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Measuring Collectiveness via Refined Topological Similarity
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Crowd system has motivated a surge of interests in many areas of multimedia, as it contains plenty of
information about crowd scenes. In crowd systems, individuals tend to exhibit collective behaviors, and the
motion of all those individuals is called collective motion. As a comprehensive descriptor of collective motion,
collectiveness has been proposed to reflect the degree of individuals moving as an entirety. Nevertheless,
existing works mostly have limitations to correctly find the individuals of a crowd system and precisely
capture the various relationships between individuals, both of which are essential to measure collectiveness.
In this article, we propose a collectiveness-measuring method that is capable of quantifying collectiveness
accurately. Our main contributions are threefold: (1) we compute relatively accurate collectiveness by making
the tracked feature points represent the individuals more precisely with a point selection strategy; (2) we
jointly investigate the spatial-temporal information of individuals and utilize it to characterize the topological
relationship between individuals by manifold learning; (3) we propose a stability descriptor to deal with
the irregular individuals, which influence the calculation of collectiveness. Intensive experiments on the
simulated and real world datasets demonstrate that the proposed method is able to compute relatively
accurate collectiveness and keep high consistency with human perception.
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1. INTRODUCTION

In crowd systems, collective motion has been a hot topic that attracts many researchers.
It always conveys a large quantity of information about the crowd phenomenon and
exists not only in the human community, but also in the natural world as shown in
Figure 1. Typically, the information provided by one individual can only reveal some lo-
cal messages of the scene. But when collective motion is formed, individuals are treated
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Fig. 1. Collective motion in fish shoal, bison herd, soldiers, and bacterial colony. URL of the images:
https://www.google.com.hk/imghp?gws_rd=cr,ssl.

as part of a union and they share similar properties that are significantly meaningful
for studies in many disciplines. For example, behaviorists think simple redundant in-
teractions between individuals lead to various crowd behaviors [Moussaid et al. 2009;
Reynolds 1987]. Physicists treat the individuals as particles and characterize their
interactions with equations from hydromechanics [Kružkov 1970]. Zoologists consider
the collective motion of animals as an evolutionary advantage to go through the difficult
living environment [Couzin 2009].

In this work, our focus is mainly on the multimedia aspect. Toward this direction, the
study of collective motion is actually with many branches, such as collective behavior
analysis, crowd simulation, and crowded scene understanding. Nevertheless, only a
few works [Shao et al. 2014a; Zhou et al. 2014] have been done to exploit the general
properties of collective motions, which is necessary to characterize different crowd
systems. After obtaining the properties of collective motions, we can describe the crowd
videos by text, which may inspire some improvements on multimedia applications such
as video retrieval and video summary. In order to quantify the properties of collective
motions, Zhou et al. [2014] has proposed a fundamental and comprehensive descriptor
called collectiveness. Collectiveness indicates the degree of individuals performing as a
team and reflects how much individuals are united into a uniform group. Individual-
level collectiveness describes an individuals’ relationship with the others, while entirety-
level collectiveness measures the behavior consistency of all the individuals in a crowd
scene. Though collectiveness can properly describe the characteristic of the crowd, the
quantitative calculation is not an easy task.

A major difficulty in the measuring of collectiveness is the extraction of individu-
als. For the investigation of crowded scenes, it is essential to extract the individuals
precisely. However, object identification in crowded scenes is still an unresolved issue
because occlusion is heavy and the number of individuals is large. Some works detect
feature points in crowded scenes and treat them as the individuals of a crowd system,
but those feature points cannot always represent individuals correctly, not to mention
all the feature points come from the individuals. What is more, occlusion makes it dif-
ficult to track the feature points, which limits the dynamic measurement of the crowd
system. Since the extraction of individuals is still a problem, it is not easy to quantify
the characteristics of crowded scenes.

Another barrier to measure collectiveness comes from the complicated spatial struc-
ture of crowd systems. Individuals in a collective motion tend to form a complicated
spatial structure, called collective manifold. In collective manifolds, individuals keep
high coherence only with their local neighbors, and the behaviors may have big differ-
ence between individuals that are far from each other. Even so, all the individuals in
a collective manifold may keep a close relationship by the propagation of information
along paths. This phenomenon represents a serious impediment in the measuring of
individuals’ relationship, then hampering the calculation of collectiveness. As Ballerini
et al. [2008] pointed out, interactions among individuals depend on their topological
structure rather than metric distance, so one way to solve this problem is to exploit
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the topological relationship of individuals. However, only a few works emphasized the
topological structure.

In addition, some ambiguous conceptions about collectiveness hamper its calcula-
tion. In crowd scenes, there are always many moving objects besides pedestrians, such
as cars. Should these objects also be considered as individuals of crowd scenes? Be-
sides, what is the exact definition of individual-level collectiveness? Zhou et al. [2014]
measured the collectiveness of each individual by comparing their behaviors on the cur-
rent frame, leading to a problem that the unsteady individuals are ignored. Unsteady
individuals are those whose behaviors change irregularly, and they seem not to belong
to any uniform group. So their collectiveness should be low according to the definition
of collectiveness. However, an unsteady individual may keep high behavior consistency
with other individuals at some moments, so their collectiveness could be overvalued if
they are not detected. To reduce these problems, we redefine those ambiguous concep-
tions. We treat every moving object (including cars) as an individual in crowd scene,
and describe individual-level collectiveness of an individual as its behavior consistency
with all the other steady individuals. Moreover, we detect the unsteady individuals and
set their collectiveness to 0, then remove them to eliminate their influence on other
individuals.

Our goal in this work is to develop a robust method, which is capable of dealing
with complex real-world crowd systems, to measure collectiveness more accurately.
Similar to the Measuring Crowd Collectiveness (MCC) [Zhou et al. 2014], the proposed
method measures collectiveness by investigating the relationship between individuals
of a crowd system. First, individuals are identified. Feature points on video frames are
detected and tracked to represent the initially detected individuals. Then, the most
representative points are extracted and selected as the refined individuals. Secondly,
temporal information that captures the relationship between neighboring frames is
combined with spatial information to quantify the similarities between the obtained
individuals. Thirdly, according to the fact that individuals with unsteady velocities
might disturb the measurement of other individuals’ collectiveness, we introduce a
stability descriptor to detect unsteady individuals and discard them. Finally, we study
the relationship between individuals by manifold learning to compute the collectiveness
from individual-level and entirety-level aspects. A flow diagram of the proposed method
is shown in Figure 2.

We summarize our contributions as follows:

—A point selection method based on segmentation is proposed to get a more accu-
rate individual representation. Existing works mostly use detect feature points on
crowd videos and directly treat them as individuals of the crowded scenes. However,
there are inevitably repetitive points on the same individual, which leads to redun-
dancy and inaccuracy. The point selection method is capable of selecting the most
representative points and obtaining individuals more precisely.

—Multiclues similarity is exploited and further used to capture the topological rela-
tionship between individuals. Spatial-temporal information and manifold learning
are jointly incorporated to quantify the relationship between individuals from the
view of topology. By exploiting the topological property, our method is more capable of
handling the crowd systems with various structures, and calculating collectiveness
accurately.

—An individual-level descriptor, stability, is proposed to quantify the degree of an
individual keeping steady in a crowd system. Unsteady individuals will affect the
calculation of collectiveness in a crowd system. We measure the stability of individ-
uals and restrain them to improve the collectiveness calculation.

This article is organized as follows. Section 2 introduces the related works on the
crowd systems. Section 3 describes the point selection method, which aims to accurately
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Fig. 2. The flowchart of the proposed method. First, we use feature extraction to generate the original point
set (red) and employ segmentation to get a redefined refined point set that can represent individuals more
accurately. Second, temporal and spatial information are combined to investigate the relationship between
individuals. Third, we measure the stability of every individual and remove the unsteady individuals to
better characterize the crowd system. Fourth, topological relationships between individuals are explored,
based on which the individual collectiveness and entirety-level collectiveness are calculated. The image is
selected from Collective Motion dataset [Zhou et al. 2014].

extract individuals from videos of crowded scenes. Section 4 shows how to measure the
collectiveness by exploring the topological relationship of the obtained individuals. We
present our extensive experiments in Section 5, and discuss some issues related to the
proposed method in Section 6. The conclusion and future work come in Section 7.

2. RELATED WORK

In the area of multimedia, a significant amount of research effort has been made on
crowd analysis because crowd systems always convey abundant information and have
a wide range of applications. Li et al. [2015] made a brief review on this topic recently.

Among numerous efforts toward this topic, some efforts have been spent on learning
models of crowded scene structures and motion patterns [Saleemi et al. 2010; Yang
et al. 2009; Jodoin et al. 2013; Hu et al. 2006; Benabbas et al. 2011]. Kratz and Nishino
[2012] represented crowd motion with a collection of Hidden Markov Model (HMM)
[Kratz and Nishino 2009] trained on local space-time motion patterns. Ali and Shah
[2008] employed a scene structure based force model to track individual in a crowded
scene. Individuals’ movements are converted from the long-term forces into local ones.
They also used a Lagrangian particle [Ali and Shah 2007] dynamics to model crowd
flows by treating a moving crowd as an aperiodic dynamical system. Wang et al. [2009]
investigated motion pattern in crowded scenes with an unsupervised learning frame-
work that is constructed by three hierarchical Bayesian models. Zhou et al. [2011]
integrated the Latent Dirichlet Allocation topic model and Markov random fields to
learn crowd motion. Another work of theirs [Zhou et al. 2012] studied collective be-
havior patterns with a mixture model, which models the whole crowd as a mixture
of dynamic pedestrian agents. Wang et al. [2008, 2011] learned motion patterns with
nonparametric Bayesian models. Zhou et al. [2012] utilized underlying motion priors
to detect coherent motion patterns. Ge et al. [2012] discovered collective motions by
bottom-up hierarchial clustering with a generalized Hausdorff distance.
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In addition, behavior analysis in crowded scenes has also attracted much attention.
Huang et al. [2009], Shao et al. [2014b], and Zhao et al. [2015] have introduced the so-
cial force model to estimate interaction forces among individuals and detect abnormal
behaviors in crowded scenes. Lan et al. [2012b] recognized group activities by jointly
capturing the individual actions, the group activity, and interactions among them.
Helbing and Molnar [1995] proposed a social force model to measure internal motiva-
tions of individuals. Three force terms are used to describe individuals’ movement. The
first one indicates acceleration along the direction of desired velocity. The second one
reflects the phenomenon that pedestrians get used to keeping a distance from others.
The third one models attractive effects among individuals. Lan et al. [2012a] described
human behavior from low-level actions to high-level events by a hierarchical based
max-margin framework and Chang et al. [2011] built a probabilistic grouping strategy
to analyze individuals’ movements and softly assign them into groups. Zhao et al.
[2014] recognized individuals’ gestures by structured streaming skeleton. Scovanner
and Tappen [2009] learned the parameters of pedestrians’ trajectories by variational
model learning. Pellegrini et al. [2009] introduced a dynamic social behavior model to
track multi-individuals from a vehicle-mounted camera.

Crowd simulation in virtual world has also been a hot research topic recently
[Almeida et al. 2013; Golas et al. 2013; Best et al. 2014; Zheng et al. 2014; Zhang
et al. 2015; Zawidzki et al. 2014; Zhou et al. 2007; Heck et al. 2007]. Reynolds [1987]
proposed a distributed behavioral model to script the path of each individual. This
kind of agent-based model can also be found in Helbing et al. [2000] and van den Berg
et al. [2009]. Narain et al. [2009] introduced a flow-based model to simulate large,
dense crowds on desktop computers. Lerner et al. [2007] introduced an example-based
crowd simulation technique, which can copy trajectories taken by individuals from real-
world crowd systems. Guy et al. [2012] presented an information-theoretic approach to
quantify the ability of a simulator to reproduce the behaviors of crowd systems.

To quantitatively measure the crowd behaviors and compare them across different
crowded scenes, some approaches have been proposed to learn collectiveness. Zhou
et al. [2014] considered crowd collectiveness as a bottom feature of crowd systems and
measured it by a manifold learning method. They use a generalized KLT tracker to
find individuals and calculate similarity of individuals on each frame. Collectiveness
is then obtained based on the manifold topological relationship of individuals. A group
level method to measure collectiveness was proposed by Shao et al. [2014a], which is
also based on tracking. These two methods share the same problem that the number
of feature points is significantly different from the number of individuals, which leads
to an inaccurate collectiveness. There are always more feature points on the big object
while fewer on the small one, which makes the number of feature points not capable of
reflecting the real number of individuals.

3. POINT SELECTION

The preliminary for crowd analysis is to extract individuals from the input videos.
Existing works [Shao et al. 2014a; Zhou et al. 2014; Jodoin et al. 2013; Wang et al.
2013a, 2013b] tackle this problem by object detection and tracking, or regard the spe-
cific feature points as individuals directly. Unfortunately, object detection and person
identification in crowded scene are still difficult and tracking points do not always
represent the individuals accurately. Since collectiveness is analyzed according to the
relationship between individuals, an accurate calculation cannot be acquired if we can-
not correctly find the individuals in a frame. For this purpose, we propose to choose a
set of representative points as individuals instead of directly treating all the feature
points as individuals. First, an initial point set is obtained by feature detection and
tracking. Then a point selection operation is followed to redefine the points.
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3.1. Detection and Tracking of Initial Feature Points

In order to obtain the detailed information of a crowd system, it is essential to de-
tect the individuals. At the same time, it is necessary to track the individuals to get
the time-series association. As a consequence, both detection and tracking procedures
could significantly influence the investigation of crowd systems. To tackle this prob-
lem, we employ a Generalized KLT (gKLT) tracker [Zhou et al. 2014] derived from
KLT [Tomasi and Kanade 1991], which jointly combines detection and tracking with
efficient computation.

gKLT first detects feature points in the moving foreground, which contains sufficient
texture information. Then the feature points are tracked, and their velocities are mea-
sured frame by frame according to their displacements. Thus, a set of tracked feature
points is obtained.

3.2. Consistency-Based Point Selection

With the preceding processing, we can get a set of tracked feature points. However, these
tracking points obtained by KLT cannot represent the individuals very accurately. For
the same part of one moving individual, there might be several points within it. Since
not all the points’ movements are precisely estimated, if we take the whole of them
into consideration, it may lead to inaccurate crowd estimation. Even if the motion
information is quite right, the redundant representation for the single part is useless.
Motivated by this defect, we plan to refine the initially detected and tracked points and
search for those stable and representative ones.

For the previously mentioned purpose, we examine the color and spatial location of
the points to determine whether they come from the identical individual. To be specific,
a segmentation method is employed to fuse these informative clues together. Among
various segmentation methods, we utilize the SLIC algorithm [Achanta et al. 2012],
which can generate compact and nearly uniform patches. It has good performance at a
low computational cost and better to boundaries than other segmentation algorithms.

Generally, points in the same patch always have a high consistency and a better
chance to come from the same object. Therefore, with segmented patches, we further
check the velocity of the feature points in the same patch. Suppose the velocity corre-
lation between two points at time t is

Ct(i, j) = max
(

vi · v j

|vi| · |v j | , 0
)

, (1)

where i and j are two tracked feature points, and vi and v j are their velocities. The max
function is used because we do not want the result to be negative. If points i and j are
in the same patch and Ct(i, j) > η (η is a threshold), they are supposed to belong to an
identical object. In this case, we retain the one that keeps higher velocity correlation
with all the other points in the patch. By doing this iteratively, some useless tracking
points can be abandoned. The remaining ones represent individuals more precisely, as
Figure 3 shows. An overview of the point selection procedure is shown in Algorithm 1.

4. MEASURING COLLECTIVENESS

After the point selection procedure, representative feature points are directly consid-
ered to be individuals of a crowd system. In this section, the relationship between those
individuals is investigated to measure individual-level and entirety-level collective-
ness. First, similarities of individuals are calculated by jointly combining spatial and
temporal information. Second, a new individual-level descriptor, stability, is proposed
to detect unsteady individuals that may affect the measuring of entirety collectiveness.
At last, we learn the topological relationship of individuals by utilizing their similari-
ties and the collectiveness of an individual is measured on the basis of their topological
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Fig. 3. (a) Generated feature points (yellow). (b) Segmented patches. (c) Refined feature points by our
point selection method. We can see that some useless feature points are removed in (c) compared with (a),
remaining the points that can represent the individuals more accurately. The image is selected from the
collective motion dataset [Zhou et al. 2014].

ALGORITHM 1: Point Selection
Input: Video Frames I = {It}N

t=1.
Output: Redefined tracking points set � = {�t}N

t=1, where �t contains the tracked feature
points on frame It.

for each frame It do
Get patch image Pt by segmentation.

end
for each patch Pti in Pt do

Find the points with high velocity consistency in Pti by Equation (1);
Select the most representative points.

end

relationships. Based on the collectiveness of all individuals, the entirety-level collec-
tiveness can be calculated.

4.1. Similarity of Individuals

For the purpose of measuring collectiveness of a crowd system, it is necessary to find
the relationship between individuals. First of all, spatial similarities of individuals
need to be measured. Based on the theory [Ballerini et al. 2008] that individuals tend
to interact with a fixed number of its neighbors instead of keeping in touch with all the
neighbors within a fixed distance, we select k nearest neighbors of individual i rather
than find all its neighbor individuals within a fixed range. The traditional KNN method
labels the neighbors as 1 and the nonneighbors as 0, which loses some soft distance
information. Our method makes better use of spatial information by recording the
distance between neighbors. For every individual i at time t, we find its k nearest
neighbors and define a distance matrix Dt as

Dt(i, j) =
{ √

(xi − xj)
2 + (yi − yj)

2 if j ∈ N(i)
0 if j /∈ N(i)

, (2)

where N(i) is a set of K nearest neighbors of individuals i, and (xi, yi) is the spatial
coordinates of i.

However, although collectiveness is supposed to be a bottom feature that could be
measured simply by just one frame in Zhou et al. [2014], we consider collective motion
beyond just a collection of individuals, but a dynamic system with some fundamental
intrinsic properties. In order to reveal the dynamic characteristic of a crowd system, it
is crucial to add temporal information into the similarity computation. Our assumption
is that the individuals used to keep their relationship with each other between frames.
The correlation in the current frame is highly associated with that in the previous
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frame. If points i and j are close on spatial location and velocity in the former frame,
we suppose they are more likely to have a high degree of similarity in the current frame.

Considering the preceding factors, we incorporate the temporal connection into the
similarity definition as

St(i, j) =
{

(1 − ω)Ct(i, j)e−Dt(i, j) + ωSt−1(i, j) if Dt(i, j) > 0
0 if Dt(i, j) = 0 , (3)

where St−1(i, j) is the similarity of i and j in the former frame, f is a proportional
function, and ω regulates the weight of St−1(i, j). We initialize all the elements in S0 as
0. Temporal information is integrated into St because similarity in the former frame
is used in the calculation of St. From this equation, if points i and j are consistent
on space and velocity, and have a high degree of similarity in the former frame, their
similarity in the current frame will be high too.

As the similarity of individuals jointly combines spatial and temporal information,
our method is capable of handling the changeable interaction between individuals.

4.2. Unsteady Individuals Detection

In real-world crowded scenes, there are inevitably some individuals whose velocities
change irregularly. Those abnormal individuals behave quite differently from their
neighbors. Thus, they could cause a mistaken measurement of other individuals’ col-
lectiveness. In order to reduce this problem, we propose the stability descriptor to
describe the degree of individuals moving steadily in a crowd system.

We first denote the velocity stability of point i at time t as

SPi(t) = vi(t) · vi(t − 1)
|vi(t)| · |vi(t − 1)| . (4)

It is not reliable to measure the stability just by a point’s own velocity, because some-
times all the individuals fiercely change their velocities together. So, it is necessary
to record the deviation between the individual and all its neighbors on velocity. The
velocity deviation between point i and its neighbors is defined as

SNi(t) = vi(t) · viN(t)
|vi(t)| · |viN(t)| , (5)

where viN(t) is the mean velocity of the neighbors of i. Thus, the stability of points i at
time t is defined as

STi(t) = SPi(t) + SNi(t). (6)

Point i is considered to be unsteady if STi(t) < ε (ε is a threshold). In this case all
the elements in the ith row and ith column of St are removed, and the individual
collectiveness of point i is denoted as 0.

By detecting and discarding all these unsteady individuals, the robustness of the
proposed method is improved.

4.3. Collectiveness Calculation by Topological Relationship

According to Ballerini et al. [2008], interaction between individuals of a collective
motion does not depend on their metric distance, but on their topological distance.
Moreover, manifold structures often emerge in collective motions and this case can be
called collective manifold as shown in Figure 4. From this point of view, we explore the
topological relationship between individuals on the basis of manifold learning to deal
with various collective motions.

Zhou et al. [2014] investigated the topological relationship of two individuals by
accumulating their similarity on all paths, so some useless paths are included. And it
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Fig. 4. (a) A schematic diagram of manifold structure. (b) Collective manifolds of humans, horse herd, and
bird flock. We can figure out that the movement of individuals in a manifold could be quite different. URL of
the images: https://www.google.com.hk/imghp?gws_rd=cr,ssl.

is not so intuitive and reasonable to reveal the intrinsic property of collective manifold,
which is formed by the propagation of information through neighbors [Zhou et al.
2003b]. To capture the intrinsic property of collective manifold more intuitively, we
exploit the manifold structure of a collective motion by spreading information among
individuals. Here we employ the manifold ranking method [Zhou et al. 2003b], which
spreads ranking scores through neighbors, to exploit the relationship of individuals in
collective manifolds. In Zhou et al. [2003b], the manifold ranking method is designed
to classify data with manifold structure. Given a set of data points X, some points are
queries and the rest need to be ranked according to their relevance to the queries. Let
f denote a ranking function that assigns a ranking score fi to each data point i, and f
can be viewed as a vector f = [ f1, . . . , fn]T . Y = [y1, . . . , yn]T is defined as an indication
vector, where yi = 1 if i is a query and yi = 0 otherwise. Given a n × n symmetrical
affinity matrix W , the degree matrix is D = diag{∑ j W1 j,

∑
j W2 j, . . . ,

∑
j Wnj}, and the

normalized Laplacian matrix is L = D−1/2W D−1/2. Initialize f as Y , by iterating

f = αLf + (1 − α)Y (7)

until convergence, in which α is a parameter in [0, 1), every point spreads its ranking
score to its neighbors, and the manifold structure of data can be exploited. Note that,
α controls the contribution to the ranking scores from the neighbors. As Yang et al.
[2013] pointed out, we can get the final ranking score vector as

f ∗ = (1 − α)(D − αW)−1Y, (8)

where a higher score means a closer relevance to the query.
In this work, we view the quantifying of topological relationship as a one-query

manifold ranking problem. We set W as (St + ST
t )/2 to make it symmetrical, which is

necessary for the convergence of the iteration in Equation (7). Let individual j be the
only one query; all individuals’ ranking score can be computed by

f ∗ = (1 − α)(D − αW)−1e j, (9)

where e j is a column vector with its j-th element as 1 and the other elements as 0. In
Equation (9), the i-th element of f ∗ indicates the individual i’s ranking score, which
can be regarded as i’s topological relevance to query j, and it is not hard to see that
f ∗ is equivalent to the j-th column of (D − αW)−1. Let each individual be the query
iteratively; we can get a matrix

Zt = (1 − α)(D − αW)−1, (10)

in which Zt(i, j) indicates the topological relationship between individual i and j in the
t-th frame.
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Thus, we can define the individual collectiveness of i as the sum of topological rela-
tionship between i and all the other individuals, so it can be written as

φt(i) = [Zte]i, (11)

where e is a column vector with all elements as 1. We denote the set of individuals as
C; then, the entirety-level collectiveness of the crowd system at time t is defined as

�t = 1
|C|e

T Zte, (12)

which means the average value of all the individual collectiveness. Note that, unsteady
individuals are also included in C, as they are also part of the crowd system, and their
individual collectiveness is 0 as mentioned previously. Since St contains temporal infor-
mation, both the individual-level and entirety-level collectiveness are more consistent
along time.

By manifold learning, we quantify the complicated topological relationship between
individuals, so the proposed method is suitable to deal with the collective manifolds.
The whole procedure of measuring collectiveness is shown in Algorithm 2.

ALGORITHM 2: Measuring Collectiveness

Input: Refined points set � = {�t}N
t=1.

Output: φt(i) and �t.
for each points set �t do

Get a distance matrix Dt, which contains spatial information of points by Equation (2);
Combine Dt with the velocity correlation of points and temporal information between
frames and get a similarity matrix St by Equation (3).

end
for each similarity matrix St do

Measure the stability of every point by Equation (6);
Remove the unsteady points;
Get the matrix Zt by Equation (10);
Calculate the individual-level collectiveness by Equation (11) and the entirety-level
collectiveness by Equation (12).

end

5. EXPERIMENT

In this section, we conduct intensive experiments to evaluate the performance of the
proposed method. First, the effect of the proposed manifold learning method is evalu-
ated. Then we employ a Self-Driven Particle (SDP) model [Vicsek et al. 1995] to simu-
late the emergence of collective motion. Through the comparison between the ground
truth and the results of collectiveness algorithms, a quantitative and qualitative judge-
ment can be obtained. In the end, we perform experiments on the Collective Motion
dataset [Zhou et al. 2014], which contains videos of different real-world crowd systems.
In order to evaluate the consistency between our results and human perception, we
classify all the videos into three categories according to the calculated collectiveness
and compare the results with ground truth. The parameters η, k, ω, ε, α are chosen
as 0.9, 30, 0.1, 0.5, 0.99 empirically throughout all the experiments. Additionally, two
state-of-the-art methods MCC [Zhou et al. 2014] and CT [Shao et al. 2014a] for collec-
tiveness measurement are involved in experiments as the baseline for comparison. Note
that, Collective Transition (CT) is not taken into account in some experiments because
it can neither measure collectiveness on individual level nor measure entirety-level
collectiveness of frame by frame.
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Fig. 5. (a) Data in two moons pattern. (b) Ground-truth clustering result. (c) Clustering result of MCC.
(d) Clustering result of the proposed manifold learning method. It can be seen that MCC clusters the data
in the below moon into two different groups incorrectly, while our method obtains a good clustering result.

5.1. Comparison of Manifold Learning Methods

Here, the proposed manifold learning method is evaluated to see whether it can capture
the topological relationship of individuals. We compare our manifold learning method
with MCC [Zhou et al. 2014], which also involves a different type of manifold learning
strategy and achieves state-of-the-art performance. To learn the topological relation-
ship between individual i and j, the proposed manifold learning method propagates
ranking scores through neighbors, while MCC accumulates similarity of individuals
along all paths that connect i and j.

Experiments are conducted on the toy dataset [Zhou et al. 2003a], which is con-
structed by a set of points in two moons pattern, as shown in Figure 5(a). Points in
one moon should keep higher consistency with each other than with points in the
other moon. As Zhou et al. [2014] pointed out, a topological relationship can be utilized
to cluster individuals. We compare the two methods by their performance on point
clustering, and the ground-truth clustering result is shown in Figure 5(b).

Here we set the affinity matrix W as Wij = e−
√

(xi−xj )
2+(yi−yj )

2
, where (xi, yi) is the

spatial coordinates of i. The proposed method computes the topological relationship
matrix as Zt = (1−α)(D−αW)−1, and MCC computes the matrix as Zt = (I−zW)−1 − I,
where z is set to 0.025 and I is a diagonal matrix with all elements set to 1. Given the
topological matrix, points in the toy dataset are clustered into groups using the cluster
merging method [Zhou et al. 2014].

Figures 5(c) and 5(d) visualize the results generated by the two methods. MCC
incorrectly clusters the data in the bottom moon into two groups, while our method
achieves good performance. And we have found that our manifold learning method
also performs well when dealing with real-world crowd videos. As MCC accumulates
similarity along all paths, some useless paths are included, so it cannot calculate the
topological relationship accurately. The proposed manifold learning method propagates
information through only neighbors, so it is more suitable to capture the manifold
structure formed by the individuals. Consequently, the proposed manifold learning
method is more capable of measuring the topological relationship between individuals.

5.2. Experiments on SDP Model

In order to evaluate the performance of our method, we do experiments on the SDP
model [Vicsek et al. 1995]. SDP was first used to study the coherent emergency of
collective motion in systems of moving particles, and it has been widely employed for
investigating collective motions. We employ it because it has high consistency with
real-world crowd systems [Zhang et al. 2010; Buhl et al. 2006; Zhou et al. 2014] and its
ground truth can be used for evaluation.

In SDP, particles are initialized randomly and driven with a constant speed. The
moving direction of individual i at time t is

θ (t) = 〈θt−1〉r + 
θ, (13)
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Fig. 6. The simulation results of the SDP model. At the beginning, the particles move randomly and no
uniform motion pattern is manifest. Gradually, they move into a collective motion, and the entirety-level
collectiveness increases at the same time.

Fig. 7. Entirety-level collectiveness comparison calculated by the proposed method and the MCC method.
From left to right, three sets of experiments are conducted with different points number in the SDP simulation
procedure. From the figures, we can see clearly that the collectiveness computed by our method changes
gradually, while that measured by MCC fluctuates fiercely. So the proposed method can reflect the phase
transition of the SDP model more accurately.

where θ (t) is the moving direction of i, 〈θt−1〉r is the average moving direction of the
particles surrounding i, and 
θ is a random number chosen from the interval [−π , π ].

5.2.1. Evaluation of Entire-Level Collectiveness Accuracy. In SDP, particles are initialized
with random moving directions and spatial locations. According to Equation (13), every
particle moves toward the average moving direction of its neighbors. So, all the particles
evolve into a collective motion gradually, as shown in Figure 6. Thus, according to the
definition of entirety-level collectiveness, its calculated values on SDP should increase
with time.

We show the calculation results of entirety-level collectiveness by the proposed
method and MCC in Figure 7. MCC measures the collectiveness of these particles
according to their spatial location and velocity in the current frame, which is simple
and straightforward. However, the particles move toward all directions and their veloc-
ities are not stable at the beginning. This makes the collectiveness calculated by MCC
fluctuate dramatically. On the contrary, the proposed method utilizes the neighborhood
relationships of those particles in the former frame. Since neighboring particles tend to
remain in their relationship between frames, our method can capture the individuals’
relationships over time. Thus, the proposed method is more capable of reflecting the
actual evolvement of a collective motion.

5.2.2. Evaluation of Individual-Level Collectiveness Classification. Crowd systems in nature
always consist of various kinds of individuals. Similarly, Zhou et al. [2014] added
outlier particles to the SDP model to simulate the mixed-collective motion, as shown
in Figure 8(a). In this model, the outlier particles move with constant velocities all
the time, while the self-driven particles move toward the average direction of their
neighbors. When self-driven particles turn into collective motions, their individual
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Fig. 8. (a) 300 self-driven particles (blue) with 300 outliers (red). Self-driven particles gradually move into a
collective motion while outliers do not. (b) Outliers extracted by MCC. (c) Outliers extracted by our method.
It can be seen that our method removes more outliers while extracting the same number of self-driven
particles.

Fig. 9. The precise-recall comparison for extracting self-driven particles from outliers with constant veloci-
ties. (a) Precision-recall curves. (b) Average precision, recall, and F-measure bars.

collectiveness increases. But the outlier particles keep low individual collectiveness all
the time. Thus, we can extract self-driven particles from outliers by comparing their
calculated individual collectiveness, as shown in Figure 8(c).

We then compare the performance of the proposed method with MCC. Figure 9
demonstrates that our method outperforms MCC. Achieving at the same precise value,
our method can extract more self-driven particles; with the same recall value, the
proposed method is more accurate. This is because MCC measures collectiveness simply
by one frame, and it cannot consider the neighbor relationship between individuals over
time. Since temporal information is exploited, the proposed method is more capable of
detecting outlier particles whose neighbors change frequently. So, our method achieves
better performance than MCC on this model.

In real-world crowded scenes, abnormal individuals may change their velocities ir-
regularly. So, it is not enough to assume the outlier particles keep their velocities steady
all the time. Rather than just supposing the outlier particles keep their velocities un-
changed, we propose a new mixed-SDP model to evaluate the performance. In this
developed model, outliers change their moving directions randomly. Then we extract
self-driven particles from the outliers. As shown in Figure 10, the proposed method
outperforms MCC. Outliers whose velocities change all the time are better detected by
our method. This justifies from another aspect that the proposed method outperforms
MCC.
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Fig. 10. The precise-recall comparison for extracting self-driven particles from outliers with random veloc-
ities. (a) Precision-recall curves. (b) Average precision, recall, and F-measure bars.

5.3. Experiments on Human Labeled Data

To further evaluate the performance of our collectiveness model, we compare its con-
sistency with the labeled human perception on real-world crowd videos.

5.3.1. Date Set. We perform experiments on the Collective Motion Database [Zhou
et al. 2014], which contains 413 video clips from 62 different crowded scenes and each
video clip consists of 100 frames. The ground truth of this database has been labeled
by human rating. To be specific, each video clip was rated by 10 subjects, who scored
the video as 0, 1, and 2. A higher score means a higher level of collective motion,
and all the videos are sorted into high, medium, and low collectiveness by majority
voting.

5.3.2. Performance Evaluation on Manifold Structure. Experiments are conducted on a crowd
scene with manifold structure, as shown in Figure 11(a), to evaluate the performance.
In Figure 11(a), most of the individuals are moving along the same running track,
and they can be highly regarded as the same group. According to the definition of
collectiveness, the individuals’ collectiveness should be similar and high.

We measure the individuals’ collectiveness and show their distribution in
Figure 11(e). For comparison, Figure 11(d) shows the result obtained by MCC.
Figures 11(b) and 11(c) show the initial tracked feature points (treated as individu-
als in MCC) and the refined points (treated as individuals in our method), respectively.
It can be obviously seen that the distribution obtained by our method is more con-
centrated than MCC, and most individuals have high collectiveness. That is to say, by
using our method, individuals in the running track are more connected and have sim-
ilar collectiveness. The good result comes mainly from our manifold learning method.
So, the proposed method is more capable of handling crowd systems with manifold
structures.

5.3.3. Performance Evaluation on Entire-Level Collectiveness. With the previously intro-
duced dataset, we evaluate how the proposed method can classify the videos and
compare its results with MCC and CT. Three categories are generated and the clas-
sified categories are compared with the human labeled ground truth. The precision-
recall curves and the averaged precision, recall and F-measure bars are shown in
Figures 12(a)–12(c). We can see that the proposed method has better discriminative
capability than MCC and CT. Our method always achieves higher F-measure. MCC and
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Fig. 11. (a) A marathon running scene. It is intuitive that most individuals belong to the same group.
(b) Initial tracked feature points (treated as individuals in MCC). (c) Tracked feature points after point
selection (treated as individuals in our method). (d) Histogram of individual collectiveness measured by
MCC. (e) Histogram of individual collectiveness measured by the proposed method. It can be obviously seen
that in (e) most individuals have similar collectiveness, which is consistent with our motivation. The image
is selected from the Collective Motion dataset [Zhou et al. 2014].

CT share the same shortcoming in that they cannot extract individuals precisely. In
addition, MCC neglects temporal information, and CT relies on complete trajectories of
individuals, which are difficult to obtain. As a result, the proposed method outperforms
MCC and CT.

As shown in Figure 12(d), some failure cases of our method still exist. One cause of
the classification error is that there are unavoidable overlaps between low-medium and
medium-high collective motions. These videos are difficult to classify even for humans,
and more accurate ground truth needs to be proposed. Another reason is that inaccurate
tracking can affect the measuring of collectiveness significantly, since our method is
based on tracking results. This drawback cannot be avoided by most between-frame
association based algorithms.

6. DISCUSSION

In this section, some issues about the proposed method are discussed. The first one is
about the parameter selection of segmentation algorithm. The second one is whether
the point selection method is needed to quantify the collectiveness accurately. In the
end, the necessity of using temporal information is analyzed.

For quantitatively discussing these issues, a set of comparative experiments are
conducted on the Collective Motion Database, which contains various videos of crowd
systems. Under different conditions, collectiveness of the videos is calculated and is
classified into three categories. Then the results are compared with the ground-truth
labels to see the performance.

6.1. Selection of Segmentation Parameter

The computation of the proposed point selection method is based on the segmenta-
tion algorithm. Each frame is divided into patches, and then redundant points are
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Fig. 12. Comparison of the precision-recall curves and averaged values on the low- (a), medium- (b), and
high- (c) level videos. For a clear comparison, the red shows the best result. (d) Typical failures by the
proposed method. The images are selected from the Collective Motion Dataset [Zhou et al. 2014].

abandoned. Therefore, the number of patches influences the final results. Too few
patches will make some informative points discarded, and too many patches will make
some redundant points retained. An appropriate choice of the segmentation parameter
is essential to get a good result.

We denote the number of patches as n, and evaluate the performance of our method
when n is 100, 200, and 300. Under a certain n, videos are classified into low, medium,
and high collectiveness. The precise-recall curves and averaged precision, recall, and
F-measure values are shown in Figure 13. It can be seen that the proposed method
mostly achieves the best result with n= 200. We may infer that 200 is more appropriate.
Throughout this article, the segmentation is all conducted under n = 200.

6.2. Effects of Point Selection

A Point Selection Method (PSM) is proposed to select the most representative tracking
points and extract individuals from frames accurately. In order to evaluate the useful-
ness of PSM, several experiments are conducted on the Collective Motion Database.
Collectiveness of videos is respectively measured with and without PSM by our method.
Then we compare the classification results of the three categories with ground truth to
evaluate the performance.
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Fig. 13. The precision-recall curves and averaged values of classifying low (a), medium (b), and high (c)
collectiveness videos by our method when n = 100, 200, and 300. For a clear comparison, the red one shows
the best result.

Fig. 14. The precision-recall curves and averaged values of classifying low (a), medium (b), and high (c)
collectiveness videos with and without point selection step. For a clear comparison, the red one shows the
best result.

It can be seen in Figure 14 that with PSM, the classification performance is better
than that without PSM. With PSM, redundant tracking points are discarded so that
individuals can be extracted more precisely from a crowd system. Then the relationship
between individuals can be captured more accurately. Since we measure collectiveness
by exploiting the relationship between individuals, PSM helps to compute collective-
ness more correctly and achieves higher averaged recall, precise and F-measure values
in experiments.
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Fig. 15. The precision-recall curves and averaged values of classifying low (a), medium (b), and high (c)
collectiveness videos by our method with and without temporal information. For a clear comparison, the red
one shows the best result.

6.3. Necessity of Temporal Information

In the calculation of collectiveness, temporal information is utilized. If two individuals
are neighbors in the former frame, they tend to keep their neighbor relationship in the
current frame. Consequently, their individual-level collectiveness will be more consis-
tent along time. Here we discuss whether the temporal information is necessary for
the calculation of collectiveness.

We compute collectiveness of the videos with and without temporal information sep-
arately, and use them to classify the videos. Figure 15 plots the precise-recall curves
and shows the averaged precise, recall, and F-measure values. It can be seen that with
temporal information, the performance is better than that without temporal informa-
tion. By using temporal information, the relationship between individuals over time
can be captured, and the collectiveness can be calculated more accurately and keep
high consistency with human perception. Therefore, temporal information is necessary
to calculate collectiveness precisely.

6.4. Effects of Manifold Learning Method

Here, we evaluate how the proposed manifold learning method contributes to the
performance of the whole algorithm. In the experiments, we replace the proposed
manifold learning method with the one used in MCC, and then examine the change of
the overall performance.

Figure 16 shows that after replacing the proposed manifold learning method, the
performance of our collectiveness-measuring method is not as good as before. This is
to say, compared with the manifold learning method of MCC, the proposed manifold
learning method demonstrates superiority on the measuring of collectiveness. There-
fore, the proposed manifold learning method does improve the overall performance of
our collectiveness-measuring method.
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Fig. 16. The precision-recall curves and averaged values of classifying low (a), medium (b), and high (c)
collectiveness videos by our method before and after replacing the proposed manifold learning method with
that of MCC. For a clear comparison, the red one shows the best result.

7. CONCLUSION AND FUTURE WORK

In this article, a new collectiveness-measuring method has been presented. In this
procedure, a point selection method is developed and it can select the most useful ones of
tracked feature points to represent individuals of a crowd system. A stability descriptor
is presented to characterize whether an individual keeps a steady relationship with
others. By jointly exploring the spatial and temporal clues of the crowd system, the
proposed method can quantitatively calculate a collectiveness measure on the basis
of the topological relationship between individuals. To validate the usefulness and
effectiveness of our method, we compare its performance on the SDP model and a set
of 431 video clips with a state-of-the-art algorithm. Intensive experiments show its
robustness and higher consistency with human perception.

In further work, we would like to extend our method for group detection based on the
individual collectiveness measurement. Additionally, we are interested in applying our
method to some specific applications in the field of multimedia, such as the analysis
of crowd behavior. By analyzing the crowd behavior, we can obtain the attributes of a
crowd scene and then describe the crowd video by text, which will be a clue for some
other applications, such as video retrieval, video summary, and so on. Furthermore,
crowd simulation is also one of our interests.
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