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Abstract—Hyperspectral anomaly detection (AD) is an impor-
tant problem in remote sensing field. It can make full use of
the spectral differences to discover certain potential interesting
regions without any target priors. Traditional Mahalanobis-
distance-based anomaly detectors assume the background spec-
trum distribution conforms to a Gaussian distribution. However,
this and other similar distributions may not be satisfied for the
real hyperspectral images. Moreover, the background statistics
are susceptible to contamination of anomaly targets which will
lead to a high false-positive rate. To address these intrinsic prob-
lems, this paper proposes a novel AD method based on the
graph theory. We first construct a vertex- and edge-weighted
graph and then utilize a pixel selection process to locate the
anomaly targets. Two contributions are claimed in this paper:
1) no background distributions are required which makes the
method more adaptive and 2) both the vertex and edge weights
are considered which enables a more accurate detection perfor-
mance and better robustness to noise. Intensive experiments on
the simulated and real hyperspectral images demonstrate that
the proposed method outperforms other benchmark competi-
tors. In addition, the robustness of the proposed method has
been validated by using various window sizes. This experimen-
tal result also demonstrates the valuable characteristic of less
computational complexity and less parameter tuning for real
applications.

Index Terms—Graph theory, hyperspectral anomaly detection,
manifold learning.
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I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) processing has been
increasingly popular. The captured hyperspectral data

cube delivers rich information containing both spatial and
high spectral dimensions [1]–[3]. Owing to its reliable and
nearly continuous spectra, hyperspectral image can provide
discriminative clues to identify the subtle differences of dif-
ferent ground objects [4], which leads to many successful
applications [5], [6].

As a greatly important and fundamental issue, anomaly
detection (AD) [7]–[9] for HSI has been researched a lot for
many years. It can be applied in precision agriculture [10],
food and drug testing in public safety [11], rare mineral dis-
covery in geology [12], civilian search and rescue [13], and
man-made objects distinction in intelligent defense [14], [15].
In essence, AD is a binary classification problem which
classifies the pixel under test as an target or a back-
ground [16]. Different from the supervised target detection
problem [4], [17]–[19], in which the spectral information of
detected target is known as a reference, hyperspectral AD is an
unsupervised one without any prior spectral information about
the target or background [20], [21]. This technique is more
appropriate and consistent with the actual situation, because
in most cases the accurate spectrum signatures of many inter-
esting signals or targets cannot be provided as a prior in
advance.

Generally, the aim of AD in hyperspectral remote sensing is
to locate a target whose distinct spectrum deviates significantly
from the surrounding background [22]. Based on this prelim-
inary, a wealth of detection methods have been proposed over
the last two decades [23]. Conventional detectors need some
rigorous assumptions on the spectrum distribution of back-
ground, which is not fully reasonable for the real collected
hyperspectral data. Another fact is that because of the low
spatial resolution of hyperspectral images, a pixel may cover a
large range of area which possesses rich surface materials. As a
result, its spectrum signature is typically complex and maybe
a mixture of different components of ground objects. Naive
assumptions in this case are unable to model the data and may
limit their generative ability for a new hyperspectral data.

In order to overcome these limitations existing in tradi-
tional methods, this paper proposes a novel scheme based
on manifold learning [24], [25] and graph theory [26]. Two
main contributions are claimed in this paper and they are
summarized as follows.

1) Neither requiring specific assumptions about the back-
ground statistics, nor estimating its covariance matrix,
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the proposed detector directly constructs a graph dis-
covering the internal relationships of the hyperspectral
pixels. The main concept is that a background pixel
seems to have close and solid relationships with its sur-
roundings, while an abnormal pixel tends to build distant
and fragile relationships with its neighbors. By this strat-
egy, no background distributions should be estimated
and it is more adaptive to various kinds of hyperspectral
image and more befitting to the practical applications.

2) Not only taking the edges’ contributions into consider-
ation, but also considering the vertexes’ dedication, we
construct a vertex- and edge-weighted graph to guar-
antee a superior performance of AD. Instead of only
observing the relationships between the examined pixel
and its k-nearest neighbors like traditional methods, the
proposed method explores all the connections of all
pairs of pixels. This makes the detector more robust to
the interference by noise or specific computation errors,
which has been validated by the sensitivity experiments
on the window sizes and noise levels.

The remainder of this paper is organized as follows. In
Section II, the related works of hyperspectral AD are reviewed.
In Section III, the proposed method is described in detail,
including the manifold learning reconstruction, the construc-
tion of the vertex- and edge-weighted graph, and the abnormal
pixel selection process. In Section IV, extensive experiments
are conducted on both the simulated and real hyperspectral
images to demonstrate the superiority of the proposed method.
Finally, the conclusion is drawn in Section V.

II. RELATED WORK

As a pattern recognition problem, AD is used to locate
objects that are extraordinary compared with the cluttered
background [27]. According to the definition of background
scope, existing methods can be roughly divided into two cat-
egories, global anomaly detectors (GAD) and local anomaly
detectors (LAD) [28]. For the GAD, background is defined
with the reference to all the image pixels or a large part of
them. And for the LAD, background refers to a small neigh-
borhood of the pixel under test. In this paper, for the sake
of organizing the literatures, we adopt another classification
standard with the assumption about the background spectrum
distribution [29]. There are also two categories, similarly.
The first one assumes the whole background conforms to a
homogenous spectral distribution or one single type, while
the second one assumes the background consists of various
classes with different distributions.

1) The well-known Reed Xiaoli (RX) algorithm proposed
by Reed and Yu [30], is a typical type of the first kind, which
assumes a simple background distribution. This algorithm is
deemed to be the benchmark anomaly detector for both mul-
tispectral and hyperspectral data. The hypothesis of RX is
that the background around a target conforms to the same
multivariate normal distribution. It relies on the well-known
Mahalanobis distance to measure the difference degree of a
spectral vector from its surrounding neighbors. RX usually
makes use of a sliding window, in which the observed pixel

occuping the center and the rest in the window are used to
estimate the background statistics.

However, RX has two intrinsic problems that may result
in a poor performance in many applications. For one thing,
a Gaussian distribution cannot accurately describe the real
hyperspectral image due to various surface materials and
complicated process of acquiring signals. For another, the
small-sample size is the most well-known challenge. When a
high-dimensional background covariance matrix is estimated
by a small number of samples, it leads to a badly-conditioned
matrix and an unstable result. Based on these considera-
tions, two types of methods are explored to overcome the
encountered issues. The first type can be considered as an
improved version of RX algorithm. For example, the global
RX (GRX) utilizes the whole hyperspectral image to cal-
culate a global covariance matrix. The subspace RX [1]
adopts a complement projection operator to suppress the back-
ground clutter. The random-selection-based anomaly detector
(RSAD) [31] utilizes a random selection process to better
compute the background clutter. Besides, the selective kernel
principal component analysis RX [32], minimum covariance
determinant RX [33], compressive RX [34], regularized-RX
(RRX) [35], etc, are also variants of the original RX algo-
rithm. However, the intrinsic problem of simple distribution is
still unsolved essentially since the original assumption of RX
has not been removed.

Another type relies on the kernel theory, which maps the
original data into a higher dimensional feature space through
a nonlinear mapping. The greatest strength of kernel methods
is that the discrimination between the target and the back-
ground can be enhanced in a high-dimensional feature space.
Furthermore, kernel methods can map the Gaussian distributed
data into nonlinear Gaussian, which has been proved to be
beneficial to AD [20], [36]–[38]. For instance, the Kernel-
RX (KRX) [36] is a parametric kernel-based algorithm, which
can be considered as a nonlinear form of the RX algorithm
in a high dimensional feature space. Since KRX still has
the issue of anomaly targets’ contamination to background
estimation in the kernel space, a method named robust non-
linear AD (RNAD) [39] has been proposed recently to solve
it. Through utilizing a regression detection strategy to sup-
press the contamination, RNAD can improve the performance
of KRX. Support vector data description (SVDD) [40] is
a nonparametric kernel-based anomaly detector, which can
directly analyze the support region avoiding the prior assump-
tion. SVDD supposes that the background is enveloped by a
minimum enclosing hypersphere in a high-dimensional fea-
ture space. Anomalies are identified as those who fall outside
this hypersphere. However, the kernel based methods always
suffer from the expensive computation burden. Especially for
SVDD, its computation is very expensive.

2) For the second kind of complex background distribution,
the background is supposed to contain multiple classes with
different distributions [41]. The typical processing roadmap
is to estimate the information about different classes respec-
tively and then to analyze them synthetically. The cluster-based
anomaly detector (CBAD) [42] is a representative example. It
first segments the hyperspectral image into different clusters,
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and then the original RX is performed in each cluster sep-
arately. Another example named multivariate normal inverse
Gaussian (MNIG) detector [43] is based on MNIG assumption.
It supposes each class conforms to a MNIG distribution. Then
for a pixel under test, its negative log-likelihood is estimated
with respect to the specific class distribution it belongs to.
Since the performance of AD heavily relies on the cluster-
ing, it is important to accurately estimate the cluster number.
When the number of classes is underestimated, the differ-
ence between classes can be decreased which leads to a poor
detection performance. And when the number of classes is
overestimated, anomaly targets may be classified into one
cluster. Consequently, the target cannot be detected [16].

III. HYPERSPECTRAL ANOMALY DETECTION

In this paper, we utilize a pixel selection process based
on the graph theory [44], [45] to realize AD. The proposed
method mainly relies on the philosophy that a pixel will be
considered as an anomaly when it is easily picked out from the
graph with a high probability. This is equal to say the relations
between the abnormal pixels and the background pixels in the
graph are more vulnerable than the other relations. There are
mainly three steps for the proposed method: 1) manifold learn-
ing reconstruction [46], [47]; 2) vertex- and edge-weighted
graph construction; and 3) anomaly pixel selection.

First, a manifold feature learning technique named locally
linear embedding (LLE) is applied. With the aid of recon-
struction error of the examined pixel by its nearest neighbors,
the vertex weight can be estimated. After that, we establish a
vertex-and edge-weighted graph. The graph takes all the rela-
tionships among vertexes into consideration and the weight
between two arbitrary vertexes is calculated in the Euclidean
space. With the obtained graph, a pixel selection process is car-
ried out to locate the abnormal target. The pixel with higher
probability being picked out from the whole graph is more
inclined to be a target. Fig. 1 shows the overall flowchart of
the proposed method.

A. Manifold Learning Reconstruction

This part will introduce the manifold learning technique
known as LLE [48] for the later definition of vertex weight.
Manifold learning is based on the philosophy that the data
embedded in a high-dimensional vector space can be mapped
into a low-dimensional manifold space. During this mapping,
it is able to reserve the coherent data structure correspond-
ing to that in the original high-dimensional feature space.
Considering that the LLE has been widely used to analyze
a variety of problems in hyperspectral image processing field,
especially for hyperspectal AD [23], [49], [50], the proposed
method adopts LLE to effectively describe the relationships
between hyperspectral pixels.

The LLE algorithm is successful in discovering the under-
lying manifold structure by a linear reconstruction of local
neighbors. Suppose the D-dimensional data point Xi ∈ RD

corresponds to a pixel in a hyperspectral image I. Therefore,
given a hyperspectral patch X ∈ RN×D containing N pixels,
each pixel Xi can be expressed by its local neighbors with a

linear combination. When the K nearest neighbors are con-
sidered, the reconstruction error εi can be measured by the
following formula:

εi =
∥
∥
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∥
∥
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where wi
j denotes the contribution of the jth neighbor of Xi.

When taking all the pixels into consideration, the extended
version of the reconstruction error can be obtained
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Through minimizing the cost function, the weights wi
j are

estimated finally. Two constrains are imposed on wi
j in this

procedure. First, the pixels participating in the reconstruction
of Xi must belong to their local neighborhood scope; otherwise
zero will be enforced on wi

j strictly. Second, for an observed
pixel, all the weights contributing to its reconstruction should
be summed to one:

∑

j wi
j = 1. The aforementioned two con-

strains can bring with numerous benefits to the minimization
problem.

Through a linear mapping involving translation, rotation,
and rescaling, the original data in the high-dimensional fea-
ture space are mapped into a global coordinate system on
the low-dimensional manifold. In the course of mapping, the
reconstruction weights reflecting the intrinsic geometric prop-
erties of data set are designed to keep invariant. That means
the mapped data Yi in its embedded low-dimensional man-
ifold coordinates, should also be reconstructed by the same
weights wi

j from its neighbors. Therefore, the cost function in
the embedded manifold can be denoted as following:
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where Yi ∈ Rd is the mapped low-dimensional vector (d � D).
By the minimizing the above equation with the fixed weights,
Yi is finally obtained through solving a sparse eigenvector
problem.

In summary, through the LLE technique, each pixel in the
hyperspectral image can be expressed by its neighbors with a
reconstruction error. The larger the error is, the less similar it
is to its neighbors. Benefiting from this virtue, we use these
reconstruction error obtained from (3) to stand for the weight
of vertex in the graph.

B. Vertex- and Edge-Weighted Graph Construction

Traditional methods rely on the assumptions about the spec-
tral distribution of background statistics. Nevertheless, these
assumptions are usually hard to satisfy due to the complex-
ity of real hyperspectral image in practice, which can lead
to the failure of AD. There have been graph-based meth-
ods to tackle these limitations, but the results are still far
from satisfying. For example, Basener et al. [51] proposed
a topology-based AD algorithm (abbreviated as GTAD for
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Fig. 1. Flowchart of the proposed method.

short in this paper) in dimensionally large data sets. This
paper builds a graph first and its edges connect those close
pairs of points in spectrum level. An observed pixel is identi-
fied as background when the number of its nearest neighbors
reaches a certain percentage for a given distance radius.
Recently, Messinger and Albano [52] (named as ADuT in
this paper) constructed a spectral graph in high-dimensional
space. The edge of the graph is generated between two pix-
els (named as vertexes) if they satisfy a similarity criteria.
According to the nearest neighbor approach, the degree and
weight can be calculated. Based on these two values, an
anomaly can be detected through computing weighted vertex
volume (WVV). In addition, there are also some literatures
based on constructing a graph to carry out hyperspectral tar-
get detection. Ziemann and Messinger [50] proposed a method
applying the graph model into the LLE technique in order
to adaptively determine the number of the nearest neigh-
bors. Munoz et al. [53] adopted topological AD to obtain the
model of background, which can be seen as a preprocessing
operation.

In this paper, we propose a novel method for AD in hyper-
spectral images via constructing a vertex- and edge-weighted
graph from a new view. The philosophy behind our method is
that the anomaly pixels tend to be picked out more easily than
the background pixels in the established graph. This is because
an anomaly pixel usually deviates from the background, and its
distinctiveness makes its connections with other background
pixels vulnerable.

We define the vertex- and edge-weighted graph as G =
(V, E, ε, A). Here V = {X1, X2, ..., XN} is the vertex set of size
N, each of which corresponds to a pixel in the hyperspectral
image. E ⊆ V × V is the edge set and ε represents the vertex
weight set obtained by using the LLE algorithm discussed in
the previous part. A = {aij} denotes the N × N symmetric
weight matrix, where

aij =
√
√
√
√

D
∑

l=1

(

Xil − Xjl
)2

. (4)

The element aij represents the similarity of each pair of hyper-
spectral pixels (vertexes), which is computed by Euclidean
distance. The less the similarity is, the larger the distance is.
So far, we have finished constructing the vertex- and edge-
weighted graph.

C. Abnormal Pixels Selection

With the graph constructed from a hyperspectral image
patch, the anomaly pixels can be identified. The assumption is
that an anomaly vertex usually has fragile relationships with
others and tends to be more easily selected from the graph.
Before detailed introduction of the pixel selection process, an
affinity matrix is firstly defined

Â = �A� (5)

where � = diag(ε). In this paper, we expect vertex’s contri-
butions and edge’s contribution can further affect each other,
which makes the difference between anomaly and background
more significant. Therefore, we formulate the (5) to achieve
this purpose. The effect of (5) is equal to the fact that each
edge weight is multiplied by two reconstruction errors cor-
responding to the two vertexes connected by the edge. As
an anomaly usually tends to have a larger edge weight and a
higher reconstruction error with respect to the background, (5)
can make the large difference more salient and the small dif-
ference more not manifest. Consequently, the obtained affinity
matrix is capable of considering the relationships of edges and
vertexes. It has properties of non-negativity, symmetry, and
monotonicity. To be specific, for any two pixels in a hyper-
spectral image, Âij ≥ 0, Âij = Âji. Moreover, with respect to εi,
εj and aij, Âji will be monotonically increasing. These proper-
ties are exactly consistent with the quality of our AD issue. For
this problem, an anomaly tends to have higher reconstruction
errors and associated edge distances, corresponding to a Âij

with pretty larger value. Therefore, the affinity matrix reflects
the intrinsic properties of targets and background.

With the obtained affinity matrix Â, we then introduce the
abnormal pixel selection process, which seems like the sub-
set selection [54]. Let vector P ∈ RN denote the abnormal
probability and each element pi is the probability of an pixel
being selected from the graph. Consequently, the problem
of selecting an abnormal pixel from N data points can be
formulated as

max
1

2
PTÂP

s.t. P ∈ � (6)

where � = {P ≥ 0, 1TP = 1}.
This is a quadratic programming problem and we refer to the

replicator dynamics [54] to find the optimal solutions. Give
an initialization of P(0), through the following iteration which
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is a discrete-time version of first-order replicator equation, the
corresponding local solution can be efficiently computed

pi(t + 1) = pi(t)

(

ÂP(t)
)

i

P(t)TÂP(t)
, i = 1, ..., N. (7)

The simplex � is invariant under these dynamics [55], [56],
which means that P(t + 1) will automatically satisfy the con-
straint 1TP = 1 when P(t) satisfies it. In other words, every
trajectory initiating in simplex � will maintain in � for
the future subsequent times [55], [56]. Since Â is symmet-
ric and non-negative, the objective function in (7) will strictly
increase. When converged, its asymptotically stable points are
equal to the local solutions. Therefore, we will obtain the
anomaly probability of each pixel.

The above description covers the main steps of the pro-
posed method. For the hyperspectral AD community, anomaly
is often detected by sliding a window, which is also adopted
by our method. Inspired by Banerjee et al. in [40], a hollow-
window is designed in order to make the anomaly more
significant. For an examined pixel, there are two surrounding
windows including the inner and outer ones. The inner window
can be treated as a guard window, which has the virtue of pre-
venting the bad influence caused by other anomaly pixels. This
is because when similar anomalies exist in a nearby region,
the examined anomaly pixel will have a smaller reconstruc-
tion error, leading to a missed detection. But with a proper
inner window, the pixels within it will be excluded and the
region between the inner and outer windows is taken as the
referential background. This has a higher probability to sup-
press the occurrence of missed detection. In this paper, sout
and sin denote the sizes of outer window and inner window,
respectively.

Our method adopts this sliding window strategy to exam-
ine the whole image gradually, which is called LGAD for
short. For each sliding window N represents the total number
of the graph’s vertexes including the examined central pixel
and the pixels between inner window and outer window. In
practical processing, the indexes (or coordinates) of N pix-
els are known. Therefore, when the output N × 1 probability
vector P is obtained, the corresponding anomaly probability
of the examined pixel can be determined based on its index
(or coordinate). Then through sliding the window to traverse
the whole image, the anomaly probability of each pixel can
be obtained finally, which compose the anomaly probability
map of the whole image. For a further explanation, anomaly
probability maps with range [0, 1] are utilized to visualize the
detection results, in which a larger value represents a higher
anomaly probability.

In summary, once the vertex set is obtained, the LLE algo-
rithm is operated firstly on the vertex data set to compute the
reconstruction errors, which are regarded as the vertex weights.
Then, the edge weights are calculated between any pairs of
pixels in order to obtain an affinity matrix. After that, the
vertex- and edge-weighted graph can be obtained. Finally, an
anomaly pixel selection is formulated as a quadratic program-
ming problem to fulfill the task. With the above introduction,
the proposed LGAD is finally summarized in Algorithm 1.

Algorithm 1 LGAD for Hyperspectral Image Anomaly
Input:
Parameter setting: K, d, I, sin, sout.
Method:

For each sliding window
1: Obtain a patch X of the observed hyperspectral image

I based on the given window sizes;
2: Get the reconstruction errors ε by (3);
3: Compute the weight matrix A by (4);
4: Obtain the affinity matrix Â by (5);
5: Solve the objective function (6) by the replicator dynam-

ics (7).
End

Output:
Anomaly probability map.

IV. EXPERIMENTS AND ANALYSES

In this section, we conduct several experiments on both sim-
ulated and real hyperspectral images to evaluate the effective-
ness of the proposed method. First, the employed hyperspectral
data sets are introduced. Then we describe the experimental
setup consisting of parameter setting, evaluation metrics, and
comparison methods. Finally, the experimental results and a
detailed analysis are presented.

A. Data Set

We verify the performance of our proposed method on four
kinds of hyperspectral images including two simulated data
sets and two publicly available real-world data sets. The sim-
ulated data sets are used to directly verify the proposed method
due to their definite anomaly targets, while the real-world
hyperspectral data sets estimate the practical performance of
our method.

The first data set is the simulated scene. It has 200 × 200
pixels with 105 bands and is characterized by the complex
background distribution and pure anomaly pixel, which means
the background consists of the combination of several material
spectra while each anomaly target is a single materia spec-
trum. The synthetic procedure is described in detail as follows.
Five kinds of material spectra including lawn grass, dry long
grass, blackbrush leaf, sage brush, and tumblewe are selected
from the U.S. Geological Survey vegetation spectral library.1

For the background, the top 100 lines are compounded of dry
long grass and lawn grass, and the bottom 100 lines are con-
stituted by blackbrush leaf and sage brush. In this process of
synthesis, the mixture percentage of each material is randomly
generated. For the targets, pure spectra of sage brush, dry long
grass, and tumblewe are used, respectively, to denote the def-
inite anomaly pixels corresponding to three different kinds of
size. They have a size of 1 × 1, 2 × 2, and 3 × 3. A total of
12 anomaly targets are embedded sparsely in the background.
Fig. 2(a-1) and (a-2) shows the simulated scene and specific
locations of the anomaly targets.

1http://speclab.cr.usgs.gov/spectral-lib.html
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Fig. 2. False color images of the HSIs, the ground truth masks and the visualization of the detection results. The first column shows the false color pictures
of the simulated scene, the HYDICE urban data set, the self test data set, and the synthetic subpixel scene, respectively. The second column illustrates their
corresponding ground truths. The detection results of six methods including RX, RSAD, WSCF, SVDD, GTAD, ADuT, and LGAD are presented orderly
from the third column to the eighth column.

The second data set is the HYDICE urban data set. It is a
real-world hyperspectral image downloaded from the Website
of U.S. Army Engineer Research and Development Center.2

This reflectance spectrum data is collected by HYDICE on
an airborne platform, covering an urban scene with spectral
resolution of 10 nm, spectral range of 400–2500 nm, and spa-
tial resolution of 1 m. The original hyperspectral image has
a size of 307 × 307 × 210. According to the band removal
rule [23], we remain 160 bands finally by removing these
bands 1–4, 76, 87, 101–112, 136–153, and 197–210, which
have low-signal-to-noise ratio (SNR) and water vapor absorp-
tion. Because the ground truth for the whole scene is difficult
to determine, in this paper, we crop a sub-image of 80 × 100
pixels from the upper right of the whole image, which contains
several cars and roofs regarded as anomalies. The correspond-
ing ground truth of the sub-image is defined consulting the
work [23], [49]. The sub-image and its ground truth are shown
in Fig. 2(b-1) and (b-2), respectively.

The third data set is the self test data set. It is also a real-
world data set collected by an airborne HyMap sensor around
the small town of Cooke City, Montana, USA. This HSI
can be downloaded online at http://dirs.cis.rit.edu/blindtest/.
It has 126 spectral bands with the reflectance spectral range
covering from 0.45 to 2.5 micrometers, and the spatial res-
olution is about 3 m. In the image, there are several real
targets located in the large grass background. And target
locations are also provided directly. Considering the high
computational costs of AD methods when dealing with a
large size of hyperspectral image, we also crop a sub-image
to conduct the experiments. The sub-image has a size of
80 × 100 × 126 containing six targets. The color image of

2http://www.erdc.usace.army.mil/Media/FactSheets/FactSheetsArticleView/
tabid/9254/Article/476681/hypercube

our sub-image and the corresponding ground truth are shown
in Fig. 2(c-1) and (c-2).

The fourth data set is the synthetic subpixel scene.
Considering that the former three HSIs have only pixel-
level anomaly targets, we simulate this image to demonstrate
the detection performance on subpixel targets. In order to
resemble the actual situation, we crop a grass region of
100 × 100 × 126 from the self test data set as background
and add the synthesized targets. For the subpixel abnormal
targets, we synthesize them based on the following equation:
Tsub = B × (1 − p) + T × p, where T is the original pure
target spectrum, B is the selected background spectrum, and
p is the mixture percentage of anomaly target. In implemen-
tation, 100 pixels are randomly selected from the background
region and their average spectrum are treated as the back-
ground spectrum B. Two definite targets F1 (red cotton target)
and F2 (yellow nylon target) provided by the data set are set
as the anomaly spectra T . We implant 16 anomaly targets of
1 × 1 into the background and they are arranged by columns,
the p of which corresponds to 0.8, 0.5, 0.5, and 0.3. Since the
spectrum of each target is impure, it leads to a subpixel AD.
The illustration is shown in Fig. 2(d-1) and (d-2).

B. Experimental Details

Before presenting and analyzing the experimental results in
detail, let us introduce three key points including the eval-
uation criteria, the competitors and parameter setup in the
following part.

1) Evaluation Criteria: In order to analyze and compare
the performance of anomaly detectors fairly, a valid evaluation
criteria is very important.

In this paper, three popular criteria are adopted. The first
one is the receiver operating characteristic (ROC) curve, which
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can be regarded as a classic comparison measurement. The
curve describes the relationship between the target detection
rate and the false alarm rate. When a discrimination thresh-
old is determined, a set of values of these two rates will
be computed. Therefore, a curve can be plotted with vari-
ous threshold settings. In addition, the area under the curve
(AUC) derives from ROC, which is an integration of the ROC.
Besides, another evaluation metric called Bhattacharyya dis-
tance (BD) proposed by Yuan et al. [29] is used as an auxiliary
in this paper. This metric reflects the detectors’ capabilities of
separating targets from background.

2) Competitors: To verify the effectiveness of the pro-
posed method, we employ a number of benchmark methods
to compare.

In this paper, local RX, SVDD, whitening and spatial corre-
lation filtering (WSCF) [57], RSAD, GTAD, and ADuT serve
as the competitors. We select these detectors taking a global
view of popularity, recency, and variety. RX containing local
and global versions is the most conventional method, which
is always taken as the inevitable competitor. SVDD is a very
popular method with the top citation and SVDD has derived
many variants. WSCF applies a 2-D spatial filtering to realize
a fast AD. RSAD is a very recent method which uses an idea
of random sampling. GTAD and ADuT are two representa-
tive methods based on graph model. Owing to the virtues of
these six popular benchmark methods, the comparison is more
convinced which can objectively reveal the superiority of the
proposed method. Besides, the single-based anomaly detector
(SBAD) [22] is used to compare with the proposed method
on the performance of subpixel detection.

3) Parameter Setup: In this part we will elaborate some
critical parameters involved in the experiments.

First, two main parameters lie in the process of LLE,
which are the number of nearest neighbors K and the dimen-
sion of low manifold space d. In our implementation, we set
K = 20, d = 10 based on the performance on a benchmark
dataset, and the detailed parameter selection will be discussed
in Section IV. Then for the graph construction, we need to
ascertain the sizes of windows. Since all the comparative meth-
ods except for GTAD and ADuT make use of a sliding hollow
window, we use the same size for all the detectors. Considering
different hypespectral images have different targets, proper
sizes are pretty necessary. In this paper, we fix the sizes of
outer window and inner window to be sout = 17 and sin = 7.
As for SVDD, we adopt an approximate minimax technique
introduced in [40] to determine its kernel parameter. In addi-
tion, the number of nearest neighbors in GTAD is set as 20
according to [51] and the size of its separated tiles is 20×20.
As for ATuD, the involved parameters are consistent with the
original work [52].

C. Comparison Results

In this section, the performance of our proposed algorithm
is evaluated by comparing with six benchmark competitors.
The experimental results on different HSIs will be analyzed
thoroughly and detailedly in a sequential manner.

1) Simulated Scene: The visualization of the detection
results on this simulated data is shown in Fig. 2(a-2)–(a-9). It
can be obviously found that our LGAD is capable of detect-
ing all the abnormal targets with a high intensity. RX and
RSAD can perform well on some of the anomalies which
seem to be more manifest than others. The performance of
WSCF is poor, which nearly fails to distinguish anomalies
from background. Though SVDD can also succeed in detect-
ing the overall targets, the discrimination of its detected targets
is not significant compared with the background. The perfor-
mance of GTAD and ADuT is excellent for their detected
targets are salient. But their intensities are relatively lower
than LGAD, which demonstrates the superior target iden-
tification capability of the proposed method. As shown in
Fig. 3(a) and (e), LGAD demonstrates its quantitative supe-
riority than RX, RSAD, WSCF, and SVDD on account of
the highest ROC curve and the largest AUC and BD values.
Similarly, both GTAD and ADuT also have the same good
performance on this simulated image. These phenomena verify
the effectiveness of graph-based methods. At the same time,
our method’s performance proves that the constructed vertex-
and edge-weighted graph enhances the distinctiveness of tar-
gets from the background. Moreover, without an assumption
on the background statistics, LGAD possesses better adaptabil-
ity to a complex background. It cannot only highlight more
anomaly pixels, but also has a remarkable ability to suppress
the background.

2) HYDICE Urban Data Set: Figs. 2(b-2)–(b-8) and
3(b) and (f) illustrate the detection results on this data. From
Fig. 2(b-2) to 2(b-8), the visual detection results are illustrated
in sequence corresponding to RX, RSAD, WSCF, SVDD,
GTAD, ATuD, and our LGAD. It can be seen that WSCF
hardly works on this image either, which mainly highlights
the boundaries and fails to identify the abnormal targets. The
global RSAD method tends to make the rarely appeared pixels
stand out easily. However, this is insufficient to recognize all
the anomalies. As for other competitors, RX and SVDD both
have similar omissions but in different places. GTAD, ATuD,
and LGAD all achieve quite nice results. However, the LGAD
is even more outstanding than GTAD and ATuD, because it
almost can detect all the anomaly targets with a very high
anomalous probability. However, it is clear that an accurate
estimation cannot be obtained by visual inspection. We need to
make a further quantitative comparison. According to the com-
parison results plotted in Fig. 3(b) and (f), it can be obviously
observed that the proposed method obtains a highest AUC
values and its ROC curve stays over the other curves when
the false positive rate slightly increases, which demonstrate
the superior performance of LGAD. As for the BD indicator,
our value is only lower than GTAD. Overall, the detection
performance of is satisfying.

3) Self Test Data Set: The comparison results are pre-
sented in Figs. 2(c-2)–(c-8) and 3(c) and (g). Analyzing
carefully from these figures, we can see that the proposed
LGAD is significantly superior to the other competitors for
its good effectiveness to recognize anomaly target. As shown
in Fig. 2(c-3)–(c-8), RX, RSAD, SVDD, GTAD, and ATuD
all have many misses on this image, and WSCF detects many
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(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Fig. 3. Quantitative comparison of the AD results by different algorithms. The first row presents the ROC cures and the second row shows the AUC and
BD bars. From left to right, the columns respectively correspond to the comparative results on the simulated scene, the HYDICE urban data set, the self test
data set, and the synthetic subpixel scene.

textures which is unfortunately ineffective to AD. As observed
from the ROC curves shown in Fig. 3(c), our method com-
pletely defeat all the other competitors, because its curve keeps
over other curves. This fully confirms its good ability to detect
anomaly. Fig. 3(g) illustrates the performance under AUC and
BD. The AUC value of LGAD is larger than all the other com-
petitors’ values. The case of BD is slightly different. Although
LGADs ability to suppress the background is not the best,
it has achieved a larger values comparing with most of the
benchmark methods. The excellent detection ability makes
LGAD more effective and useful in practice.

4) Synthetic Subpixel Scene: This data is simulated to ver-
ify the detection ability of the proposed method to the subpixel
anomaly targets. Figs. 2(d-3)–(d-8) and 3(d) and (h) illus-
trate the detection results on this scene. Since the SBAD
is only implemented on this subpixel dataset, we have not
shown its visual result in Fig. 2 for the convenience of lay-
out, but its quantitative results are shown in Fig. 3(d) and (h).
In Fig. 2(d-3)–(d-8), it can be found the anomaly probabil-
ity maps of RSAD and LGAD are close to the ground truth
mask, who assign high anomalous values to the subpixel tar-
gets. However, LGAD is a note above RSAD, because all kinds
of subpixel targets detected by LGAD are all salient while
RSAD does not. SVDD, GTAD, and ADuT yield visually
similar results, but they can badly suppress the background.
RX seems not to assign high values to the targets, which
reveals its weak ability to distinguish targets from background.
The performance of WSCF is quite poor as discussed before.
Fig. 3(d) and (h) clearly shows that both RSAD and LGAD
are successful, simultaneously on the values of AUC and
BD. Besides, the BD value of the propose method is just
higher than the SBAD method which is a specific subpixel
anomaly detector. In summary, the excellent accuracy proves
the effectiveness of the proposed LGAD to detect the subpixel
anomalies. The reason is that LGAD simultaneously takes

advantage of the vertex and edge weights. These two weights
estimate the differences between targets and background from
different aspects, which can strengthen the distinctiveness of
anomalies. Therefore, the proposed method has the capability
to detect these subpixel anomalies.

D. Discussion

In this part, several problems related to the proposed
method are discussed. The first one is about the robustness
to noise. The second one analyzes the sensitivity of the pro-
posed method to the window sizes.The third one is about
the selection of the parameters. In the end the computational
complexity is discussed.

1) Robustness to Noise: The robustness to noise is a crucial
and necessary aspect for the proposed method in the practical
conditions. In order to evaluate this property, the spectral cor-
related noise [58] is added to each testing image, keeping the
SNR ranging from 60 to 20 dB with an interval of 10 dB. In
addition, the shape parameter η is set to 0.18 according to [29].
Therefore, we can consequently compare the performance of
different detectors under distinct noise levels.

Fig. 4 shows the quantitative comparison. It is remarkable
that our LGAD can cope with all the significant levels of noise.
Moreover, for the AUC values, LGAD really achieves the best
performance on all circumstances. As for the BD indicator,
although LGAD cannot always keep its superiority on all the
HSIs, it still ranks the best or the second in most time. In order
to make a more manifest illustration, the amounts of relative
changes before and after adding noise are compared. Table I
presents the averaged relative changes over the five kinds of
noise levels for different datasets. In Table I, HSI1, HSI2,
HSI3, and HSI4, respectively, represent the four employed
HSIs. It can be seen clearly that GTAD, ADuT, and LGAD are
absolutely predominant compared to other benchmarks RX,



YUAN et al.: HYPERSPECTRAL AD BY GRAPH PIXEL SELECTION 3131

(a)
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Fig. 4. Quantitative comparison of the detection results on the noisy images with different levels of spectral correlated noises. From left to right, the columns
respectively correspond to the comparative results on the simulated scene, the HYDICE urban data set, the self test data set, and the synthetic subpixel scene.

TABLE I
AMOUNTS OF RELATIVE CHANGES ON THE PERFORMANCES BEFORE AND AFTER ADDING NOISE.

FOR A CLEARER AND FAIRER COMPARISON, RED ONE IS THE BEST RESULT, GREEN

ONE REPRESENTS THE SECOND RESULT FOR THE EACH DATA

RSAD, WSCF, and SVDD, which strongly demonstrates the
good robustness to noises of the graph based methods. Overall,
LGAD is insensitive to noises for its smaller relative changes
on different datasets, which is satisfying in spite of not out-
performing GTAD and ADuT in each case. But we think this
is not important because the difference between LGAD and
GTAD, ADuT is not large and the relative changes of LGAD
are also very close to zero.

2) Sensitivity to the Sizes of Windows: For a method using
a window strategy, its performance is closely related to its
size. However, it is difficult to find a perfect size to satisfy all
the hyperspectral images. Therefore, a capable method should
have a good tolerance to the window size, which means it can
has a decent performance even not with the most appropriate
window.

In order to demonstrate the adaptability to different window
sizes, we compare the proposed method with the representa-
tive of competitors. Since the computational complexity of
SVDD is unpractically expensive, its sensitivity experiment
on window sizes is not included. For the other three methods
of RX, RSAD, and WSCF, considering both their performance

and recency, RSAD is chosen as the representative to compare
with the proposed LGAD. This is because RSAD makes an
effort to obtain a proper subset of background, which is able
to reduce the contamination of anomaly targets to background
statistics. With this knowledge, we can presume RSAD should
have better robustness to the changes of window sizes than RX
and WSCF. Therefore, in this paper only comparing LGAD
with RSAD is feasible and persuasive.

The comparative experiments are conducted on the four
hyperspectral images. 18 different window sizes sout × sin
(9×3, 13×3, 13×7, 13×9, 17×3, 17×7, 17×9, 17×13, 21×
3, 21×7, 21×9, 21×13, 21×17, 25×3, 25×7, 25×9, 25×13,
and 25 × 17) are tested, respectively, while other parameters
are fixed. Fig. 5 shows the statistics of AUC and BD values
with box graphs. The black dot inside each box represents the
median value, the upper and lower edges of the box are 25th
and 75th percentiles, the whiskers signify the most extreme
values, and the symbol “+” marks the outliers.

In both cases, the median value of LGAD for each HSI is
significantly higher than that of RSAD. This means that the
general performance of LGAD is much better than the other.
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Fig. 5. Performance of LGAD and RSAD on the employed HSIs under 18 different sizes of windows. The left figure shows the values of AUC, and the
right one illustrates the values of BD. The four data set respectively corresponds to the simulated scene, the HYDICE urban data set, the self test data set,
and the synthetic subpixel scene.

For the first data set, RSAD has more outliers, which indi-
cates its instability. For the other three data sets, RSAD has
larger boxes, which implies the larger variance of its perfor-
mance. From these figures, we can see clearly that for these
frequently-used window sizes on different HSIs, the perfor-
mance of our method do not have a violent vibration and
is satisfactory in general. Therefore, the proposed method is
robust to the window sizes. This characteristic makes our
method more applicable in the real situation. In our implemen-
tation, comprehensively considering both the possible scales
of anomalies and the appropriate parameter choices for all the
competitors, we use a fixed window size 17 × 7 in all the
experiments.

3) Parameter Selection: After discussing the effects of
different window sizes, we need to analyze another two param-
eters in the LLE procedure, which are the number of nearest
neighbors K and the dimension of low manifold space d. The
additional experiment is performed with the HYDICE urban
data set to analyze the effects of these two parameters. K
and d is jointly considered. The values of parameter K are
7, 9, 15, 20, 25, 30, and 40, respectively, and ten different d
values are also adopted including 4, 6, 8, 10, 12, 15, 20, 30, 40,
and 50, while other parameters are fixed. Considering the AUC
value is a popular and universal indicator, we discuss these two
parameters’ effects mainly by analyzing the changes of AUC
values.

The results under different parameter combinations are illus-
trated in Fig. 6. Each curve represents the AUC values with the
increase of dimension d under a given K. Generally speaking,
it can be found that when d changes from 8 to 20, the AUC
values are relatively stable for a fixed K, while the detection
performance begins to deteriorate sharply when d reaches 20.
Meanwhile, when K is given a larger value changing from 20
to 40, these curves get close to each other and have strong sim-
ilarity. Moreover, when K = 20, the corresponding AUC curve
almost achieves the highest performance, especially d = 10 at
the same time. Therefore, it can be concluded that the proposed
method performs well when K = 20 and d = 10.

Fig. 6. Performance of the proposed method under different values of K and
d on the HYDICE urban data set.

TABLE II
COMPARISON OF RUNNING TIMES (S)

4) Computational Complexity: All the detectors are imple-
mented on a machine with Intel Core i3-2130 3.4-GHz CPU
and 16-GB RAM in the MATLAB platform. The time cost
of each method is compared in Table II. The main time con-
sumption for the proposed method comes from two aspects:
1) LLE procedure for the reconstruction errors and 2) abnor-
mal pixels selection for anomaly probability. Since the LGAD
adopts a sliding hollow window strategy, we will analyze the
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time consumption in each sliding. Therefore, in LLE pro-
cessing, we need O(DN2 + DNK3 + dN2) [59] computation
time to obtain the reconstruction errors. As for the abnor-
mal pixels selection, replicator dynamics procedure costs the
main computational time. For the input N pixels (vertexes),
the total number of edges in the vertex- and edge-weighted
graph is O(N(N − 1)/2). Suppose the average number of iter-
ations for the replicator equation is t, then the time complexity
involved in the abnormal pixels selection is O(tN(N − 1)/2).
Therefore, the proposed method needs O(DN2+DNK3+dN2+
tN(N − 1)/2). The SVDD implemented in our experiment
is also a local method, whose time complexity is O(N3)

according to [60]. Generally, N is much larger than K and
d. Therefore, compared with SVDD, our method is faster.
Moreover, this superiority will be manifest with the increase of
N. Although our method’s efficiency is not dominant compared
with the other five competitors except SVDD, its performance
outperforms them on all the datasets. We believe that the effi-
ciency of the proposed method can be drastically improved
through code optimization or GPU acceleration in the future.

V. CONCLUSION

AD for hyperspectral image is very conventional and impor-
tant. But its performance is far from satisfying. In this paper,
we propose a novel graph based method to detect anomaly
targets. Without any assumptions on the distribution of back-
ground statistics, our method is more adaptive to different
kinds of real-world hyperspectral images. It can discover the
intrinsic relationships among pixels via constructing a vertex-
and edge-weighted graph. In order to verify the effectiveness
of the proposed method, extensive experiments have been con-
ducted on both simulated and real-world hyperspectral images.
Six benchmark methods representing the state-of-the-art are
also used as competitors. The results demonstrate the pro-
posed method is more superior than the competitors. The
proposed method not only takes advantage of effectiveness,
but also has good robustness to noise and adaptability to win-
dow sizes. These desirable characteristics make the proposed
method more applicable and efficient in the real situations.

In the future, we aim to explore the spatial relationships
between pixels to refine the constructed graph. We also plan
to investigate the weight definition between graph vertexes. We
think these two aspects can lead to a more accurate detection
result.
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