogram of normalized non-overlapping area is shown
by Fig. 11. From the histogram of the results shown by
Fig. 11a we can see the statistical distribution of the distance
(localization error). It is clear that without the on-line strategy,
there are more localization errors and the mean non-overlap
error is 0.1972. Considering this defect of KF, the on-line
detector is used to locate the position more accurately around
the predicted position rather than directly using the position
predicted by motion model. Fig.11b shows the distribution
and we can see that the numbers of big errors decrease.
Quantitatively, the mean error reduces to 0.1175. To sum up,
the on-line detector is useful for a better localization accuracy
with an acceptable time cost by relocating the sign’ position
against the occlusion, illumination variety, and the incorrect
prediction when the off-line trained ACF detector fails.

There is further a qualitative example to show the effect
of the on-line detector. As Fig. 12 shows, the first row is the
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Fig. 12. The first row is the tracking only with KF, while the second shows the results of tracking with KF and on-line detection.

Fig. 13. Comparison of classification results under varied fusion frame
numbers and fusion strategies.

detection and tracking using KF tracker. We can notice that
the predicted location is wrong when the ACF detector fails
because of the occlusion. While by collecting on-line samples
and training an on-line detector, our TSR system can capture
the appearance changes of the signs to get a better tracking
performance as shown in the second row.

3) More Reliable Classification Results With Fusion: Based
on the detected and tracked traffic signs, fusing the multiple
results together is the last procedure. For the current frame,
how many previous frames should be referred and how they
should be fused area critical points. Therefore, we study the
effect of the varied frame numbers and fusion strategies on
the classification rate.

In our experiments, we use the multi-class SVM [48] as our
classifier. As for the fusion method, equal weighting is vul-
nerable to the previous small scale signs’ classification results,
and these results may not be right for the low resolution. Notic-
ing that larger scale signs are useful for getting more reliable
classification results, we propose the scale-based weighting
method. As shown in Fig. 13, we compare our scale-based
fusing with the equal weighting fusion and the results show its
usefulness for better classification performance. At the same
time, we find out that the more previous results are involved
in the prediction of current frame, the better classification rate
can be achieved. This is reasonable because more abundant
information implies a robust on-line update.

TABLE I

THE COMPARISON OF OUR DETECTION MODULE

WITH STATE-OF-THE-ART METHODS

TABLE II

THE COMPARISON OF OUR CLASSIFICATION MODULE
WITH STATE-OF-THE-ART METHODS

E. Results Comparison

Finally, we evaluate our overall TSR performance on dataset
TS2010, which contains 132400 frames with the resolution
of 720 x 576. We use a PC with i5-3470 CPU @3.20 GHz
and 8G RAM to test the proposed system and the system
of [20]. Another PC with GeForce GTX TITAN X based on
Maxwell architecture and 32G RAM is used to test the deep
learning approach [47]. These two test platforms correspond
to the CPU and GPU item in the tables separately. There are
587 physical traffic signs in TS2010, and each sign appears
for about 25 frames in the video. We have implemented the
recently proposed color model based detection method [20]
and use the tensorflow code of the deep learning detection
and classification method [47]. The final detection and clas-
sification results are shown by Table I and Table II. From
the results, we can see that deep learning methods as [47] get
better detection performance by dint of the rich features learnt
using CNNs. Some traffic sings with small size or distortion
can be detected by [47] while conventional methods may fail.
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Color based methods like [20] may be sensitive to challenging
illumination and low resolution of the video. As for the number
of false detections, our method can get less false positives
with the help of the spatial prior distribution even than the
deep learning method. For classification stage, our method
with scale based results fusion can get robust classification
result than small CNN architecture used in [20] with equal
weight fusion strategy. Reference [47] using googlenet [49]
get the best classification result. Overall, our method can
get satisfactory result closing to deep learning methods with
limited computing resource and is more effective than other
TSR systems.

F. Limitations of the Proposed TSR System

The proposed TSR system imposes strong spatial distribu-
tion on the detection of the signs. The spatial distribution is a
useful prior information for TSR systems and the performance
is exactly improved when taking this into consideration. How-
ever, this priori limits the detection of some real traffic signs
which are not subject to the learned distribution due to some
poses of the vehicle like turning around or driving downhill.
While in most scenarios it can indeed improve the detection
performance. Another limitation is that the proposed system
requires the vanishing horizon to be roughly in the middle of
the captured image, which is common in most scenarios.

G. Summary

In this section, we have done experiments respectively for
the evaluation of the whole system and the corresponding com-
ponents. For the detection stage, the spatial prior knowledge
has been proved useful for improving the traffic sign detection.
As to the tracking stage, its combination with the incremental
learning and on-line detection have shown its effectiveness for
a better localization accuracy. Then we compare two fusion
strategies and find that scale-based fusion is more effective
than the equal weighting strategy for recognizing the signs
correctly as earlier as possible. Finally, we compare the detec-
tion and classification performance with two other methods
and show the advantages of our system. To sum up, these
experiments all demonstrate the usefulness and effectiveness
of the proposed framework.

V. CONCLUSION

In this paper, we studied a unified framework for traffic
sign detection, tracking and recognition in videos recorded by
a vehicle-mounted camera. The main point of the framework
is that a pre-trained off-line trained detector can be improved
by an on-line updated detector, which is synchronous to a
local predictor based on a Kalman filter. We demonstrate the
framework form three aspects. The first is reducing the false
positive detections by involving the spatial distribution priori
knowledge. The second one is adopting an on-line incremental
tracking strategy which takes the motion model (KF) and
appearance model (on-line detector) into consideration simul-
taneously. At last, a scale-based fusion algorithm is adopted to
make the final result more reliable. The proposed framework
is evaluated on public data sets and has shown its usefulness
and effectiveness through intensive comparisons and analyses.

The future work is to study richer features for traffic sign
detection. The saliency information or object proposal can also
be explored for faster detection.
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