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Abstract— Saliency detection has been a hot topic in recent
years, and many efforts have been devoted in this area.
Unfortunately, the results of saliency detection can hardly be
utilized in general applications. The primary reason, we think,
is unspecific definition of salient objects, which makes that
the previously published methods cannot extend to practical
applications. To solve this problem, we claim that saliency should
be defined in a context and the salient band selection in hyper-
spectral image (HSI) is introduced as an example. Unfortunately,
the traditional salient band selection methods suffer from the
problem of inappropriate measurement of band difference.
To tackle this problem, we propose to eliminate the drawbacks of
traditional salient band selection methods by manifold ranking.
It puts the band vectors in the more accurate manifold space and
treats the saliency problem from a novel ranking perspective,
which is considered to be the main contributions of this paper.
To justify the effectiveness of the proposed method, experiments
are conducted on three HSIs, and our method is compared with
the six existing competitors. Results show that the proposed
method is very effective and can achieve the best performance
among the competitors.

Index Terms— Band selection, deep learning, hyperspectral
image (HSI) classification, manifold ranking (MR), saliency,
stacked autoencoders (SAEs).

I. INTRODUCTION

SALIENCY detection [1]–[3] has been a hot topic in
the field of vision community. The widespread attention

of this technique is mainly due to its importance and
effectiveness in image/video processing. Since the aim
of saliency detection is to extract the noticeable objects,
subsequent processing based on the detection results can
focus the limited computational resources on the interesting
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targets and ignore the unnecessary backgrounds. Therefore,
saliency detection is generally considered as an efficient
preprocessing step or high-level feature extraction procedure
in many applications [4]–[6], such as multimedia retrieval,
object detection, video compression, and image resizing.

Though tremendous effort toward saliency detection has
been made, and many works achieve manifest performance
on public data sets, the general-purpose saliency detection is
still far from satisfying. One primary reason, we think, is the
unclear definition of saliency, which makes the task-specific
application less compatible. Considering this deficiency,
we restrict the scope of saliency interpretation to a spe-
cific area, hyperspectral image (HSI) classification [7], [8].
In this case, the examined HSI consists of hundreds of spectral
bands for the same scene, enabling accurate discrimination of
different land cover materials. Generally speaking, the finer
spectral resolution will lead to better discriminative ability.
But that does not mean more data are always needed. For one
thing, the huge volume of data implies large computational
complexity. For another, the low number of labeled data in HSI
is prone to result in the Hughes phenomenon [9]. Therefore,
a balance between the spectral number and the classification
performance is highly desired. In order to make a good
compromise, the salient bands from the entire hyperspectral
volume should be selected, extracting the most informative
clues and abandoning the less important ones [10]. Clearly, the
saliency formulation in this context has a meaningful expla-
nation and the salient band definition is the key to success.

Actually, the salient band selection is not the only means
for reducing the hyperspectral data redundancy. Feature
extraction is also an alternative. But differently, feature
extraction techniques transform the original high-dimensional
data to low-dimensional data through certain kinds of
projections, such as principle component analysis [11],
independent component analysis [12], and discrete wavelet
transform [13]. This treatment cannot preserve the physical
meaning of the original bands, which might be very crucial
for some geology analysis. Considering this fact, the salient
band selection is usually preferred for the HSI processing.

Although many efforts toward the salient band selection
have been made during the past decades, the selection
criterions are mainly based on the similarity metrics.
One disadvantage of this strategy is that most of these
criterions are computed under the assumption that the original
data lie on the Euclidean space. But this is not the case from
time-to-time because the data may lie along a low-dimensional
manifold embedded in a high-dimensional space, where the
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low-dimensional space reflects the underlying parameters and
a high-dimensional space is the feature space [14]. Therefore,
the traditional treatment is inappropriate. In order to make a
more fair measurement, we tackle this problem in the intrinsic
manifold structure collectively revealed by a great amount of
data. The proposed method is named as salient band selection
via manifold ranking (MR). Three contributions are claimed
in this paper.

1) Propose a novel method of MR-based band selection.
Instead of rating the similarities in the Euclidean space,
the manifold structure is taken into consideration to
properly assess the hyperspectral data structure. The
associated measurement is input to a ranking operation
and a subsequent band selection is based on the obtained
ranking score. This is a novel alternative that refor-
mulates the hyperspectral band selection as a ranking
problem.

2) Estimate the interband distance in a batch manner. Most
existing techniques for band selection always compute
the distance between two individual bands. The calcu-
lated results then serve as guidance for band selection.
However, this strategy is not suitable for the sequential
selection because the selected band at this time might
resemble the one selected at previous time. In our imple-
mentation, we treat the already selected batch of bands
as the query, and the examined band is compared with
the whole batch. This can ensure the further selected
band is distinct with the previously selected ones.

3) Provide a thorough comparison using different band
selection methods and classifiers. In order to validate
the effectiveness of the proposed method, we compare
it with several recently presented methods. Besides,
we also test these methods on typical classifiers that
are frequently used for HSI classification. These experi-
mental comparisons are meaningful references for other
researchers. Furthermore, the possibility of popular deep
learning technique as a classifier is also discussed in this
paper.

The rest of this paper is organized as follows. Section II
briefly reviews the existing works on the topic of salient
band selection. Section III gives a detailed description of the
proposed method, which is salient band selection via MR.
Section IV presents the experimental results to justify the
effectiveness of this paper. Section V extends the work to
the deep learning framework and discusses the associated
problems. Finally, the conclusion is drawn in Section VI.

II. RELATED WORK

In this section, we will review three topics that are closely
related to this paper. First, salient band selection is primarily
investigated, which is directly the related work of the proposed
method. Then, saliency detection in computer vision and
HSI classification are briefly introduced. These two points are
not the main focus of this paper but have certain relations.

A. Salient Band Selection

The salient band selection is enabled by two key elements.
The first one is an appropriate criterion, which measures

the difference between bands. For this purpose, the existing
methods investigate various indices [15]–[17], such as mutual
information (MI), spectral angle mapper distance, information
divergence, correlation coefficient, and volume-based distance.
Apart from these traditional measures, other new criteria are
also presented recently, including sparse reconstruction error
and approximate MI.

The second one is the selection strategy. According to
the band selection procedure, existing works can be divided
into two categories: 1) sequential selection and 2) batch
selection. For the sequential selection, the desired bands are
chosen one by one, instead of all at a time. For example,
Chang et al. [18] construct a loading factor by eigenvalue
and eigenvector analysis to rank bands according to the
effectiveness of their classification abilities. After this band
prioritization step, the spectral association is then decorrelated
to eliminate the similar bands among the selected bands.
Ball and Bruce [19], [20] first use a forward selection to
choose the band set enabling maximum Receiver Operating
Characteristic curve (ROC) curve area Az . Then, a backward
rejection is enforced to remove the bands that cannot help
the Az criterion. In the end, the selected bands are input to
the level-set segmentation process. Du and Yang [21] employ
a strategy similar to that in [18]–[20]. But the criterion for
selecting band is different, in which the potential band is
determined as the one with the largest linear reconstruction
error from existing bands. Yang et al. [22] select the bands
with an incremental manner. They initially choose one band
and project others to its orthogonal subspace. Then, the band
with maximum projection, represented by a stochastic feature,
is selected. This procedure is repeated until the desired number
of bands is obtained.

As for the batch selection, more distinctive techniques are
designed. Sun et al. [23] pay more attention to the band
quality instead of band information. They introduce a new
index to measure the quality of a data cube by combining
the noise adjusted principle components with maximum deter-
minant of covariance matrix. Based on this, the minimum
noise band selection method is proposed, aiming at selecting
bands with high quality. The selection process begins with
full bands set, followed by removing bands successively.
Venkataraman et al. [24] use the manual grouping and the
automated grouping to divide the original bands into subsets.
Subsequently, features are extracted by the supervised and
unsupervised methods. Martínez-Usó et al. [16] utilize a
similar strategy. But the clustering method is hierarchical,
which can ensure producing the minimum variance partition.
Then, the representative band for each group is selected as the
one that is least correlated with the others. Xia et al. [25] divert
from the general idea of selecting the bands that are distinctive
from others. Instead, they construct a graph network using
the image pixels and choose bands that can form the most
approximate network construction compared with the original
data. Chang and Wang [26] propose a constrained energy
minimization (CEM) for band selection. It linearly constrains
the examined band image while minimizing the interfering
effects caused by the remaining bands. Yuan et al. [27]
present an evolutionary immune clone strategy to handle
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Fig. 1. Flowchart of the proposed salient band selection method via MR.

the computational burden of possible band combinations.
Besides, a novel multitask sparsity pursuit-based criterion is
adopted to evaluate the performance of each candidate band
set. Similar work can be found in [17], who use the trivariate
MI to approximate the MI measure. In addition, a clone search
strategy is taken to find a good solution with low time and
space cost. The work of Chang et al. [28] is also of this type,
while parallel simulated annealing is adopted.

Besides the two aspects, other researchers dig alterna-
tively from the related topics of a salient band selection.
Demir and Erturk [29] concentrate on reducing the compu-
tational complexity before formal band selection. They use
one-bit transform of each band to remove the noisy and less
discriminative bands, which is decided via the number of
transitions in the one-bit map. Yang et al. [30] focus on
the parallel implementations via emerging general-purpose
graphics processing units.

B. Saliency Detection in Computer Vision

Saliency detection is a hot topic in recent years in
the computer vision community. Since the pioneer work
of Koch and Ullman [53], numerous methods have been
presented. In general, these methods can be categorized into
two classes [31]: 1) contrast-based computational model
and 2) learning-based adaptive model. For the first type, the
saliency model is defined beforehand in terms of the color/
texture contrast. No matter what the input image is, the
saliency value is calculated with the same predefined formula.
For the second type, the machine learning techniques are
usually employed to adaptively train a saliency model in
a particular data set. With respect to different training
set, the learned model parameters might differ with each
other. However, despite the extensive research in these
two paradigms, few works have concentrated on the specific
definition of saliency detection.

C. Hyperspectral Image Classification

HSI classification has been researched a lot in remote
sensing field. Traditional methods primarily focus on the
spectral feature with adjusted classifier, such as support
vector machines (SVMs) [32] and k-nearest neighbor-
hood (kNN) [33], [34]. However, only utilizing the spectral
clue achieves a limited performance. The joint spectral and
spatial classification techniques [35] have recently attracted

much more attention because they can considerably overcome
the salt and pepper noise that often exists in HSI. For example,
morphological filters [36], segmentation [37], Markov random
fields [38], and empirical mode decomposition with spectral
gradient enhancement [39] are recently presented and they
demonstrate a superior performance. Though these methods
differ in their ways of utilizing the HSI data, they all try
to explore the abundant clues from the original HSI volume.
Unfortunately, they neglect a fact that the large number of
bands might be redundant from time-to-time. Trying to select
the most critical bands may still get a good result, at the same
time reducing the storage burden.

III. PROPOSED METHOD

In this paper, we present a salient band selection method
based on MR for HSI classification. The flowchart of the
method is shown in Fig. 1. First, the original band set is
grouped into subsets, within which each band image has
similar characteristics to the others. Then, the representative
of each group is chosen by clone selection algorithm, with
the principle that the representatives should be far to each
other. After that, the representative bands are treated as queries
and the other bands will be ranked according to the queries.
Finally, the most dissimilar band will be added to the query
set and the whole procedure repeats again until the desired
number is achieved. In the following, we will focus on the
queries generation and the MR steps.

A. Query Generation

Our aim is to select the most distinctive bands to support
classification. For this purpose, the interband similarity metrics
are not suitable because they only reflect a local perspective.
For instance, the examined two bands may have large distance,
and selecting them seems to be a good choice. But putting
them in the whole band set, they might highly resemble the
other selected ones, which is undesirable. The main reason
inducing this fact is that we improperly check the relationship
of band pairs and lack the global view to systematically
balance all the selected bands. To overcome this limitation, an
MR technique is adopted [40]. Instead of treating the bands
individually, we adopt a batch manner. We first get several
query band representatives, and then the remaining bands
are ranked according to their similarities to all the queries.
Every time the ranking is conducted globally, considering the
full data relationships.
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The general idea of MR is to list the data in order with
respect to the similarities to the predefined queries. In this
paper, the queries are initially specified as the original
band set representatives. This can be achieved by a simple
clustering method, such as k-means, and then choosing
the representatives in each cluster. However, we think the
selected representatives should not only have maximum
interdistances (distinctiveness among clusters) but also
minimum intradistances (representativeness with a cluster).
The formal formulation is as follows.

In this paper, each band is denoted as a point in the
high-dimensional space. Suppose there are k mean cen-
ters {μ1, μ2, . . . , μk} after the clustering of the original
bands and the desired representatives are {r1, r2, . . . , rk}.
The sum of interdistances are then defined as Dinter =
(1/2)

∑
i, j=1:k d(ri , r j ), where d(,) measures the Euclidean

distance between two points, and sum of intradistances are
similarly calculated as Dintra = ∑

i=1:k
∑

j=1:ni
d(μi , ei, j ),

where ei, j is the j th element in cluster i and ni is the number
of elements within it. The final criterion is the combination of
the two terms

arg max{r1,r2,...,rk }
Dinter

Dintra
. (1)

By searching for the solution of the objective function, we
can get the desired representatives. However, maximizing this
criterion is not an easy task because there are numerous
candidate combinations. A traversal search is impossible and
impractical. Fortunately, inspired by the success of natural
computation [41], the clone selection algorithm [42], [43] is
utilized to solve this problem.

This algorithm is motivated by the immunology and is a
typical paradigm of artificial immune systems. It uses the basic
immune principles to help solve complex engineering tasks.
To be specific, when an animal is exposed to an antigen,
it will produce particular antibodies with different affinities.
Those antibodies with high affinity values will respond more
adequately to the antigen. After the interaction, the antibodies
will be cloned with a number proportional to its affinity
values and at the same time, the obtained clones are also
accelerated by mutation, the probability of which is inversely
proportional to its affinity. With this strategy, the animal body
can effectively eliminate the antigen infection.

Motivated by the efficiency of the clone selection principle,
this work employs it to get the solution of (1). Similarly, the
original problem of establishing the band representatives is
treated as the antigen, and the chosen set of bands is taken
as the antibody. By maximizing the affinity function defined
in (1), the best antibody can be selected. Initially, we randomly
select l sets of representatives, with each set containing one
band from each cluster. This means there are l antibodies in the
beginning. Then, these antibodies will subject to three steps
of processing, clone, mutation, and selection.

1) Clone: The antibodies will be cloned according to their
affinities to the antigen. Higher affinity indicates more
copies will be obtained.

2) Mutation: The antibodies after the above step will
mutate to generate new antibodies, which means any

band contained in an antibody may change to the other
band in the same cluster. The probability of mutation is
inversely proportional to the affinity of the antibody.

3) Selection: After the clone and mutation procedure, there
will be a larger number of antibodies compared with the
initial set, which demonstrates a more various diversity
and possibility. We then select the l most promising ones
to start the next round of processing.

B. Manifold Ranking

With the obtained k queries, the other bands are ranked
according to them. Suppose the band with the lowest ranking
score is found, which means it is the most dissimilar one to
the queries. Then, it will be added to the original query set, the
number of which now becomes k +1. With the updated query
set, the remaining bands are further ranked with respect to it.
This operation repeats until the desired K bands are identified
(in general, K is predefined by the user). This strategy can
ensure the newly selected band is much different from what
have been selected. Clearly, this strategy is fundamentally
different from traditional calculation of pairs of bands.

As for the ranking procedure, the manifold structure of
data is considered because it can explore the intrinsic data
nature [40], [44]. In this step, the goal is to learn a ranking
function, which defines the relevance between the queries (rep-
resentative bands) and the unlabeled data (remaining bands).
In the following, a detailed introduction is followed.

Suppose a set of given points (hyperspectral bands)
X = {x1, x2, . . . , xn} ∈ Rm , where m is the dimensionality
of the data (the number of pixels for a single band image) and
n is the number of the data (the band number). Some of these
points are labeled beforehand as queries and the others are
unlabeled. The aim is to rank the unlabeled ones according
to their relevance to the queries. Before detailed explanation
of the method, notations are first introduced [45]. Let f :
X → R denote a ranking function that assigns every point xi

a ranking score fi , leading to a vector of f = [ f1, f2, . . . , fn ].
We also define an indicator vector y = [y1, y2, . . . , yn] with
yi = 1 means xi is a query and yi = 0 otherwise. For an
appropriate measurement of the ranking function, we define a
graph network G = (V , E) on the data points X , where V is
the vertex set, and E is the edge set. We also define an affinity
matrix W = [wi j ]n×n with

wi j = e−d2(xi ,x j )/2σ 2
(2)

if xi and x j are connected; otherwise wi j = 0. For the HSI
context, if two points (bands) are neighboring relationship,
they are assumed to be connected. The distance between
two connected points d(xi , x j ) is computed as the Euclidean
distance between them. Consequently, the degree matrix is
denoted as D = diag{d11, . . . , dnn}, where dii = � jwi j .

With these definitions, the optimal ranking is derived by
solving the following optimization problem [45], [46]:

f∗ = argmin
f

1

2

⎛

⎝
n∑

i, j=1

wi j

∥
∥
∥
∥

fi

dii
− f j

d j j

∥
∥
∥
∥ + μ

n∑

i=1

‖ fi − yi‖2

⎞

⎠

(3)
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Algorithm 1 Salient Band Selection via Manifold Ranking
Input: X = {x1, x2, . . . , xn}, K .
Initialize: k, σ , μ, l.
Step1: Get the k clustering groups.
Step2: Use clone selection strategy to establish the group
representatives as the initial queries.
Step3:
while not enough bands are selected do
1: Rank the other bands according to the queries.
2: Select the most dissimilar one as the new band.
3: Update the query set with the newly established band.

end while
Output: K bands.

where the first term is the smoothness constraint indicating
the neighboring points should not differ greatly, and the
second term the fitting constraint implying the ranking score
should not divert too much from the initial query assignment.
μ balances the contributions of the two terms.

To solve the above problem, we set the derivative of (3) to
be zero. Let S = D−1/2WD−1/2 be the normalized Laplacian
matrix. The desired ranking function can be obtained as

f∗ = (I − αS)−1y (4)

where I is the identity matrix and α = 1/(1 + μ).
With this solution, the ranking for each point is finally

acquired, which indicates all the other hyperspectral bands
are ranked with reference to the query bands. Therefore, the
one with the lowest score is set as the most dissimilar one
compared with the queries and it is added into the query
set to start another round of ranking. The whole procedure
is outlined in Algorithm 1.

IV. EXPERIMENTS

In this section, intensive experiments are conducted to prove
the effectiveness of the proposed method. First, the data set
used in the experiments is introduced. Then, the comparative
methods are selected, with a brief analysis. After that, the
experimental setup is detailed and the results are shown and
analyzed.

A. Data Sets

To verify the effectiveness of the proposed framework, we
complete our experiments on three traditional data sets, Indian
Pines, Salinas Scene, and The Pavia University.

1) Indian Pines image was gathered by AVIRIS sensor
over the Indian Pines test site in North-Western
Indiana in 1992. It consists of 145 × 145 pixels and
224 spectral reflectance bands in the wavelength range
of 0.4–2.5 μm. The spatial resolution is 20 m/pixel. The
16 classes of vegetation and forests are included in the
image and the ground truth labels are publicly available.
In general, the water absorbtion bands are removed,
leading to a total of 200 bands.

2) The Salinas Scene was also captured by AVIRIS sensor
in 1998, but at a different location in Salinas Valley,

California. The image size is 512 × 217, with a spa-
tial resolution of 3.7 m/pixel and spectral coverage
within 0.4–2.5 μm. There are also 224 spectral bands
and 16 classes of interest, including vegetables, bare
soils, and vineyard fields.

3) The Pavia University was acquired by the ROSIS sensor
during a flight campaign over Pavia, Northern Italy
in 2002. The sensor generates 115 spectral bands rang-
ing from 0.43 to 0.86 μm. Removing the 12 noisiest
bands, the 103 bands are retained, and the image size
is 610 × 340. The geometric resolution is 1.3 m/pixel
and nine classes of land cover objects are included.

B. Comparative Methods

In order to justify the effectiveness of the proposed
MR method, several competitors are employed to conduct
comparison. They are of two prototypes: 1) CEM selec-
tion [26] and 2) clustering-based band selection (CBBS) [16].

1) For the CEM selection, each band image is represented
as a column vector. Then, an energy function reflecting
the band image correlation is defined. For solving this
function, a linear constraint is enforced on one band
and all the bands are used to calculate the correla-
tion matrix. With the obtained solution, two criteria
for band selection are defined: 1) band correlation
minimization and 2) band correlation constraint. The
induced algorithms are denoted by CEM-Band Corre-
lation Minimization (BCM) and CEM-Band Correlation
Constraint (BCC). However, the enormous size of band
vectors can cause tremendous computing time. In order
to mitigate this problem, the band image is treated
as matrix instead of vector conversion. This idea can
be traced back to the linearly constrained minimum
variance (LCMV) [47] and the induced algorithms are
similarly denoted as LCMV-BCM and LCMV-BCC.

2) For the CBBS, a hierarchical clustering structure, Ward’s
linkage method [48] to be specific, is used to group
bands. Then, the representative for each group is chosen
as the one having the highest correlation with the
other bands in the group. It can minimize the intra-
cluster variance and maximize the intercluster variance.
The criterion for measuring the band similarity is MI
and Kullback–Leibler (KL) divergence. Therefore, the
resulted comparative methods are denoted as CBBS-MI
and CBBS-KL.

C. Experimental Setup

To evaluate the effectiveness of the proposed method,
comparisons should be conducted. Two factors need to be
considered here, the influence of selected band number and
the effect of different classifiers. For one specific classifier,
we set the selected band number every five intervals from
small to large. This can test the ability of different band
selection methods under fixed band numbers. In order to
see the robustness of band selection methods, we also vary
the classifiers to repeat the above processing. Four widely used
classifiers are adopted in our experiments, Naive Bayes, kNN,
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Fig. 2. Classification performance under different choices of k for SVM,
kNN, CART, and Naive Bayes classifiers. Each curve is averaged on the
three HSIs (Indian Pines, Salinas Scene, and Pavia University).

Fig. 3. Classification performance under different choices of l for SVM,
kNN, CART, and Naive Bayes classifiers. Each curve is averaged on the
three HSIs (Indian Pines, Salinas Scene, and Pavia University).

classification and regression trees (CARTs), and SVMs, which
are the benchmark classifiers [49] used in HSI classification.

There are four parameters in the experiments to be deter-
mined. They are the edge weight related σ , the balance
between the smoothness term and the fitting term α, the initial
clustering number k, and the number of antibodies l. The first
two are empirically set as σ 2 = 0.1, α = 0.99 according
to [45]. As for k and l, a lot of experiments have been
done to choose the best parameters. We set the two variables
as different values and then check their performance under
various classifiers and images. From Figs. 2 and 3, we can
see that k = 10 and l = 4 is the best choice. With these
two values, the averaged performance on the three images is
satisfying for each classifier.

Note the initial query number k is generally smaller than the
desired band number. For one reason, this means fewer initial
clusters and more representative and discriminative queries.
For another, if we have enough query bands, there is no need
to conduct the MR procedure.

D. Results

In this section, we will discuss the band selection results
on different HSIs, with respect to the different classifiers.
Two kinds of results are shown in the experiments. The first
kind is the band number–accuracy curves and the second kind
is the averaged accuracy bars. Please note the accuracy is

defined as the proportion of correctly classified pixels to all
the corresponding class pixels in the image.

For the Indian Pines image, the performance of our
MR method differs from classifier to classifier. This is shown
in Figs. 4 and 5. With the SVM and kNN classifiers,
MR generally achieves the best classification accuracy. This
superiority is more manifest when the selected band number is
small, which is also the case for the CART and Naive Bayes
classifiers. But when the selected bands increase, the CART
and Naive Bayes are no better than the other competitors,
especially when the band number surpasses 50.

For the Salinas Scene, the superiority of our MR method is
more obvious as shown in Figs. 6 and 7, particularly for the
SVM, kNN, and CART. At every selected band, MR acquires
much higher accuracy than all the other competitors. When
it comes to the Naive Bayes classifier, the result is similar to
that of the Indian Pines image. If the selected band number
is small, MR method works very well. But when the band
number goes beyond 50, LCMV-BCM ranks first. However,
the difference between MR and LCMV-BCM is only 3% and
MR still outperforms all the other ones.

For the Pavia University, the results are more different,
as shown in Figs. 8 and 9. The proposed MR method can
classify the pixels more precisely on the kNN and CART
classifiers. But for the SVM classifier, the difference from the
other competitors except CEM-BCM and CEM-BCC is not so
apparent. Unfortunately, the results of the Naive Bayes clas-
sifier fluctuate heavily and cannot see an absolute superiority.

After introducing the experimental results, we will give
some in-depth analysis. The first question is about the
performance on different images. In general, the proposed
MR method is more effective than the other competitors.
This is mainly due to the MR method and batch comparison
strategy. But this superiority is not equally demonstrated on the
three images. The Salinas Scene is a typical example, while the
Pavia University and the Indian Pines image are less obvious.
This can be understandable because the performance of one
specific method is actually related to the training and testing
data. Since the experimental subject varies with each other,
the performances have more or less disparities.

The second question is about the performance on different
classifiers. The proposed MR method is more stable and robust
on the SVM, kNN, and CART. For the Naive Bayes classifier,
MR has a vibrate result, especially on the Pavia University.
We also find with the increase of band number, the MR method
with Naive Bayes will have a decreasing performance. This is
because the Naive Bayes models each feature dimension as an
independent and normal distribution. If we sample the feature
space randomly, the obtained samples can reflect the statistics
rightly. But our operation is to select the samples that are
dissimilar with each other, using the MR technique. Therefore,
the more the selected bands, the more the true distribution will
be distorted.

The third question is about the band number. There is a phe-
nomenon that the performance is better when the band number
is larger. But the superiority of the proposed MR method
is more evident when the band number is small. This is
because for the purpose of hyperspectral band selection,
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Fig. 4. Band selection results on the Indian Pines image. (a)–(d) Results by SVM, kNN, CART, and Naive Bayes classifiers.

Fig. 5. Average band selection results on the Indian Pines image.

we aim to choose the most representative and the distinctive
bands from the original large volume of bands. This operation
can enhance the computational efficiency and relieve the
storage burden at the same time. From this point of view,
if the selected band number is not large but the performance
of classification is satisfying, we can say the band selection
method is effective and of great value. Fewer bands while good
classification performance is encouraged for a band selection
method. Therefore, we think the performance with a smaller
band number can reflect the real ability and meaning of the
band selection method. The fact that our MR method is more
effective when the selected number is small just proves the
success of MR compared with the other competitors. In fact,

the small number of bands is of great use in practice. With
the increase of data volume, the requirement for storage and
processing ability is demanding. If we can reduce the original
data volume while retaining its acceptable performance, the
designed method might be helpful.

The fourth question is about the comparison with the
full band classification. We conduct experiments using
the whole image cube and the results are as follows:
Salinas Scene [SVM(0.9078) kNN(0.8594) CART(0.8248)
NaiveBayes(0.7741)], Indian Pines [SVM(0.7736)
kNN(0.6543) CART(0.5400) NaiveBayes(0.5509)], and
Pavia University [SVM(0.8717) kNN(0.7379) CART(0.7012)
NaiveBayes(0.6622)]. Comparing the band selection method
(Figs. 5, 7, and 9) with the full band method, we can find
that the proposed band selection method does not decrease
the performance very much. For each image and classifier,
abandoning most redundant bands only leads to a small
amount of accuracy drop (<5%) for the classification task.
This means our band selection method is very effective and
useful. Though we only select a limited number of bands, we
can achieve an acceptable performance.

To sum up, the proposed method has distinct performance
on the three images and with the various classifiers. However,
we can say our method is more superior than the other
competitors of the salient band selection methods. This
superiority is more obvious when the selected band number
is small.

V. EXTENSION TO DEEP LEARNING

In the previous sections, we have analyzed the effect of band
selection to the popular HSI classification task. The employed
classifiers are all traditional ones that are mostly used in the
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Fig. 6. Band selection results on the Salinas Scene image. (a)–(d) Results by SVM, kNN, CART, and Naive Bayes classifiers.

Fig. 7. Average band selection results on the Salinas Scene image.

classification process. In this section, we will talk about the
state of the art classifier—deep neural networks [50], [51] for
HSI classification combined with our band selection process.
For this purpose, there are several types of deep architectures,
such as deep belief networks, deep Boltzmann machines, con-
volutional neural networks, and stacked autoencoders (SAEs).
In this paper, we mainly focus on the SAEs [52].

An AE has the ability to self-express the original input.
It includes two parts: 1) encoder and 2) decoder. The first
part reexpresses the input vector in a higher level through the
hidden layers and the second part uses the same parameter to
reconstruct the original input. After the training procedure, the

reconstruction layers are removed and the learned high-level
features lie in the hidden layers. This can be utilized for direct
classification or as the input of a higher layer to produce a
deeper architecture. The SAEs are actually a concatenation of
single AE, with the output of each AE as the input of another
one. Each layer is a higher level expression of the previous
layer, and the finally learned features have certain kinds of
semantic meanings and are more appropriate for the future
classification.

Unfortunately, deep networks including SAE have a disad-
vantage of the overfitting problem, due to the small number of
training samples and the large number of model parameters.
Deeper networks generally have more powerful ability, but are
harder to train. Another serious problem is that the architecture
of deep networks is not easy to determine. Most of the success
heavily relies on the designer’s experience. All these factors
make the deep learning related tasks formidable.

In this paper, the flowchart of the processing steps are shown
in Fig. 10. The input HSI first goes through the band selection
operation. Then, the resulted data vectors are input to the
SAEs. After that, the logistic regression that is learned together
with the deep parameters, is used to classify the data. The
SAEs have a structure of K -50-50-20 nodes, where K is the
number of selected bands. The experimental results are shown
in Fig. 11.

From Fig. 11, we can see clearly that the proposed
deep networks perform stably for each HSI. But the per-
formance is not the best compared with the results shown
in Figs. 4, 6, and 8. The reasons are analyzed as follows.
First, the performance does not improve with the increase of
the band number. Generally speaking, more selected bands
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Fig. 8. Band selection results on the Pavia University image. (a)–(d) Results by SVM, kNN, CART, and Naive Bayes classifiers.

Fig. 9. Average band selection results on the Pavia University image.

Fig. 10. Flowchart using SAE for HSI classification.

will lead to better classification accuracy. This is true for
the traditional classifiers, but is not fully right for the
deep networks. The reason is that the dimensionality of the

Fig. 11. Band selection results by the SAE.

visible layer in SAE equals to the dimensionality of the input
vector. The increased band number will lead to higher input
dimensionality, implying more parameters and connections in
the networks. The effect of increased bands compromises with
that of the added parameters. Therefore, the performance does
not improve much, as shown in Fig. 11. Second, the model
structure is not necessarily the best. In our experiments, we
find different layers and nodes can affect the final results
greatly. There is no recognized principle to determine these
factors. Therefore, it is actually very hard to get a properly
configured deep networks. Sometimes, we have to try many
times to establish an acceptable structure. Third, we think
the SAEs have certain kind of overfitting. There are all
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together 50 × 50 × 20 × K parameters in the model.
Unfortunately, only 10% pixels of the input HSI are used
for training. At the same time, it is difficult to do data
augmentation for HSI. All these factors make the performance
not very satisfying.

To summarize, the deep networks are extraordinarily popu-
lar in the vision community. But there are several unresolved
problems associated with them. To make the deep structure
more rationale, more deep research is needed.

VI. CONCLUSION

Saliency definition is a critical factor that influences the
saliency detection performance. In this paper, we formulate
saliency in the context of band selection in the HSI classifica-
tion and propose an MR-based selection method. In order to
prove its rightness, intensive experiments and comparisons are
conducted. Results show that the proposed method is effective
and outperforms the competitors.

The contributions are threefolds. First, the band selection is
alternatively treated as a novel MR problem. Second, the inter-
band distance is measured in a batch manner. Third, we have
provided a meaningful reference for other researchers with the
abundant experimental results and comparisons, together with
the discussion on the popular deep learning extension. In the
future, how to effectively and systematically design a deep
learning model for HSI classification is the next step.
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