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Hyperspectral Image Classification via Multitask
Joint Sparse Representation and Stepwise
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Abstract—Hyperspectral image (HSI) classification is a crucial
issue in remote sensing. Accurate classification benefits a large
number of applications such as land use analysis and marine
resource utilization. But high data correlation brings difficulty
to reliable classification, especially for HSI with abundant spec-
tral information. Furthermore, the traditional methods often fail
to well consider the spatial coherency of HSI that also limits the
classification performance. To address these inherent obstacles,
a novel spectral–spatial classification scheme is proposed in this
paper. The proposed method mainly focuses on multitask joint
sparse representation (MJSR) and a stepwise Markov random
filed framework, which are claimed to be two main contributions
in this procedure. First, the MJSR not only reduces the spectral
redundancy, but also retains necessary correlation in spectral
field during classification. Second, the stepwise optimization fur-
ther explores the spatial correlation that significantly enhances
the classification accuracy and robustness. As far as several uni-
versal quality evaluation indexes are concerned, the experimental
results on Indian Pines and Pavia University demonstrate the
superiority of our method compared with the state-of-the-art
competitors.

Index Terms—Hyperspectral image (HSI) classification,
Markov random field (MRF), multitask, sparse representation.

I. INTRODUCTION

HYPERSPECTRAL cameras are designed for collecting
hyperspectral images (HSIs) with narrow continuous

spectral bands [1]. Because of its wide spectral range and high
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spectral resolution, the acquired HSIs contain rich discrimina-
tive physical clues to pinpoint the ground objects laying on
the observed surface. This makes the hyperspectral imagery
suitable for land cover classification.

Existing work toward HSI classification [2], [3] has been
extensive. However, there are spaces to improve the perfor-
mance. In this paper, the main classification procedure is the
same as the traditional ones. But different from previous meth-
ods, the proposed one puts more emphasis on bridging the gap
between the benefits of the high-dimensional data and redun-
dancy of the correlated bands. Moreover, for HSI which is a
3-D cube, improving the effective utilization of band spectra
is not enough. The spatial coherence is with the same impor-
tance. Therefore, the enhancement of spatial correlation of HSI
classification result is also attached great significance in this
paper.

A. Related Work

In remote sensing, existing classification methods mainly
concentrate on two fields: 1) the feature extraction and 2) clas-
sifier construction. For a given data set, it is always difficult
to find the best combination of the feature and the classifier,
for the reason that the different categories of HSI may share
quite similar spectral signatures and identical materials may
have different signatures. Therefore, for different HSI, finding
the most suitable feature and classifier simultaneously is not
a simple task.

To extract the most essential feature, many methods have
been proposed recently. Most of the state-of-the-arts are
based on basic methods such as principle component anal-
ysis [4], [5], discrete wavelet transform [6], and independent
component analysis [7] methods. The common point of these
methods is that they all exploit spectral signatures to trans-
form the initial HSI to reduced data set. Recent advance comes
from the joint sparse representation (JSR)-based feature extrac-
tion method [8]. The main idea of them is to use different
kinds of features to represent the initial image jointly. The
applications at the very first mainly concentrate on natural
image processing including gait recognition [9], image anno-
tation [10], and face recognition [11]. The first work which
uses JSR for visual classification is shown in [12] that casts
the feature combination to a multitask JSR (MJSR) problem.
However, the model complexity is the main problem for this
framework. Therefore, the multiple tasks are always projected
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to a discriminative subspace manifold regularization to reduce
the time cost [13]. The theory of information bottleneck is
also introduced to formulate the multitask problem as encod-
ing a communication system with multiple senders that finds
a tradeoff between the accuracy and complexity of the mul-
tiview model [14]. Then, a kernel sparse multitask learning
method specializing in HSI processing is proposed in [15], in
which various extracted features of HSI are viewed as different
modalities, and all the features work jointly by sparse represen-
tation to achieve the final classification. A similar work which
combines the spectral, gradient, shape, and texture features
together to jointly represent the initial HSI is also proposed
in [16]. However, we do not think the integration of these fea-
tures [17] can achieve the best performance. In these methods,
too much redundant information is included for the reason that
the different features are all extracted on the same data though
sparse framework is introduced. Moreover, classification with
the integration of so many traditional features is not efficient.
On this point, compared with the feature extraction methods
above, band selection method which only extracts a subset of
bands to represent the initial HSI may have advantage. And
we would introduce the JSR framework to band selection in
this paper.

The other task of HSI classification is classifier con-
struction based on the extracted features. The classifier can
be roughly divided into three categories: 1) unsupervised;
2) supervised; and 3) semisupervised. A priori knowledge
brought in the learning phase is the most distinctive dif-
ference among them. In most time, support vector machine
(SVM) [18] as a robust supervised classifier demonstrates its
superiority among a majority of classifiers. This method finds
the optimal hyperplane between two categories to address a
binary classification problem. But it is found that introducing
additional spatial constraint will bring more excellent clas-
sification performance [19], [20]. Ji et al. [21] proposed a
hypergraph-based spectral–spatial classification method that
constructs both spectral- and spatial-based hypergraph, on
which the probability of pixels belonging to different cate-
gories is learned. Another spectral–spatial method is proposed
in [22] that selects the labels of pixels by edge preserv-
ing method. Both the two methods conduct the classification
process by exploiting the spatial features of neighboring pix-
els. However, the most popular one of these spatial features
is exploited in the neighborhood system by using Markov
random fields (MRFs) [23]. MRF as a statistic modeling
tool effectively incorporates the spatial characteristic into
the classification process under Bayes inferring framework.
An SVM- and MRF-based classification method can be found
in [24] that combines these two as an integrated framework to
conduct a contextual HSI classification. But the edge informa-
tion used for computing the spatial energy in MRF framework
is not effective enough that an adaptive MRF approach is
proposed [25], in which the weighting coefficient of MRF clas-
sification is dependent on the a relative homogeneity index of
each pixel. Problems remain in MRF for the reason that the
wealth of spectral information in hyperspectral data cannot
often be complemented by extremely fine spatial resolution.
This phenomenon may lead to the problem of mixed pixels.

To overcome this drawback, Li et al. [26] combined sub-
space projection and MLR to separate these classes. Another
limitation of MRF is that these MRF-based methods only con-
centrate on the spatial prior with the discrete-valued labels,
which leads to a hard discrete optimization problem. In [27],
this problem is generally solved by utilizing a set of hid-
den real-valued fields. However, weight imbalance problem
still exists that provides potential of improvement for MRF to
exploit contextual information of HSI.

B. Limitation of Existing Methods

Although many hyperspectral classification methods which
take both spatial and spectral information into consideration
are presented in this paper, the limitations of these methods are
not concluded. We want first to summarize these limitations.

1) Poor Band Usage in HSI: The sufficient spectral bands
of HSI yield the potential to complete the classification process
gracefully. However, the classification result is barely satis-
factory, owing to the fact that the high interband correlation
will pull down the discrimination among pixels. Traditional
HSI classification always introduces dimensionality reduction
method to conquer this drawback, but the quality of the
remaining bands is undetermined. In other word, we can-
not always summarize the most valuable spectral information
we need from the original image. It has been demonstrated
alternatively [28], [29] that classification with selected bands
which are highly uncorrelated may bring better result. But the
inevitable information loss will still affect the result severely.

2) Weight Imbalance in MRF Framework: As shown in
recent work for HSI classification [30], MRF is an effective
framework to introduce the spatial connection of HSI pixels.
However, we have to emphasize that MRF framework cannot
always distribute the most proper weight to spectral and spa-
tial energy terms. In different area of an HSI, the importance
of these two kinds of clues are not the same, which means the
weight between them should change from one area to another.
But unfortunately, existing work does not consider this aspect.

To overcome the aforementioned drawbacks, two main
works are proposed in this paper. For the first problem, we
strick a balance between limited band use and acquisition of
useful information. To achieve this, we construct several tasks,
each of which includes limited number of bands with low
correlation, and make them work jointly. The second work is
stepwise strategy for MRF optimization. It effectively avoids
the traditional setting of the balance parameter between the
two energy terms.

C. Contribution

Two main contributions are claimed in this paper. They are
listed as follows.

1) Multitask Joint Sparse Representation on HSI: In order
to use a limited number of uncorrelated bands and maintain
their interactive relationship, the MJSR is explored [31]–[33]
in this paper. The method utilizes several sets of features
simultaneously and translates them into tasks to complete the
classification process. In the preparation phase, we make use
of cluster method to divide bands into several sets, and select
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Fig. 1. HSI classification pipeline. For an input HSI, the first step is to divide the spectral bands into different band sets, and the bands in one set have
similar attributes. Then, based on the obtained band sets, several tasks are established, which are used for further multitask representation. After that, we
reconstruct a test sample with a JSR of tasks and its class label is inferred with the lowest reconstruction error. Finally, the obtained results are refined by
sMRF optimization.

bands from clusters to construct tasks. Then all the tasks are
integrated into a whole union to work together and find the best
solution. We choose the accelerated proximal gradient (APG)
method [34], [35] to optimize the classification model and find
the most appropriate parameters to synthesize the tasks. The
presented strategy can maximize the usage of bands and is the
first attempt in HSI classification, as far as we know.

2) Stepwise MRF Framework: To keep the spatial coher-
ence of the classification results in HSI, MRF framework [30]
is a traditional solution. It defines an energy function contain-
ing a data term and smoothness term and through its mini-
mization, the best labeling (classification) result is obtained.
Generally, the two functional terms are always optimized
together, which cannot always maximize the usage of spec-
tral and spatial information simultaneously. In this paper, we
find that if we optimize these two parts one after another, a
better result can be obtained. This stepwise MRF (sMRF) not
only improves the classification result of our method, but also
demonstrates its applicability in other classification paradigms.

The remainder of this paper is organized as follows.
In Section II, the proposed work is described in detail,
including band clustering, task establishment, joint classifi-
cation with MJSR, and sMRF optimization. In Section III,
experimental results, as well as a comprehensively qualita-
tive and quantitative comparison and analysis, are presented.
Finally, we conclude this paper in Section IV.

II. HSI CLASSIFICATION

In this paper, we focus on conducting the classification by
specific bands. There are mainly four steps for this procedure:
1) band clustering; 2) task establishment; 3) joint classification
with MJSR; and 4) sMRF optimization. The general flowchart
is shown in Fig. 1.

First, since the neighboring bands of HSI tend to be similar,
we tactfully divide them into several highly uncorrelated band
sets. This is the prerequisite for further task establishment. For
this purpose, a modified k-means method is designed to get a
cluster result that can be repeated. After the process of band
clustering, we define multiple tasks to fulfill the classification,
each of which contains a few selected bands representing the
whole band sets and can perform the classification task indi-
vidually. But treating them independently is not appropriate
because the correlation and redundancy among the bands are
not well modeled. Therefore, an MJSR strategy is explored to

Fig. 2. Illustration of band clustering for the Indian Pines image. Suppose
the n = 200 original bands are clustered into k = 10 band sets. Since the
clustering procedure is kind of random that the volume of each set differs
from each other. Heuristically, the band set with smaller volume has stronger
ability of discrimination.

simultaneously solve the classification of different tasks. In the
end, a stepwise optimization is applied to refine the obtained
results.

A. Band Clustering

For HSI, we always find that the high interband correlations
affect the classification result a lot, especially for the neigh-
boring bands. Therefore, we need to select the bands with
high discrimination to complete the classification process. To
achieve this purpose, the first step can be viewed as a prepa-
ration step, in which we divide the bands into different sets
according to their similarities. Bands with high similarities
will be arranged to the same cluster, and only representa-
tive of every cluster will be selected in the next step. To be
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Algorithm 1 Modified k-Means
Input: X = {x1, x2, . . . , xn}, R, k

1: μx ← CENTERINITIALIZATION(X,R,k)
2: Removed isolated points returns
3: Initialize Cx through clustering centering on μx

4: Calculate the new cluster centers and re-cluster to get Cx
new

5: while Cx
new �= Cx do

6: Cx ← Cx
new

7: Calculate the new cluster centers and re-cluster to get
Cx

new
8: end while

Output: Cx

9:

10: function CENTERINITIALIZATION(X,R,k)
11: Remove isolated points
12: while The total number of clusters N �= k do
13: if k − N > N then
14: For each current cluster, find μ1

x and μ2
x with

maximum Euclidean distance shown in R
15: Divide each current cluster to two centering on

μ1
x and μ2

x
16: N ← 2N
17: else
18: For the first k−N clusters, find μ1

x and μ2
x with

maximum Euclidean distance shown in R
19: Divide the k − N cluster to two centering on

μ1
x and μ2

x
20: N = k
21: end if
22: end while
23: return μx

24: end function

more specific, we cast every band of the image to a vector
of data, and then cluster them to band sets. Moreover, differ-
ent sets have different volume, which reflects its significance.
Heuristically, the band set with smaller volume has stronger
ability of discrimination. A more detailed illustration is shown
in Fig. 2.

As for the clustering technique, a modified k-means is
designed. The motivation is mainly because of the unrepeated
clustering results for distinct initializations of traditional
k-means. To solve this problem, we select the initial cluster
centers as the points with maximum Euclidean distances. To be
more specific, suppose the initial bands is X = {x1, x2, . . . , xn},
we first eliminate the outliers in the data points [36], [37],
which might be some isolated noises [38] disorderly dis-
tributed at the edge of the picture, and will cause inaccuracy.
Then we calculate the affinity matrix R, in which the elements
represent the Euclidean distances between each two points.
The two bands μ1

x and μ2
x with the maximum Euclidean dis-

tances shown in R are assigned as the two initial clustering
centers, and the other bands are divided into two parts accord-
ing to their distances to the two centers. Then for each cluster,
the division continues with the same principle until the num-
ber of clusters N reaches the required volume k. This center
initialization not only ensures the initial dissimilarity of the

Fig. 3. Illustration of task establishment. Followed from Fig. 2, there are
t = 25 possible tasks but only P = 4 tasks are selected as the final ones,
indicated by the green rectangles.

chosen centers, but also makes the clustering procedure more
stable. The other important setting lies in the choice of band
set number k. Smaller size will make the task separation less
desirable; larger size will induce a decreased discrimination
and high computational cost. Suppose the final clustering result
is represented by Cx, a more detailed pseudocode is shown in
Algorithm 1. Detailed discussion of this parameter will be
introduced in Section III-B2.

B. Task Establishment

It has been demonstrated that for HSI classification, if a
suitable number of bands are selected, the result of classifi-
cation would be more accurate than we just make use of all
the n bands [28], [29]. The reason is that the data after band
selection is with lower correlation and has more discriminative
ability. Inspired by this fact, we just select a limited number
of bands to conduct the classification.

After the data are divided into k clusters in the previous
step, we will define t tasks to fulfill the classification objec-
tive. Each task contains a batch of elements chosen from the
band sets, one from each. That means every task contains all
the representative information from the HSI and it is ade-
quate to perform the classification. To be specific, suppose
the volume of each cluster set is denoted as c1, c2, . . . , ck and
consequently t = max{c1, c2, . . . , ck}. In real applications, too
many tasks may lead to a high computational cost in the next
JSR step. Therefore, we only select P = min{c1, c2, . . . , ck}
tasks from t for efficiency. This is illustrated in Fig. 3.

C. Joint Classification With MJSR

The above two steps can be considered as a grouping strat-
egy for the original bands. In this step, we focus on utilizing
the obtained P tasks to accomplish the classification process
jointly. This can be divided into four substeps as follows.

1) Dictionary Construction: In this phase, pixels of differ-
ent ground classes are selected to construct tasks. For each
task, since there are Q classes of pixels, we denote it by
Xp = [Xp

1, . . . , Xp
Q], p = 1, 2, 3, . . . , P, of which Xp

q ∈ Rmp×nq .
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Here, mp is number of bands contained in the pth task and
nq is the number of training samples in the qth class. And
nt = ∑Q

q=1 nq represents the number of training samples in
total. In fact, Xp

q is the dictionary for the class q and task p.
2) Testing Sample Representation: Given a test sample y,

we first construct its pth task representation yp by the linear
representation of dictionaries. The reconstruction equation is
as follows:

yp =
Q∑

q=1

Xp
qwp

q + ξp, p = 1, . . . , P (1)

of which wp
q is the reconstruction coefficient vector and ξp is

the residual term. Suppose that wq = [w1
q, . . . , wP

q ] represents
the coefficient of every task in qth class. Our MJSR can be
concluded as the following equation:

min
W

1

2

P∑

p=1

∥
∥
∥
∥
∥
∥

yp −
Q∑

q=1

Xp
qwp

q

∥
∥
∥
∥
∥
∥

2

2

+ λ

Q∑

q=1

∥
∥wq

∥
∥

2 (2)

where W = [wp
q]p

q. The equation above is a multitask least
square regressions with �1,2 mixed-norm regularization.

3) Parameter Optimization: The goal of this step is to find
the most proper representative coefficients wq = [w1

q, . . . , wP
q ]

of (2). To this end, we apply the APG method [34], [35] to
get the solution. Compared with other existing methods such
as the projected subgradient method [39] and the blockwise
coordinate descent method [46] which are also applicable for
the solution of this equation, APG is with higher convergence
rate and learning accuracy. This method introduces the varia-
tion in Nesterov’s method that calls a black-box oracle in the
projection step in each iteration. This projection can be sim-
ply solved and the time complexity is reduced greatly. Suppose
the iterative number is t. The converge rate of APG is O(1/t2)
compared with O(1/

√
t) of other methods. To be more spe-

cific, this method iteratively update the weight matrix sequence
{Ŵt = [wp,t

q ]}t≥1 and a newly introduced aggregation matrix
sequence {V̂t = [vp,t

q ]}t≥1. Each iteration includes two steps
as follows, which update Ŵt and V̂t alternately.

Step 1 (Generalized Gradient Mapping): Given the current
aggregation matrix V̂t, then we update Ŵt+1 according to the
following:

ŵp,t+1 = v̂p,t − η∇p,t, p = 1, . . . P

ŵt+1
q =

⎡

⎢
⎣1− λη

∥
∥
∥ŵt+1

q

∥
∥
∥

2

⎤

⎥
⎦

+

ŵt+1
q , q = 1, . . . Q (3)

of which ∇p,t = −(Xp)Typ+(Xp)TXpv̂k,t, η is a size parameter
and [·]+ = max(·, 0).

Step 2 (Aggregation): Now we will update V̂t+1 by the linear
representation of Ŵt and Ŵt+1

V̂t+1 = Ŵt+1 + αt+1(1− αt)

αt

(
Ŵt+1 − Ŵt

)
. (4)

It has been demonstrated [12] that the best parameter setting
of {αt}t≥1 is αt = 2/(t + 2).

4) Final Classification: For the testing sample, we can get
the optimal representative coefficients ŵp

q from the previous
steps. And now we assign the label of the test sample by
finding the lowest reconstruction error accumulated across all
the P tasks. The class can be found by the following equation:

q∗ = arg min
q

P∑

p=1

θp
∥
∥
∥yp − Xp

qŵp
q

∥
∥
∥

2

2
(5)

where θp is the weight we assign to task p, whose numerical
value will be discussed in the experimental section. The even-
tual class label of the test sample is the one with the lowest
total reconstruction error.

D. Stepwise MRF Framework for Optimization

The obtained results after previous processing still have
some outliers. So we just take the former process as the initial-
ization of the MRF framework [40], [41], which is utilized to
refine the classification map. Traditionally, the MRF describes
the following energy minimization problem:

E = Ed + λEs (6)

where Ed is the data term representing the likelihood of the
objective data, and Es is the smoothness term reflecting the
joint Gibbs distribution [42] of the label field which satis-
fies the Markov property. By finding the minimum solution
of the energy function E, the corresponding label field can be
acquired.

However, there is a coefficient λ which is imposed to assign
a proper proportion to both the data term and the smoothness
term. But in most time, this coefficient is difficult to be deter-
mined adaptively. In some area of an image where there exist
only one class of pixels, the smoothness term is more impor-
tant to eliminate the noisy labels. In other areas that different
classes exist, the data term counts more. We take the examples
as shown in Fig. 4 to illustrate the situation.

The first case in Fig. 4(a) contains three different labels that
are mixed together. In this case, the accurate classification is
mostly determined by the spectral information. That means
the data term should be more decisive than the smoothness
term and a small λ is much proper. Otherwise if λ is large,
the optimization result may be the case as shown in Fig. 4(c),
where both the correct and incorrect labels spread. The sec-
ond case shown in Fig. 4(b) only consists of one kind of label
but is contaminated by sparse noisy labels. The majority work
should be smoothing the whole patch to make the results con-
sistent as shown in Fig. 4(d). This corresponds to a larger λ

on the contrary. Altogether, we cannot define a most proper
coefficient λ in advance to balance the functional two terms.

To solve this problem, we abandon the coefficient λ by a
stepwise strategy to separate these two terms. The principle is
that the smoothness term and data term should, respectively,
take their own effect in accord with the actual configuration of
the objective data. To be specific, the smoothness term is first
used to make a local optimization, and then we use the data
term to get rid of the wrong labels, which can be viewed as a
global restriction. With this strategy, an improved framework
for MRF is proposed. A revised ISING model is employed
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Fig. 4. Illustration of different λ choices. (a) Initial correct labeling and its
(c) corresponding results applying large λ. (b) Initial corrupted labeling and
its (d) corresponding results applying large λ.

for the smoothness term, and for the data term, we introduce
GMM model [43].

1) Energy Function: In the energy function [44],
the smoothness term is typically defined as Es =∑

a,b∈C Vc(la, lb), where C is the set of cliques in a specific
neighborhood system, a and b are the pixels in the image
and la and lb are the corresponding labels. Moreover, we treat
the pixel with different orders separately by assigning vari-
ous weights to them. These weights reflect the significance
of the neighboring pixels in the system. The ISING model of
smoothing term is novelly revised as follows:

V{a,b}(la, lb) =

⎧
⎪⎨

⎪⎩

−ρ

n
if la = lb

+ρ

n
if la �= lb

(7)

where n is the order of pixel. Suppose we have pixel xi and
the central pixel xo, the n-order means the distance between
them is n. In fact, this formulation means that the larger the
distance between the pixel and the center is, the less effect it
owns.

To penalize solutions which are not consistent with the prior
knowledge, the data term is introduced. The general form of
which is Ed = ∑

a∈C wa(la), where wa(la) shows the cost of
giving a label la to pixel a. We introduce GMM model in this
step, for the reason that the hyperspectral scenery is always
formed by several categories. Suppose that there are L classes
of pixels and the Gaussian distributions in our GMM model
indicate each of these categories. Each distribution is con-
structed by a set of parameters θi = {μi, σi, zi}, i ∈ {1, . . . , L},
in which μi and σi represent the expectation and the variance
respectively, and zi represents the mixing coefficient of the ith
category. Expectation-maximization algorithm is introduced
iteratively to estimate and update these three parameter. Then,
to measure the probability of an observed pixel belonging to

each specific class, the data term is formulated as follows:

wa(la) = f
(
a|θla

)
(8)

where f (.) is the probability density function of the GMM
distribution.

2) Stepwise Optimization: After the definitions above, we
give out the stepwise optimization as below.

Step 1: Conduct the local optimization by smoothness term.
The initial result obtained by multitask representation is not
very robust. Through the minimization Ls = minL Es, we, on
one hand, eliminate the isolated class labels first, and on the
other hand, get two kind of labels such as the changed and
the unchanged.

Step 2: Justify the correctness of the changed labels by the
data term. After the first step, we get an updated label field.
But the induced label changes are not necessarily appropriate.
Besides, labels which remain unchanged might be wrong in the
next iteration, either. Therefore, we further check the changed
labels through the data term Ld = minL{Edl1, Edl2 + α},
where l1 and l2 are the initial label and the changed label,
respectively, and α is the coefficient that punishes the change
process.

Step 3: Check if the energy function becomes a smaller one.
If so, restart the iteration from step 1. Otherwise, we reach the
final optimization result.

To be noted further, the steps 1 and 2 cannot be exchanged,
for the reason that the data term here mainly acts as the judge-
ment of the correctness of the changes brought by smoothness
term.

III. EXPERIMENTS AND ANALYZES

In this section, experiments are conducted to evaluate the
effectiveness of the proposed method. We first introduce the
experimental setting and the parameter selection in detail. And
then, evaluative analysis is presented.

A. Data Set

We verify the proposed method on two publicly available
HSIs: 1) Indian Pines and 2) Pavia University. The description
of these images is as follows.

The Indian Pines image was gathered over a vegetation area
in northwestern Indiana by AVIRIS sensor, which consists of
145×145 pixels and 220 spectral reflectance bands with spatial
resolution of 20 m/pixel. These 220 bands include 20 water
absorption bands that are not discriminative enough and we
conventionally remove them in our experiment. Sixteen classes
of interest are contained in this image, of which we select
the major nine categories to accomplish our experiment. We
choose our training samples in the image randomly, and the
count is 10%.

The Pavia University is captured by ROSIS sensor over
Pavia, Northern Italy. This image is characterized by spa-
tial resolution of 1.3 m/pixel with 103 spectral bands and
comprises 610× 340 samples including nine classes of inter-
est. For this image, we complete the trial with 10% training
samples.
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B. Experimental Details

Before detailed analyzing the performance of the proposed
method in this paper, the competitors and parameter selection
will be introduced in the following part.

1) Competitors: To verify the effectiveness of the pro-
posed MJSR with stepwise MRF optimization (MSMRF),
we first compare it with five most typical classifica-
tion algorithms: 1) SVM [45]; 2) orthogonal matching
pursuit (OMP) [46], [47]; 3) kernel logistic regression
(KLR) [48], [49]; 4) subspace pursuit (SP) [50]; and
5) k-nearest neighbor (kNN) algorithms [51], [52]. These
six classical methods are widely accepted in remote sensing
applications. The comparison reveals the superiority of our
method.

Moreover, we also compare our method with some other
spatial–spectral HSI classification methods, including the
state-of-the-arts. The first spatial–spectral method named
SVM+ISO data is proposed in [53], which combines the
pixel-wise classification map with the segmentation map. The
classification map is got by SVM classifier and the spatial rela-
tion is achieved by clustering-based method. After the post
regularization, the final classification result is obtained by a
majority vote based on these two maps. The second spatial–
spectral method [54] integrates SVM to the morphological
profiles framework. In this method, several morphological
profiles are built and used all together in one extended morpho-
logical profiles, which illustrates the spatial correlation of HSI
gracefully. This method is denoted as Spec-EMP. The third
spatial–spectral method [55] is based on stochastic minimum
spanning forest approach. The graph-based minimum spanning
forest is used to correct the pixel-wise classification map. This
method is named as random marker-minimum spanning for-
est (RD-MSF). Note that since the original papers [54], [55]
lack a thorough report on the three HSIs, the comparison of
Spec-EMP only exists in Pavia University data and RD-MSF
only exists in the Indian Pines data.

2) Parameter Selection: There are a number of critical
parameters to be elaborated in our experiment.

The very first parameter lies in the band clustering process,
which is the cluster number k. If k is large, the correlation
among different sets is high and there will exist few tasks. On
the contrary, if k is a small number, the bands within each set
will have more correlation and the effect of clustering pro-
cess is not obvious. This will lead to a high computational
complexity. Therefore, in our experiment, we heuristically set
k = 20.

The second parameter is the task number denoted by P. Too
many tasks may boost the computational complexity. But with
a limited number of tasks, the effect brought by the interaction
among every task may be cut down. In this paper, we set
P = min{c1, c2, . . . , ck} according to the minimum volume
of clusters (owing to fact that the result of clustering is not
stable, P in most time ranges from 2 ∼ 5. Since there are
generally 20 cluster sets, the total representative bands used
for classification are 40 ∼ 100. On the both data sets in our
experiments, P is heuristically set as 2 for efficiency).

The third parameter θp exists in the final classification step
of joint classification with MJSR. θp represents the weight we

Fig. 5. Experimental comparison of different neighborhood orders.

put to every task in the process of classification. In most cases,
we simply pick θp = 1/P to give every task the same weight,
for the reason that all these tasks constructed by bands of the
HSI are with equal importance. But they can be assigned with
different weights.

The fourth and the fifth parameters appear in the opti-
mization process. In the first step of stepwise optimization,
we conduct the local optimization in a neighborhood system.
However, the size of this neighborhood system influences the
final result severely. Suppose the maximum order of neigh-
borhood system we choose is denoted by r. Then we examine
the performance of the method with different choices of r.
The results on Indian Pines image and Pavia University with
10% training samples are shown in Fig. 5. It is obvious that
with the increase in r, the performance is enhanced. But
when r exceeds 7, the performance on the contrary decreases.
The theoretical analysis is that a reasonable enlargement of
neighborhood system may boost the accuracy because it can
eliminate the influence of noise. However, too large neighbor-
hood system will introduce too much uncorrelated information
that deteriorates the discriminative ability. Therefore, we select
r = 7 in our experiment. In the second step of stepwise
optimization, we punish the change process by coefficient α

which is the fifth parameter. This coefficient should avoid two
extreme conditions, too large or too small. If α is a large
one, the change will be hard to occur. On the contrary, if the
change is easy to happen, the final result will almost totally
differs from the initial labeling, which means that after the
smoothing process, the result of MJSR will be covered. So, in
most time, we set α as 1 or 2.

C. Performance Analysis

In this section, a number of experimental results are gained
to evaluate our method. Results of both typical methods
and the proposed one (MSMRF) are shown in detail, as
described below. The main evaluation criteria are the overall
accuracy (OA) and the average accuracy (AA).

1) Experiment on Indian Pines: In the very first step, we
compare our method with the traditional classification meth-
ods on Indian Pines, with 10% training samples [49], [54].
The comparison is illustrated in Fig. 6, which consists of
four subfigures, including the results of the proposed MSMRF
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(a)

(b)

(c)

(d)

Fig. 6. Results on Indian pine image. (a) kNN classification map,
OA = 69.46%. (b) SVM classification map, OA = 79.69%. (c) MSMRF
classification map, OA = 92.11%. (d) Ground truth.

method, two most competitive classical methods kNN and
SVM, and the ground truth. Fig. 6(a) is got by the traditional
kNN classifier and the OA is 69.46%. Fig. 6(b) is achieved
by SVM method, for which the OA is 79.69%. Fig. 6(c) is
obtained by MSMRF, whose OA achieves 92.11% and is the
best among these three methods. At last, Fig. 6(d) is the ground
truth.

An objective comparison is shown in Table I, which includes
the results of another five comparison methods, SP, OMP,
SLK, SVM+ISOdata, and RD-MSF. We may find that almost
all the best OA and AA appear in our method. To be
more specific, except for the areas of corn-notill, Grass-
pasture, and soybeans-mintill on which the best results exist in
SVM+ISOdata or RD-MSF method, the other highest scores
are all achieved by our method. For several classes, our method
has the perfect results which reach 100% accuracy. Moreover,
as seen in Table I the main errors concentrate on the classifi-
cation results of corn-mintill, soybeans-notill, and woods for
most methods. Nevertheless, our results are 90.84%, 99.69%,
and 100%, which are still satisfying. In the following, we will
give a detailed analysis of the illustrated classification map.

As shown in Fig. 6, for traditional kNN and SVM meth-
ods, these three types are mainly disrupted by chaotic outliers
while the proposed one is with few noises. To account for
this phenomenon, it has to be taken into consideration that
the minor differences of neighboring pixels cause the wrong
labeling, so that the outliers randomly occur with no rules.
But in our method, we just select limited bands contained in
each task that cut down the interaction of similar bands, which
means the confusing bands might have already been got ride
of through the phase of MJSR. Moreover, apart from these
scattered errors, there are also coherent errors for the results
of traditional methods. For example, a high percentage of the
area of soybean-mintill is wrongly classified as soybean-notill
in the result of kNN method. This type of error is mainly

(a)

(b)

(c)

(d)

Fig. 7. Results on Pavia University image. (a) kNN classification map,
OA = 74.86%. (b) SVM classification map, OA = 79.15%. (c) MSMRF
classification map, OA = 92.52%. (d) Ground truth.

caused by the similarity of two different object bands. But for
our method, this wrong labeling does not exist. We handle
this problem by sMRF assistance which considers the ten-
dency that the neighboring pixels may have the same labels
and the different ground categories have different physical
bands.

2) Experiment on Pavia University: To further demon-
strate the proposed method is appropriate for different HSIs,
another experiment is conducted on Pavia University image
with the same parameters. The visualized results are shown
in Fig. 7. It is obvious that the best performance comes from
our method, with 95.41% AA and 92.42% OA, respectively.
A more objective result including comparison with SP, OMP,
SLK, Spec-EMP, and SVM+ISOdata is shown in Table II.

To be more specific, we can see from Table II that the
error-prone areas mainly distribute in the Gravel and Meadows
regions. This can be proved from Fig. 7(a) and (b), where the
Meadows area in the lower portion of the image is severely
affected by gravel and bare soil. But in Fig. 7(c), this error
almost do not exist. For these two types, our accuracies are
90.56% and 93.55%, respectively, which are all best perfor-
mances. The main advantage of our method still lies in the
elimination of scattered errors and coherent errors. Thanks to
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TABLE I
COMPARISON OF CLASSIFICATION ACCURACY FOR DIFFERENT METHODS ON INDIAN PINES

TABLE II
COMPARISON OF CLASSIFICATION ACCURACY FOR DIFFERENT METHODS ON PAVIA UNIVERSITY

the MJSR and sMRF processes, this image is also classified
with high precision.

To conclude, compared with the former classification
methods, a brief explanation for the advantage of the pro-
posed method mainly lies on the elimination of redundant
information that brings confusion to the classification. This
improvement contributes to the construction of a more robust
classification model. Moreover, according to the visualized
classification maps, two main types of errors caused by
this confusion in traditional methods can be concluded. The
first is the wrong labeling that caused by confusing bands
among different classes, and the second is the bad influ-
ence brought by the similarity of the same class that spreads
the wrong labels. While as shown in the classification map
of our method, the first error is eliminated by the maxi-
mized usage of the selected bands through MJSR that gets
rid of confusing information, and the second one is solved
gracefully via sMRF assistance which can preserve spatial
coherence.

D. Discussion

There are still some problems to be discussed. The dis-
cussion focuses on two topics: 1) the effect of bare MJSR
without spatial constraint and 2) the expansibility of sMRF
optimization.

1) Effect of MJSR: One of the main contributions of
this paper is MJSR. In order to see the actual effect of
this functional step, we separate it from sMRF optimization.

Fortunately, we find that although the accuracy declines obvi-
ously, the bare MJSR result still outperforms the classical
methods mentioned above. On Indian Pines, the overall clas-
sification accuracy is 80.54% for MJSR, while the existing
pixel-wise classification methods KLR, SVM, OMP, SP, and
kNN are all no more than 80%. Moreover, on Pavia University,
the accuracy is still the best 84.45%, compared with classical
methods whose highest one is 83.56% for KLR.

We have to claim that another most significant contribu-
tion of our MJSR method lies in the band utilization. In our
method, we make the best of every band to reach the final
result. On the experimental images, the numbers of bands we
use are no more than 40. The low correlation among bands
contributes to the final result of MJSR.

2) Expansibility of sMRF Optimization: The second dis-
cussion of the proposed method is the expansibility of sMRF
optimization. We apply our optimization process (sMRF) to
both the existing kNN and SVM methods to verify this prob-
lem. The comparison conducted on Indian Pine is shown in
Fig. 8. It is found that the accuracy of the traditional algo-
rithm kNN tends to be around 70%, which is not a nice
result. However, once the kNN algorithm is improved by
our optimization algorithm, the accuracy reaches 90%, which
is a distinct improvement. These two results are shown in
Fig. 8(a) and (b), respectively. As shown in Fig. 8(c) and (d),
the precision of SVM is around 80% and boosts to 97.59%
after optimization. The corresponding comparisons are shown
in Fig. 8(e) and (f) is the groundtruth. This improvement ver-
ifies the extraordinary expansibility of sMRF optimization.
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TABLE III
COMPARISON OF CLASSIFICATION ACCURACY FOR MRF AND SMRF ON INDIAN PINE AND PAVIA UNIVERSITY

(a)

(b)

(c)

(d)

Fig. 8. Indian pine image. (a) kNN classification map, OA = 69.46%.
(b) kNN with sMRF classification map, OA = 87.77%. (c) SVM classification
map, OA = 79.69%. (d) SVM with sMRF classification map, OA = 97.59%.

The same improvement is also found in Pavia University that
validates this high expansibility of sMRF too. The accuracy
of kNN and SVM increases by 15.10% and 19.53%, respec-
tively. More detailed result is shown in Fig. 9. To conclude,
the AA of every method increases at least 10%, which means
this optimization is not barely suitable for MJSR.

3) Comparison of MRF With sMRF: At last, a discussion
of the effect of sMRF compared with MRF [30] is conducted
to further prove the effectiveness of our stepwise optimiza-
tion. The comparison is still based on Indian Pine and Pavia
University both with 10% training samples. In the traditional
MRF framework, as shown in (6) the weights of smoothness
term and data term are balanced by coefficient λ. This λ ranges
from 0.5 to 5 in most time. However, in sMRF this coefficient
no longer exists. We take SVM as the initialization of these
two methods and find sMRF outperforms MRF with distinct
advantage. The detailed comparison is shown in Table III. We
can see that on Indian Pine, the best OA of MRF is 92.78%
when λ = 5 but the OA reaches 97.59% for sMRF. Similarly,
for Pavia University, the best result of MRF is obtained when
λ = 3 and OA is 87.57%, while the OA of sMRF is 98.68%.
This can be viewed as an apparent improvement.

4) Analysis of Suboptimal Performances: We do not deny
that though the overall performance of the proposed method
is the best, suboptimal performances on several specific
categories still exist. For Indian Pines, the accuracies of
both Corn-notill and Soybean-min rank the third and the

(a)

(b)

(c)

(d)

Fig. 9. Pavia University image. (a) kNN classification map, OA = 73.63%.
(b) kNN with sMRF classification map, OA = 88.73%. (c) SVM classification
map, OA = 79.15%. (d) SVM with sMRF classification map, OA = 98.68%.

Grass-pasture ranks the second; for Pavia University, the
Asphalt ranks the third and the Trees and Bricks rank the
fourth. These accuracies in most time range from 80% to 90%
which are barely satisfying. The main reason is that the
classifier cannot always get the best performance on all the
categories due to their different data properties. But overall,
the proposed method performs the best for most ground cat-
egories and the averaged accuracy is the highest. A more
specific research on these categories may be viewed as our
main future work.

IV. CONCLUSION

In this paper, we have presented a new spectral–spatial HSI
classification scheme. It aims to solve the problem brought by
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interband correlation among HSI bands and uses the spatial
coherency to adaptively refine the classification results. For
this purpose, the bands are first divided into several clusters,
whose elements of every cluster are with low correlation. Then
tasks are constructed by selecting bands from each band set.
After that, a jointly sparse representation is applied to rep-
resent a specific input pixel, according to the reconstruction
error of which the class label can be identified. At last, the
sMRF spatial restriction helps with keeping the label consis-
tency within a small neighborhood. Two main contributions
are claimed in this paper: 1) the MJSR of HSI data and
2) the stepwise sMRF framework. Experimental results on two
HSIs namely Indian Pines and Pavia University demonstrate
that the proposed framework yields better performance, when
compared with traditional popular methods.
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