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Abstract
Group detection is fundamentally important for analyzing
crowd behaviors, and has attracted plenty of attention in arti-
ficial intelligence. However, existing works mostly have lim-
itations due to the insufficient utilization of crowd proper-
ties and the arbitrary processing of individuals. In this pa-
per, we propose the Multiview-based Parameter Free (MPF)
approach to detect groups in crowd scenes. The main con-
tributions made in this study are threefold: (1) a new struc-
tural context descriptor is designed to characterize the struc-
tural property of individuals in crowd motions; (2) an self-
weighted multiview clustering method is proposed to cluster
feature points by incorporating their motion and context sim-
ilarities; (3) a novel framework is introduced for group detec-
tion, which is able to determine the group number automati-
cally without any parameter or threshold to be tuned. Exten-
sive experiments on various real world datasets demonstrate
the effectiveness of the proposed approach, and show its su-
periority against state-of-the-art group detection techniques.

Introduction
When people walk in a crowd space, they tend to sense each
other and group together. Within each group, the pedestrian-
s exhibit consistent behaviors and share similar properties.
Since groups are the primary components of a crowd and
convey plenty of information about crowd phenomenon, the
detection of groups has motivated a surge of interest in the
context of artificial intelligence. It also involves a wide range
of practical applications, such as event recognition (Mehran,
Oyama, and Shah 2009; Yuan, Fang, and Wang 2015), crowd
counting (Rabaud and Belongie 2006) and semantic scene
segmentation (Lin et al. 2016). Though many efforts have
been conducted in the past years, the achieved performance
is still unsatisfying.

A major difficulty in group detection comes from the in-
adequate utilization of features. Due to the serve occlusion
in crowd scenes, many state-of-the-art methods detect and
track feature points to avoid identifying pedestrians direct-
ly, and then combine those points with similar motions into
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the same group. However, there are always many points on
one pedestrian and the velocities of these points may have
big differences. For example, the points on a pedestrians’
head may move in the opposite direction to those ones on
the feet. This phenomenon is named as motion deviation in
this paper. Due to motion deviation, the velocities of feature
points are too microcosmic to reflect the real movement of
pedestrians accurately all the time. It’s necessary to develop
a stable feature to perceive the pedestrians’ motion patterns.

Another limitation shared by existing works is the ar-
bitrary clustering procedure. After obtaining the feature
points’ adjacent graph, previous works cluster those points
by thresholding the graph (Lin et al. 2016; Zhou, Tang, and
Wang 2012; Zhou et al. 2014; Shao, Loy, and Wang 2014;
Wu, Ye, and Zhao 2015). This strategies is popular because it
doesn’t need the prior about the desired cluster number, and
it’s helpful in some occasions. However, since crowd den-
sities vary across scenes, it’s not practical to find a thresh-
old that suitable for all crowds. In addition, these arbitrary
approaches neglects the intrinsic correlation inside the adja-
cent graph. To be specific, if the graph is built with exactly
c connected components, the points should be clustered into
c groups. However, existing works are limited to decide the
group number automatically based on the graph structure.

To alleviate the impact of above issues, a Multiview-based
Parameter Free (MPF) framework is proposed in this study.
Our main contributions can be summarized as follows.

1. A structural context descriptor is designed to express the
structure of feature points. The proposed context descrip-
tor can represent pedestrians’ motion dynamics from the
macroscopic view and is robust to motion deviation.

2. A self-weighted multiview clustering method is develope-
d to simultaneously integrate the motion and context cor-
relations of points. Unlike existing approaches, the pro-
posed method doesn’t involve any hyperparameter, which
makes it applicable for various clustering tasks.

3. A novel framework for group detection is proposed,
which has salient properties: (1) the incorporation of fea-
tures on multiple views; (2) the automatic decision of
group number without involving any arbitrary threshold;
(3) the capability of dealing with crowd scenes with vary-
ing densities.
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Figure 1: The pipeline of the proposed framework. First, a motion graph is built according to the feature points’ motion similar-
ities. Then, a structural context Descriptor is proposed to describe the structures of points. Third, the graphs are integrated by a
novel self-weighted multiview clustering method. Finally, a merging approach is designed to combine the coherent subgroups.
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Figure 2: Details about the construction of context graph.

Related Work
In this section, we briefly review the recent studies of group
detection and multiview clustering, and discuss their limita-
tions.

Group detection has attracted a wealth of attentions in ar-
tificial intelligence. Ali and Shah (2007) divided flow in-
to different dynamics by introducing a Lagrangian Coher-
ent Structure. Lin et al. (2016) detected coherent motion-
s by transfer the optical flow into a thermal energy field.
Ge, Collins, and Ruback (2012) introduced a hierarchi-
cal clustering strategy to detect groups. Zhou, Tang, and
Wang (2012) developed a coherent filtering method to detect
groups in crowd scenes. Shao, Loy, and Wang (2014) pro-
posed a coherent prior-based approach to refine the group-
s obtained by Zhou, Tang, and Wang (2012). Zhou et al.
(2014) detected groups by manifold learning. Wu, Ye, and
Zhao (2015) designed a multi-stage merging method to de-
tect groups. These methods investigate the motion coheren-
cy of pixels or feature points to detect groups. However, the
velocities of pixels and points are too microcosmic to re-
flect the real movements of pedestrians. In addition, all the
above approaches involve arbitrary thresholds, so they are
not practical for various crowd occasions.

Multiview clustering is also a well-studied topic in ma-
chine learning (Guan et al. 2015). In order to capture the
relation between different perspectives, many approaches
build a graph for each view and integrate them to get a u-
nified graph. Kumar, Rai, and Daum (2011) clustered mul-
tiview data by extending the co-regularization method into

the spectral clustering scheme. Cai et al. (2011) proposed a
multi-modal spectral clustering method to utilize image fea-
tures from different views. Xia et al. (2014) learned a low-
rank transition probability for each view, and input them in-
to a Markov chain to achieve clustering task. There are al-
so some other methods (Xia et al. 2010; Wahid, Gao, and
Andreae 2015; Li et al. 2015), which combined the graphs
with a conventional weight learning strategy. A shortcoming
shared by the above approaches is that they all appealed to
a hyper parameter (denoted as γ in following parts for con-
venience), which restricted their applicabilities to deal with
various kinds of data.

Multiview-based Parameter Free Approach
In this section, a Multiview-based Parameter Free (MPF)
framework is presented. First, due to the difficulty of ex-
tracting pedestrians in crowd scenes, feature points are tak-
en as study objects. And a motion graph is built based on the
points’ orientations. Then a novel structural context descrip-
tor is developed to represent the structure of each point and a
context graph is constructed. After that, a self-weighted mul-
tiview clustering method is proposed to cluster points into
subgroups by integrating the motion and context graphs. At
last, a tightness-based cluster merging strategy is introduced
to combine the coherent subgroups into final groups.

Adaptive Motion Description
In order to identify the underlying patterns inside a crowd
motion, it’s fundamental to compare the pedestrians’ mo-
tion dynamics. Due to the serious occlusion and noise in
crowd scenes, we alternatively take feature points as study
objects. To extract feature points, a generalized Kandae-
Lucas-Tomasi (gKLT) tracker (Zhou et al. 2014) is em-
ployed, which jointly combines the detecting and tracking
stages with efficient computation. Then the points’ motion
similarity is investigated. According to (Li, Chen, and Wang
2016), points always keep connection only with their neigh-
bors and the similarity for points without neighbor relation-
ship should be 0, so it’s necessary to find the neighbors of
each point.

Some existing works find a point’s neigbors by kNN
method, which involves a parameter k. However, for crowd
motions with varying density, it’s not infeasible to find an



optimal k that applies to all situations. Here we propose
an adaptive way to find the neighbors of a point. Consid-
ering a frame with N points, the spatial position of a point
i (i = 1, ...,N) is denoted as (pxi , p

y
i ), and its orientation

is denoted as
−−→
orii = (orixi , ori

y
i ). Then a spatial distance

between point i and j is denoted as

d(i, j) =
√
(pxi − pxj )

2
+ (pyi − p

y
j )

2
. (1)

Suppose there exists a variable r, and point i and j are
considered as neighbors if d(i, j) < r. Then the motion
graph Wm can be defined as

Gm(i, j) =

{
max(

−−→
orii·

−−→
orij

|−−→orii|×|
−−→
orij |

, 0), if d(i, j) < r

0, else
,

(2)
where the max function is used to prevent the similarity
from being negative.

It’s manifest that the quantity r is crucial for the compu-
tation. As a rule of thumb, r is adopted as the N-th smallest
element in all pairs of the distance d. Throughout experi-
ments, we find this setting is reasonable. Specifically, when
N is fixed, a higher crowd density corresponds to a smaller
r, which complies the fact that the neighbors should resides
within a small radius if the crowd motion is with a high den-
sity. In addition, existing tracking methods (Wang, Fang, and
Yuan 2014; Fang, Wang, and Yuan 2014) are limited to deal
with the large variation between consecutive frames. Thus,
for videos with a low frame rate, there may be only a small
amount of detected feature points although the crowd den-
sity is high, then the incorporating of N will prevent r to be
too large.

Structural Context Description
In the above step, a motion graph is built for feature points in
crowd scenes, however, the local motion of those points are
too microcosmic to reflect the behavior of pedestrians be-
cause of motion deviation. So it’s necessary to formulate a
descriptor to represent point from the macroscopic view. As
mentioned before, a point in crowds relate to its neighbors,
so its structure can be consequently profiled by its corre-
lations with neighbors. For this purpose, a novel Structural
Context (SC) descriptor is developed to express the structure
of each point.

For each point i, its neighbor set C is obtained by includ-
ing the points within the radius r, as introduced in the above
stage. Then, we divide the orientation space into 12 bins, as
shown in Figure 2. Thus, the SC of i is defined as a vector
with 12 elements, with its m-th element denoted as

SCi(m) = p(
−−→
oria ∈ binm|a ∈ C), (3)

where p(·) indicates the probability, and binm is the m-th
orientation bin.

SC is exactly the distribution of neighbors’ orientations
over the divided orientation space, so it can reveal the struc-
tural properties of points. Our assumption behind this de-
scriptor is that the motion of a point may be disrupted due to
the limitation of tracking method, in this case its neighbors’

motions can assist to reveal its real condition. Given the SC
of each point, a context graph can be constructed as below

Gc(i, j) = exp{−1

2
[KL(SCi||SCj) + KL(SCj ||SCi)]},

(4)
where KL(SCi||SCj) =

∑12
m=1 SCi(m)log SCi(m)

SCj(m) is the
Kullback Leibler (KL) divergence between the SCi and SCj
(Kullback 1968). Thus, the context graph is capable of de-
scribing the similarity of points’ structures.

Self-weighted Multiview Clustering
Group detection can be considered as the clustering of
points. During the above two stages, both the motion and
context graphs of feature points are constructed. Here, the
graphs are integrated to cluster the points. We first briefly re-
view the Constrained Laplacian Rank (CLR) method (Nie et
al. 2016), which conducts clustering task based on a single-
view graph. Suppose there are n samples to be classified into
c clusters, the objective of CLR is

min∑
j Sij=1,Sij>0,rank(LS)=n−c

||S −W ||2F , (5)

where S ∈ Rn×n is a target graph with exactly c connect-
ed components, and || · ||F is the Frobenius Norm (Peng et
al. 2015). W ∈ Rn×n is the input graph, which indicates
the similarity of samples. And LS ∈ Rn×n is the laplacian
matrix of S, whose to be n − c to guarantee that the c con-
nected components inC correspond to the desired c clusters.
Therefore, the clustering objective can be achieved as long
as the optimal S is obtained. The superiority of CLR can
be summarized from two aspects: 1) it performs well even
when the input graph is constructed with low quality; 2) un-
like other spectral-based clustering methods (Nie et al. 2011;
Cai et al. 2011; Xia et al. 2014), it doesn’t need any post-
processing.

To integrate the data captured from different aspects, we
extend CLR to the multiview clustering scheme. Denote n
and nv as the number of samples and views respectively,
and the graphs corresponding to the nv views are written as
G(1), G(2), ..., G(nv) ∈ Rn×n. Different from problem (3),
we aim to find a S that approximate each of the views, so
the optimization problem is

min
w(v),S

||S −
nv∑
v=1

w(v)G(v)||2F

s.t.w(v) > 0,
∑

v
w(v) = 1, Sij > 0,∑

j
Sij = 1, rank(LS) = n− c,

(6)

where scalar variable w(v) is the weight of the graph G(v).
Without prior knowledge, an intuitive thought is assigning
the equal weight to each graph, just as (Kumar, Rai, and
Daum 2011). However, this strategy ignores the diversity
of different views and tends to be gravely affected when
some views perform badly. Thus, we aim to approximate the
graphs with different confidences. For this purpose, a self-
conducted weight learning algorithm is proposed to solve
problem (6).



When S is fixed, the problem seems complicated to
solve because it can’t be directly decoupled into rows. So
we transform problem (6) into a different form, which is
a crucial step for the optimization. The target graph S is
first converted into a column vector A ∈ Rn2×1, and the
input graphs G(1), G(2), ..., G(nv) are also converted into
B(1), B(2), ..., B(nv) ∈ Rn2×1. Denoting a matrix B ∈
Rn2×nv with its v-th column equal to B(v), and denoting
w = [w(1), w(2), ..., w(nv)]T ∈ Rn×1, Eq.(6) naturally be-
comes a vector form problem

min∑
v w

(v)=1,w(v)>0
||A−Bw||22, (7)

which is much easier to solve. Spreading the terms in Eq.
(7), the problems becomes

min∑
v w

(v)=1,w(v)>0

1

2
wTBTBw − wTBTA. (8)

The above function is a standard quadratic programming
(QP) problem, which can be readily solved by an efficient
iterative algorithm (Huang, Nie, and Huang 2015) or other
existing convex optimization packages.

When {w(1), w(2), ..., w(nv)} is fixed, the above problem
becomes Eq.(5) and the details of optimization can be re-
ferred to (Nie et al. 2016).

Thus, given an initial w, the closed form solution of
problem (6) can be computed by updating S and w al-
ternately until convergence. Different from existing multi-
view clustering algorithms (Kumar, Rai, and Daum 2011;
Cai et al. 2011; Xia et al. 2014), the proposed method is to-
tally self-weighted, and doesn’t resort to any hyperparame-
ter. This property is promising because we don’t need to tune
those additional parameters when handling various crowds.

In our group detection task, there are two views to be
learned, so the weight vector is initialized as [ 12 ,

1
2 ]
T . The

cluster number c is considered to be the number of strong-
ly connected components in the context graph, which can
be efficiently computed by the Depth First Search method
(Tarjan 1972). Then, graphs on both the motion and contex-
t views are utilized to learn the target graph S by solving
problem (6). Since S assigns a cluster index to each point,
the clustering procedure is accomplished immediately when
the optimal solution of problem (6) is acquired. However,
in crowd scenes, not all the points in one group keep close
connections with each other, and they are actually united in a
weakly connected component. When calculating c, a weakly
connected component may be split into multi strongly con-
nected ones, leading to an overestimation. Thus, it’s neces-
sary to merge obtained subgroups that actually belonging to
the same group.

Tightness-based Merging
To combine the coherent subgroups acquired by the previous
stage, a tightness-based cluster merging strategy is put for-
ward. Denoting the optimal weight of the motion and con-
text graph as wm and wc respectively, which are obtained by
the previous clustering procedure. Then a integrated graph
is presented as

G = wmGm + wcGc. (9)

(a)  Subgroups (b)  Final Groups

Figure 3: Comparison of groups before and after merg-
ing. Scatters with different colors indicate different detected
groups, and arrows indicate motion orientations.

The graph G has the ability to approximate both the motion
and context graph of points. The reason that we don’t use the
learned target graph S is that because of the rank constraint,
the similarity in S is 0 for points clustered into different sub-
groups. So S is unsuitable to decide whether two subgroups
are consistent.

Inspired by the phenomenon that pedestrians in one group
tend to keep connection with each other, a tightness measure
is introduced to capture the intra-correlations of subgroups.
Similar to (Shao, Loy, and Wang 2014), we assume there
exists an anchor point within each subgroup, which has the
capability to reflect the motion dynamic of the subgroup it
belongs to. Then the tightness of a subgroup is considered to
be the consistency between the anchor point and others.

Given the weight graph G, we start by determining the
anchor points. First, the collectiveness is calculated for each
point, which describes the consistency between the corre-
sponding point and all the others in the same subgroup. De-
noting a subgroup as subα, the collectiveness of a point i
within subα is

φi =
∑

j∈subα

G(i, j). (10)

The anchor point is assumed to be consistent with others
and surrounded by many neighbors. Denoting the anchor of
subα as q, we can locate it according to its collectiveness
and number of neighbors,

q = max
i∈subα

(φi + δi), (11)

where δi records the number of i’s neighbors. Thus, the
tightness T of subα is the collectiveness of its anchor point
q,

T (subα) = φq. (12)
With all the above quantitative definitions, we can target on
the merging of subgroups. If the merging of two subgroups
will produce a higher tightness, then the subgroups are sup-
posed to be coherent. Two subgroups subα and subβ are
consistent if

T (subα + subβ) > max[T (subα), T (subβ)]. (13)

By merging consistent subgroups iteratively, the final groups
are obtained. Since the sequence of merging will affect the
result, we just combine those pairs with the highest value of
T (subα + subβ) in each iteration.
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Table 1: Quantitative comparison on group detection. Best results are in bold face.
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Figure 4: Performance of CF, CT and MCC with varying
k. Scatters with different colors indicate different detected
groups, and arrows indicate motion orientations.

Through the merging operation, local coherent motions
are automatically amalgamated into several global motions,
as shown in Figure 3. The proposed merging procedure stops
when no subgroups qualified to be combined, so it provides
a more principled termination criterion than setting a thresh-
old manually (Zhou, Tang, and Wang 2012; Zhou et al. 2014;
Shao, Loy, and Wang 2014; Wu, Ye, and Zhao 2015).

Experiments
In this section, the proposed framework is evaluated from
two aspects. Two widely used metrics, the accuracy (AC-
C) (Nie, Wang, and Huang 2014) and F-score (Xia et al.
2014) are used as measurements to evaluate all the methods
quantitatively. Throughout all the experiments, we make the
competitors use their respective optimal parameters.

Group Detection Results
In this work, the CUHK Crowd Dataset (Shao, Loy, and
Wang 2014) is used to verify the proposed framework’s per-
formance on group detection. Four state-of-the-art group de-
tection methods are chosen for comparison.

Dataset: CUHK Crowd Dataset consists of 474 crowd
videos, whose frame rates vary from 20 to 30 fps. And the
crowd densities and perspective scales are different. Group
label for each feature point is annotated by human observer-
s. We conduct group detection on every video and average
the obtained ACC and F-score as experimental results.

Competitors: To validate the effectiveness of the pro-
posed framework, four state-of-the-art methods Coheren-
t Filtering (CF) (Zhou, Tang, and Wang 2012), Collective
Transition (CT) (Shao, Loy, and Wang 2014), Measuring
Crowd Collectiveness (MCC) (Zhou et al. 2014) and Co-
herent Density Clustering (CDC) (Wu, Ye, and Zhao 2015),
are taken for comparison.

Performance: The quantitative comparison of differen-
t group detection methods is visualized in Table 1. It can
be seen in Table 1 that the proposed MPF method achieves
the highest averaged ACC and F-score, which means MPF
outperforms other methods. CF and CT detect groups by
extracting the invariant neighbors of each point. MCC de-
tect collective motions by thresholding the collectiveness of
points. CDC employs a density-based approach to cluster
points. All of them utilize only the motion feature, and ne-
glects the structural properties of points. So they tend to be
affected by tracking failures and motion deviation. The pro-
posed MPF jointly incorporates the motion and context fea-
tures with a multiview clustering method, so it has the capa-
bility to accurately perceive the movement of pedestrians.

MPF has the salient property that no parameter or thresh-
old is needed. To better illustrate the importance of this prop-
erty, we compare the result of CF, CT and MCC with vary-
ing parameter. The above three methods are chosen because
they all involve a kNN processing. Figure 4 shows the clus-
tering result of CF, CT and MCC on a video clip with k is set
as 5, 15 and 25. The corresponding ACC is also visualized.
Experimental results show that the performance of the three
methods is sensitive to the value of k. For crowd motions
with various densities, it’s not practical to chose an appropri-
ate k that satisfies all occasions. Though CDC doesn’t need
the kNN procedure, it has multiple additional thresholds to
be tuned, so it’s not applicable as well. The proposed MPF
doesn’t have this problem because it’s totally parameter free.

We also show the performance of utilizing motion view
and context view separately, denoted as MPF-m and MPF-
c. As exhibited in Table 1, MPF-m achieves better result
than MPF-c. It doesn’t mean that context feature fails on
all videos. Through experiments, we have found that motion
feature performs well when the videos are captured from
an overlooking perspective, where pedestrians are small and
their velocities can be approximated by those of feature
points. However, for videos with serious motion deviation,
context feature captures pedestrians’ movements better and
shows satisfying result. Besides, Table 1 shows MPF is bet-
ter than MPF-m and MPF-c, so we conclude that the pro-
posed Structural Context descriptor (SC) assists the motion
aspect, and the combination of them is reasonable.

In addition, MPF utilizes an adaptive way to decide the
relationship threshold r. To demonstrate the validity, we fix
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Table 2: Clustering results on four datasets. Best results are in bold face, and the second-best results are underlined.
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Figure 5: Performance comparison of MVSC and MPF on four datasets. We can see that MVSC is sensitive to the value of γ,
while MPF sustains good performance on different datasets.

r to be 15, 25 and 35, and show the corresponding perfor-
mance in Table 1. With r equals to 15 and 35, the perfor-
mance drops dramatically. This is because a small value of
r will make a group divided into parts, while a large r will
bring some noise. The performance is relatively well when r
is 25, but it’s not so good as CPF because a fixed r can’t be
suitable for crowd videos with various densities and frame
rates. Thus, the adaptive decision of parameter r does im-
prove the overall performance of the MPF.

Effectiveness of SMC
In this part, experiments are conducted on various datasets to
demonstrate the effectiveness of the proposed Self-weighted
Multiview Clustering (SMC) method.

Datasets: The proposed SMC is evaluated on four s-
tandard multiview datasets, MSRC-v1 (Winn and Jojic
2005), Digits (van Breukelen et al. 1998), Caltech101-7 and
Caltech101-20 (Li, Fergus, and Perona 2007). MSRC-v1
dataset contains 210 images from 7 classes, and the fea-
tures are extracted from 5 views. Handwritten numerals
dataset consists 2000 data points from 10 digit classes, and
5 features are published for clustering. Caltech101-7 and
Caltech-20 are composed of images with 6 kinds of features,
belonging to 7 and 20 classes respectively.

Competitors: The proposed SMC is compared with Co-
regularized spectral clustering (Co-reg) (Kumar, Rai, and
Daum 2011), Robust Multiview Spectral Clustering (RM-
SC) (Xia et al. 2014) and Multi-Modal Spectral Clustering
(MMSC) (Cai et al. 2011). Since the results of competitors
may be influenced by the post-processing, the experiments
are repeated for 30 times, and the averaged result is reported.

Performance: Table 2 exhibits the averaged ACC and
F-score of Co-reg, MMSC and the proposed SMC. It can
be seen that SMC achieves the top two performance on all
datasets. Co-reg fails in most cases because it requires pri-

or knowledge to determine the weights of different views,
which is not provided in the datasets. Except the highest F-
score on Caltech101-20, the performance of RMSC is unsat-
isfactory because it tends to be seriously influenced by those
weak views. MMSC obtains competitive results, however,
it’s not so practical as SMC because it relies on a haperpa-
rameter γ. For a better interpretation, we compare the perfor-
mance of SMC and MMSC on different datasets, and MM-
SC is set with different values of log10γ (varying from 0.1
to 2 with a 0.2 spacing), as shown in Figure 5.

In Figure 5(a)(c), we note that MMSC enjoys satisfying
results at the optimal γ, but its performance drops dramati-
cally with the change of γ. So the value of γ influences the
performance of MMSC. However, it can be seen that the op-
timal values on the four datasets are different. As a result,
it’s not practical to chose a γ that is suitable for differen-
t applications. The proposed SMC performs well under all
circumstances because it doesn’t rely on any parameter.

Conclusions

In this paper, a context-aware parameter-free (MPF) frame-
work is proposed to detect groups in crowd motions. The
Structural Context descriptor is designed to capture the
structure property of feature points and the Self-weighted
Multiview Clustering method is developed to fuse the infor-
mation from motion and context views. A tightness-based
cluster merging strategy is introduced to discover the glob-
al consistency in crowds. Experiments on various datasets
show that our method outperforms the state-of-the-art ap-
proaches. One of our future works is tackling the detecting
and tracking problems, which will tremendously improving
the achieved performance. The other is to design more ef-
fective features to profile crowds.
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