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Online Anomaly Detection in Crowd Scenes
via Structure Analysis

Yuan Yuan, Senior Member, IEEE, Jianwu Fang, and Qi Wang

Abstract—Abnormal behavior detection in crowd scenes is con-
tinuously a challenge in the field of computer vision. For tackling
this problem, this paper starts from a novel structure modeling
of crowd behavior. We first propose an informative structural
context descriptor (SCD) for describing the crowd individual,
which originally introduces the potential energy function of par-
ticle’s interforce in solid-state physics to intuitively conduct vision
contextual cueing. For computing the crowd SCD variation effec-
tively, we then design a robust multi-object tracker to associate
the targets in different frames, which employs the incremental
analytical ability of the 3-D discrete cosine transform (DCT). By
online spatial-temporal analyzing the SCD variation of the crowd,
the abnormality is finally localized. Our contribution mainly lies
on three aspects: 1) the new exploration of abnormal detection
from structure modeling where the motion difference between
individuals is computed by a novel selective histogram of optical
flow that makes the proposed method can deal with more kinds
of anomalies; 2) the SCD description that can effectively rep-
resent the relationship among the individuals; and 3) the 3-D
DCT multi-object tracker that can robustly associate the lim-
ited number of (instead of all) targets which makes the tracking
analysis in high density crowd situation feasible. Experimental
results on several publicly available crowd video datasets verify
the effectiveness of the proposed method.

Index Terms—Anomaly detection, computer vision, machine
learning, object tracking, structure analysis, video analysis.

I. INTRODUCTION

ABNORMAL behavior detection in crowd scenes is one
of the hottest applications in computer vision field. The

reason is that abnormal behavior in crowd scenes translates
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invaluable informative clues for various promising applica-
tions, such as intelligent surveillance [1], safety evaluation [2],
behavior analysis [3], [4], etc. As a consequence, a surge of
models [5]–[8] are motivated to this end. But as mentioned
in [9], the exact notion of abnormality is hard to define because
of distinctive applications involved. Therefore, it is still very
challenging to design a general method for crowd abnormality
detection [10], [11].

Based on the above consideration, this paper mainly focuses
on the abnormal detection of crowd behavior. Among tech-
niques toward this direction, some ones extract dramatic
motion [7], [12], [13] of individuals to localize the abnormal-
ity, and others [8], [14], [15] advocate the object trajectories or
paths which hardly appear to be the abnormality. For the first
group, optical flow (OF) [6], [7], [13] or pixel/blob change [5],
[16]–[18] is always utilized to extract the image motion clues.
Through modeling the normal/abnormal crowd motion pat-
terns, anomaly detection is conducted by pretrained classifiers.
As for the second category, it always needs efficient trackers
to obtain the trajectories. Through the classification or clus-
tering, the trajectories hardly occur are associated with the
abnormalities. Although trajectory-based methods have intu-
itional meaning for abnormal detection, they are difficult to
be implemented in the crowd scenes with high density.

By psychological observations, crowd is arguably defined
as a “collection of individuals who have relations to one
another that make them interdependent to some significant
degree” [19], and objects in the real world are almost always
accompanied by other objects forming a global context or
scene [20]. Inspired by that, this paper explores the crowd
abnormal detection from the crowd structure modeling because
visual contexts and scenes contain a rich, complex structure
of covariation between visual objects and events [21]. In fact,
there is a common sense that normal/abnormal clues of struc-
tural motion context are significantly different, which can be
verified in Fig. 1. In spite of being intuitively reasonable, few
work on anomaly detection has explored this information. One
of the most related works, proposed by Ge et al. [22], argues
that exploiting the crowd structure provides a basis for further
mid-level analysis of events, and introduces this insight into
the discovering of small groups in a crowd. But it does not
reach scope of anomaly detection.

For crowd structure extraction, this paper proposes a novel
SCD to intuitively exploit the context clues between individu-
als, which originally introduces the potential energy function
of particle’s interforce (PEF-PIF) [23] to model this rela-
tionship. For exploring the motion context, a novel selective
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Fig. 1. Typical crowd scenes with changed structural context in different
frames. The different brightness of the individuals in the flow field represents
the different motion magnitude, one of the main attributes for determining
anomaly. For the red rectangular target in each scene, the motion difference
between it and its surrounding individuals changes obviously, which indicates
the surrounding motion context changes and an abnormality occurs.

histogram of optical flow (SHOF) is proposed to pay more
attention to different attributes of motion including direction
and magnitude when dealing with different crowd anomalies.
Then a robust multi-object tracker is designed to associate
the targets in different frames, which employs the excellent
ability of incremental analysis of the newly proposed 3-D dis-
crete cosine transform (DCT) [24]. With the obtained targets’
association, spatial-temporal analysis of the SCD variation is
effectively computed, based on which the abnormality can be
online detected.

A. Overview of the Proposed Method

In this paper, an online anomaly crowd detection method
is designed, and it is named as online anomaly detection for
crowd via structure analysis (OADC-SA). The main steps are
illustrated in Fig. 2, with a detailed description as follows.

1) Pedestrian Detection: Given a video sequence, in order
to generate the target set of each frame, this paper utilizes
the state-of-the-art pedestrian detection algorithm proposed by
Dollár et al. [25] to extract each target of the crowd. The
obtained targets are marked by rectangular regions with dif-
ferent sizes. To avoid the influence of the template scale for the
future target association, every detected target sample is nor-
malized into a general scale. Besides, to provide more clue for
effective target association, a larger rectangle region centered
in the target is simultaneously set to infer the neighborhood
context.

2) Structural Context Description: For the individuals in
the crowd, this paper proposes a SCD to exploit their valuable
visual contextual information. The presented descriptor orig-
inally introduces the PEF-PIF in the solid-state physics [23]
to model the relationship between the examined target and
the other individuals. More specifically, this relationship is
denoted by an inconsistency weight measuring the motion dif-
ference computed by a novel SHOF. The more different the
descriptors, the larger the corresponding weight between them.
This strategy is consistent with the human perception: “the
individuals having large behavior difference to the observer
are prone to violate the context structure and induce new
configuration” [21].

3) Multi-object Association: For the target association, the
difficult task is to explicitly model the appearance change [26].
One popular strategy is to learn a low-dimensional sub-
space, such as the incremental principle component analy-
sis [27]. However, it has high computational complexity [24].

Considering this fact, an alternative object representation based
on the newly proposed 3-D DCT [24] is utilized to accom-
modate to the appearance variation. With this representation,
each target at different frames is associated by a context-aware
multi-object tracker, which paves the way for the following
SCD variation computation.

4) Anomaly Detection: In this step, the anomaly is online
detected by temporal and spatial analysis of the SCD vari-
ation. Since the number of the targets in each frame
may change with time, it causes different SCD dimensions
in adjacent frames. Therefore, the SCD variation is com-
puted by the Earth mover’ distance (EMD) [28] which can
analyze the similarity of two distributions with different
dimensions.

B. Contributions

Although many methods for crowd abnormality detection
have been proposed recently, the method proposed in this
paper is distinguished by the following aspects, which are also
the main contributions of this paper.

1) Explore the anomaly detection from online crowd struc-
ture modeling. We exploit the visual structural con-
text by directly treating each stable individual in the
crowd as an observer. Through analyzing the context
change of the observers, it is more efficient and effec-
tive to find anomaly. In addition, for constructing the
observer’s motion context, this paper proposes a novel
SHOF to pay more attention to different motion prop-
erty (including magnitude and direction) when facing
different crowd anomalies. To the best knowledge of
the authors, this kind of structure analysis method has
not been exploited in the crowd abnormal detection
literatures.

2) Propose a novel SCD for exploiting the contextual clues
of the crowd. It originally introduces the PEF-PIF in
the solid-state physics [23] to describe the relationship
of the individuals. Then, the anomaly is detected by find-
ing the large variation of SCD between newly observed
frame and the previous ones. Through this compari-
son of context description, the proposed method is an
online one, different from the traditional ones that need
predefined normal/abnormal data for training.

3) Design a robust 3-D DCT multi-object tracker to asso-
ciate the targets in different frames. This is inspired by
the excellent ability of subspace learning to tackle the
appearance change. More importantly, we only need to
track the stable observers in the whole process, instead
of analyzing the trajectories of every target. It makes the
trajectory-based method feasible for anomaly detection
in crowd scenes with high density.

The remainder of this paper is organized as follows.
Section III presents the SCD for crowd structure modeling.
Section IV proposes the 3-D DCT multi-object tracker to asso-
ciate the targets among frames. Section V explains the criterion
for determining the crowd abnormality. Experimental results
and discussions are given in Section VI. The conclusion is
summarized finally in Section VII.
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Fig. 2. Diagram of the proposed method. Given a video sequence, the individuals in every frame are first extracted by a pedestrian detection algorithm. Then
their structural context descriptors (SCD) are computed for further visual contextual cueing of the crowd. After that, a robust 3-D DCT multi-object tracker
is proposed to seek the stable individuals (named as observers) in every frame. Based on the spatial-temporal SCD variation analysis of these observers, the
crowd abnormality is detected.

II. RELATED WORKS

According to the clue types for defining crowd abnormal-
ity, recent approaches [8], [13]–[15], [18], [22], [29]–[34] of
anomaly detection for crowd scenes can be categorized into
two classes.

1) Trajectory-based techniques. The abnormal trajectories
are prone to show much lower occurring frequency than
the normal ones.

2) Motion-based techniques. The abnormal crowd has dra-
matic motion patterns compared with the normal one.

For the first category, by learning some knowledge of trajec-
tories obtained from the normal situation, the abnormal trajec-
tory is determined according to the learned rules [15], [29],
[33]–[35]. For example, in Cheng and Hwang’s work [15],
by resolving the occlusion and object segmentation error via
adaptive particle sampling and Kalman filtering, the reliable
trajectory types were obtained. The abnormal event was then
localized by the trajectory classification. In addition to the
object-based trajectory extraction, some techniques exploit the
trajectory from particle or feature point level. For example,
Wu et al. [8] modeled the abnormal crowd patterns by utiliz-
ing chaotic invariant features of lagrangian particle trajectories.
But it needs exhaust tracking for each representative par-
ticle. Cui et al. [14] extracted the normal/abnormal crowd
patterns by tracking the interest points to calculate the inter-
action energy potentials (IEP), which explicitly exploited the
relationships among a group of people. By analyzing the fea-
ture representation of different patterns, the abnormality was
declared by SVM classifier. The most direct inspiration of this
paper is the approach for crowd structure exploitation pro-
posed by Ge et al. [22]. By tracking each individual robustly,
the crowd groups were discovered by analyzing the relation-
ships of trajectories. Although these trajectory-based methods
have explicitly high-level semantics for defining abnormality,
they are always infeasible and computationally expensive for
tracking each individual.

As for the second category, motion patterns are usually
explored by OF variation [4], [6], [7], [13], [32] or pixel/blob
change [17], [18], [36]. Because of the high density of the
crowd, motion pattern-based methods recently hold the main
part in the crowd anomaly detection literatures. For exam-
ple, Cong et al. [13] proposed a multiscale histogram of OF
to represent the motion patterns for image sequences. By
computing the reconstruction error with the trained sparse

dictionary, the abnormality was detected by the motion pat-
terns with large reconstruction cost. Mehran et al. [6] proposed
a streakline technique to compute the crowd flow. By analyz-
ing the obtained streak flows, the abnormal motion pattern
was detected by a SVM predictor. Besides, the social force
model (SF) is another hot technique proposed recently for
motion modeling in abnormal crowd detection. Through the
estimation of the particle OF with SF, the normal/abnormal
motion patterns can be explicitly distinguished by Latent
Dirichlet allocation (LDA) [7] or other analyzers [30]. Kim
and Grauman [37] utilized the mixture of probabilistic prin-
ciple component analysis (MPPCA) to model the local OF.
Then, the modeled motion patterns were adopted to pre-
dict anomaly. Thida et al. [16] proposed a spatio-temporal
Laplacian eigenmap to extract the crowd activities. It was
achieved by learning a spatio-temporal variations of local
motions in an embedded space. Li et al. [38] proposed an
anomaly detection method which was constructed by a mix-
ture of dynamic texture (MDT) model. MDT was subsequently
updated to hierarchical MDT (H-MDT) [39] by combining
spatial normalcy implemented by a center-surround discrimi-
nant saliency detector and a hierarchical model. Wu et al. [32]
introduced the potential destinations and divergent centers
to characterize the crowd motion in both the presence and
absence of escape events. These motion-based anomaly detec-
tion methods usually need to exhaustively sample image
patches in every frame. By analyzing the temporal appear-
ance variation in these patches, the crowd context is extracted.
Therefore, this procedure also include high computational cost.

While the main choice of crowd anomaly detection concen-
trates on modeling motion patterns, one universal limitation of
the two categories is that labeled data should be available to
train the normal/abnormal pattern. However, this assumption
is difficult to be satisfied in practical applications.

III. STRUCTURAL CONTEXT DESCRIPTION

To detect crowd abnormality, the first important issue
is crowd structure representation. Since the crowd consists
of non-isolated individuals who have relations with each
other [19], [40], its structure can be consequently explored
from these connections. To this end, a novel SCD is pro-
posed to represent the structure of each individual. In order
to adapt to more kinds of anomalies, this paper also proposes
a novel SHOF to adaptively select adequate motion property,
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Fig. 3. State shifting of the potential energy between two particles.

such as motion magnitude and direction, when facing different
crowded scenes.

Our assumption behind the SCD representation is that
the individuals demonstrating large behavior difference with
their surroundings are highly probable to be abnormal, and
these large behavior difference should be manifested to make
the anomaly detection easier. The discrepancy between the
examined target and its surroundings is measured by an incon-
sistency weight. The larger the weight, the more distinct the
target’s behavior with its surroundings. However, according to
the psychological experiments in [21], the layout of targets in
an invariant configuration can be localized and discriminated
more effectively than in a variable one, which is termed as the
contextual cueing effect. Since the abnormality implies novel
configuration, its detection is more difficult. For a more effec-
tive crowd contextual cueing, we thus lower the inconsistency
weights of the individuals having little behavior difference
and enlarge the ones with large behavior difference. Through
this strategy, the large behavior differences are more salient
and the irregularity of the crowd behavior is easier to be
detected. For detailed implementation, the PEF-PIF in solid-
state physics [23] is originally introduced. In the following, the
PEF-PIF model is presented firstly, and then the generation of
SHOF is given followed by the SCD computation inspired by
PEF-PIF model.

A. Potential Energy Function of Particle’s InterForce

In solid physics, the potential energy of two particles rep-
resents their linking degree. The fundamental description can
be expressed as

U(r) = a

rm
− b

rn
(1)

where U(r) denotes the potential energy between two particles,
r is their Euclidean distance, and a, b, m, and n (generally,
m > n) are the empirical constants. In (1), the first term rep-
resents the rejecting potential energy field, and the second
term is the attracting potential energy field. The two parti-
cles demonstrate rejecting state when r is small, and attracting
state when r is large. This kind of characteristic is visualized
in Fig. 3.

For computing the force of two particles, combining power
(CP) is defined. The farther the two particles are from each
other, the weaker CP is. In fact, CP is the negative deviation
of U(r)

f (r) = −dU(r)

dr
= ma

rm+1
− nb

rn+1
. (2)

The relations between r and CP are illustrated in Fig. 4,
as well as the variants of CP, where the constants a, b, m, n

Fig. 4. (a) Relation curve of r and f (r) within the interval [0,100].
(b) Relation curve of r and f (r) within the interval [

√
2, 100]. (c) Relation

curve of r and 1/|f (r)| within the interval [
√

2, 100]. (d) Relation curve of r
and w(r) within the interval [

√
2, 100]. The constants a, b, m, and n in (1)

are experimentally set as 1, 1, 3, and 1.

are experimentally set as 1, 1, 3, and 1. In Fig. 4(a), it can
be seen that the curve achieves the minimum when r = √2
pixels. With the increase of r (r ≥ √2), the absolute value
of f (r) decreases gradually. This can be seen clearly from
the replotted curve shown in Fig. 4(b). However, in practical
applications, the distance between two individuals is obviously
larger than

√
2 and the corresponding trend of f (r) cannot meet

the needs. This is because in the abnormal detection, we hope
the increase of the variable will result in a proportional output.
Therefore, we replace the function with the reciprocal of f (r).
It can be validated by the characteristic shown in Fig. 4(c).
Based on it, we further normalize the reciprocal of |f (r)| by

w(r) = 1

|f (r)|/
(∫ r

√
2

1

|f (r)|dr

)
, r ∈

[√
2,∞

]
(3)

where w(r) specifies the linking weight of two particles with
the distance r. After the weighting for different r, the relation
curve of w(r) and r is visualized in Fig. 4(d).

B. SHOF Generation

In order to construct the SCD, the motion difference of
individuals should be efficiently computed. As for the motion
property, OF [41] is utilized to characterize the motion of each
individual. Since the output of pedestrian detection is a rect-
angle bounded region, the histogram of flow (HOF) [42] is
calculated as the motion statistics where each bin of HOF
represents the direction of OF and the value in each bin is
proportional to the magnitude of OF. We find that the motion
magnitude and the direction maintain consistent for a spe-
cific individual as shown in Fig. 5(a), which makes that the
maximum of HOF can represent the magnitude property of
individual. Considering that the anomaly definition in dif-
ferent crowded scenes may be different, such as magnitude
inconsistency and direction inconsistency, for measuring the
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Fig. 5. (a) Generation of the histogram of optical flow (HOF). From the
figure, it is clear that the pixels’s motion directions are highly consistent within
a single individual. (b) Diagram of the selective histogram of optical flow
(SHOF). The parameter ξ determines the range of HOF selected to conduct
difference computation. Note that ξ narrows or widens the range of SHOF in
the same ratio, which can guarantee the shape of the SHOF be most similar
to original HOF. When ξ = 0, only the bin with maximum is selected, and
ξ = 1 for a whole HOF selection.

magnitude inconsistency of crowd, it needs to shield the influ-
ence of direction, and for direction inconsistency, the influence
of magnitude of crowd should be avoided in some times.

To this end, this paper proposes a SHOF to represent the
motion property of individuals. Actually, SHOF is a limited
HOF by a parameter ξ which determines a range of the HOF
that needs to be used for motion difference computation, where
ξ is learned by several normal frames in the crowded scenes.
The diagram of SHOF is demonstrated in Fig. 5(b). For each
individual, we calculate its motion difference with the sur-
roundings according to their SHOF. Assume the SHOF of the
examined target to be Hξ

o and Hξ
i the SHOF of the ith sur-

rounding individuals. The difference �f is computed by the
χ2 distance, which is denoted as

�fi = χ2
(

Hξ
o, Hξ

i

)
(4)

where χ2(h1, h2) = 1
2

B∑
i=1

|h1;i−h2;i|2
h1;i+h2;i and B denotes the num-

ber of histogram bins. All the motion difference between
the examined individual and others is denoted as �f =
{�f1,�f2, . . . ,�fM} which indicates different motion property
(including magnitude and direction) difference when giving
different ξ , where M indicates the number of individuals
around the examined one.

It can be seen from Fig. 5(b) that the smaller ξ is, the
narrower the range of SHOF becomes, while the larger ξ is, the

wider the SHOF range is. With the limitation of ξ , when the
magnitude inconsistency of individual is more important for
anomaly detection, ξ can be set as small as possible to narrow
the range of SHOF to the maximum of HOF because many
bins except for the one with maximum are abandoned. On
the contrary, when moving direction of individual is the main
aspect to determine the anomaly, ξ can be set large to expand
the range of SHOF to contain more bins which represents the
direction of OF. By this strategy, this paper can be applied
for more kinds of crowded scenes with different anomalies by
adaptively abandoning or containing more bins of HOF.

Based on the assumption that, in normal situations, the
motion property difference between individuals should be con-
sistent, not only for the crowd with magnitude anomaly, but
also the crowd with direction anomaly. The optimal ξ̂ is
learned by the motion difference of individuals in the normal
video frame, and computed as

ξ̂ = arg min
ξ

Var(�f) (5)

where Var(·) is the variance calculation. The solving of (5)
can be fulfilled by searching the whole range [0,1] of ξ from
1 to 0 with 0.1 interval. Because the beginning of the video
sequence is usually with a normal situation, ξ̂ can be learned
with several frames with these normal frames, and when ξ̂ is
generated, it can maintain unchanged for the subsequent video
frames.

C. SCD Computation

With this motion difference, the inconsistency weight can
be obtained according to (3). However, this equation has to be
modified to adapt to the actual problem, because if the linking
weight is 1, �f tends to be∞, which is practically impossible
in this paper. When computing the surrounding structure of the
examined individual, the reasonable consideration is that all of
the other individuals in together contribute to its whole con-
textual structure. Therefore, the normalization process should
be built on the number of the surrounding individuals, and the
detailed expression is revised to

w(�fi) = 1

f (Z�fi)
/

(
M∑

i=1

1

f (Z�fi)

)
(6)

where Z is a constant to enlarge �f to an adequate range that
(3) can be used [�f acts like r in (3)], w(�fi) denotes the
linking weight between the examined individual and the ith

neighbor, and M is the number of neighbors around it.
After computing every individual’s behavior difference with

its surroundings, the proposed SCD is constructed and denoted
as {W,F}, where W = {Wk}M+1

k=1 , Wk ∈ R
1×M is the weight

vector of the kth individual which can be computed by (5),
and F = {Fk}M+1

k=1 , Fk ∈ R
4×M specifies the corresponding

behavior feature vector of the M neighbors, whose column
components represent the max, min, mean, and the variance of
motion energy in the individual bounding box. The efficiency
of PEF-PIF is visualized in Fig. 6.
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Fig. 6. Visualization of structural context descriptor (SCD). Each target’s
connection with the surrounding individuals is represented by a clutter of
vectors with different color. The length is proportional to the inconsistency
weight and the direction complies with the neighbor’s location. (a) Weight of
each connection is computed by the motion difference. (b) Weight of each
connection is calculated by the introduced PEF-PIF. From the figure, it is clear
that the weights are adjusted by making the large weights more manifest and
small weights less effective.

IV. 3-D DCT-BASED MULTIPLE OBJECT TRACKER

With the computed SCD for each individual in the crowd,
the following work is to detect anomalies by analyzing the
spatial-temporal SCD variation. However, the SCD variation
between two frames needs to be built on the same target.
For this purpose, the multiple targets in different frames
should be associated. A straightforward strategy is to design
a multi-object tracker. However, although many multi-object
trackers [43], [44] are proposed, they are difficult to be
implemented in the crowd anomaly detection because of the
high density of the crowd, frequent occlusion and appear-
ance/illumination change. Besides, these multi-object trackers
are computationally expensive.

Fortunately, we find that the normal/abnormal can be judged
alternatively by single individuals in the crowd. Because our
purpose is to identify the abnormality, instead of tracking
every target, we can fulfill this task by only employing the
stable ones called observers. For these individuals, occlusion
and appearance/illumination change hardly occur and they
can be well tracked. By analyzing the observers’ temporal
SCD variations, the abnormality can be robustly detected.
Therefore, different from the conventional multi-object track-
ers, this paper designs a new and efficient multi-object tracker
to only seek the stable observers.

In order to design the robust multi-object tracker, we
employ a newly proposed 3-D DCT model [24] with an
excellent ability of incremental analysis. The designed 3-D
DCT multi-object tracker has three components: compact 3-
D DCT template representation, multi-target association, and
incremental template updating. Each component is described
sequentially as follows.

A. Compact 3-D DCT-Based Object Representation

For the target association in a video sequence, we adopt
to treat the frames as a 3-D volume by concatenating them.
Then the self-correlation of the newly observed target sample
with the previously collected target sample set is incrementally
evaluated. To this end, the 3-D DCT [24] is utilized as a tool
to fulfill this task.

Given a video sequence, assume the previously collected tar-
get sample set can be denoted as (sIII(x, y, z))N1×N2×N3 , where
N1, N2 are the sample’s width and height, and N3 is the num-
ber of samples in the target sample set. The new target sample

in the next frame is denoted as (n(x, y))N1×N2 (abbreviated as
n for short in the following description). The concatenated
target sample set is specified as (s′III(x, y, z))N1×N2×(N3+1),
where the (N3 + 1)th frame is concatenated to the end of the
previous target sample set. According to the 3-D DCT [24],
(s′III(x, y, z))N1×N2×(N3+1) can be represented as

S ′ = CIII ×1 DT
1 ×2 DT

2 ×3
(
D′
)T

3 ,

CIII = S ′ ×1 D1 ×2 D2 ×3
(
D′
)

3 (7)

where S ′=(s′III(x, y, z))N1×N2×(N3+1), CIII ∈ RN1×N2×(N3+1)

represents the 3-D DCT coefficient matrix, and ×m is the
mode-m product defined in tensor algebra [45]. D1 =
(a1(o, x))N1×N1 is a cosine basis matrix whose entries are
represented as

a1(o, x) = a1(o) cos

(
π(2x+ 1)o

2N1

)
. (8)

D2 = (a2(p, y))N2×N2 is a similar cosine basis matrix whose
entries are specified as

a2(p, y) = a2(p) cos

(
π(2y+ 1)p

2N2

)
(9)

and (D′)3 = (a′3(q, z))(N3+1)×(N3+1) is a different cosine basis
matrix whose entries are denoted as

a′3(q, z) =
⎧⎨
⎩
√

1
N3+1 , if q = 0;√

2
N3+1 cos

(
π(2z+1)q
2(N3+1)

)
, otherwise

(10)

where o ∈ {0, 1, . . . , N1 − 1}, p ∈ {0, 1, . . . , N2 − 1}, q ∈
{0, 1, . . . , N3 − 1}, and ak (o/p/q, x/y/z) is defined as

ak(o/p/q, x/y/z) =
⎧⎨
⎩
√

1
Nk

, if o/p/q = 0;√
2

Nk
, otherwise.

(11)

According to the properties of 3-D DCT, the larger the
values (o, p, q) are, the higher frequency the correspond-
ing component of CIII encodes. Depending on the values of
(o, p, q), the work [24] compresses CIII by removing the high-
frequency coefficients usually sparse (e.g., texture clue) and
maintaining the low-frequency ones that are relatively dense
(e.g., mean value). Therefore, the compact 3-D DCT object
representation CIII is modified as

C∗III = S∗ ×1 D1 ×2 D2 ×3
(
D′
)

3 (12)

where S∗ = (s∗III(x, y, z))N1×N2×(N3+1) is the approximation
of S ′, representing the corresponding reconstructed image
sequence of S ′. Based on it, a reconstruction error representing
the loss of low-frequency components is introduced, which is
defined as

e = ||n− s∗III(:, :, N3 + 1)||2. (13)

For a new target sample, its consistency likelihood with the
target sample set can be measured by

L = exp

(
− 1

2λ
e

)
(14)

where λ is the scaling factor, and is set as 0.1 in this paper.
This likelihood measurement is utilized both for target associa-
tion in Section IV-B and the modeling of incremental template
updating described in Section IV-C.
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Fig. 7. Illustration of multi-target association. For each template pool, the
most related target sample is associated according to the appearance con-
sistency and neighborhood smoothness. Then the associated target sample is
removed from the original target sample set to avoid repeated association.
After that, the next template pool is associated similarly.

TABLE I
SOME MATHEMATICAL SYMBOLS IN THE TARGET ASSOCIATION

B. 3-D DCT-Based Multi-Target Association

Since the 3-DDCT can effectively represent the video
sequence, it is utilized to associate the targets in different
frames. Our task now becomes to correspond each newly
detected pedestrian with a previously constructed template
pool (target set). However, the targets detected by pedestrian
detection algorithm [25] might change in different frames.
Even the same target may have different scale and appearance.
These factors increase the difficulty of effective association. In
order to strengthen the accuracy of the target association, we
consider not only the appearance consistency, but also the tar-
get neighborhood. The flowchart is illustrated in Fig. 7, which
mainly contains two constraints: the appearance consistency
and the neighborhood smoothness. Before detailed description,
some mathematical notations are firstly presented in Table I.

1) Appearance Consistency: The assumption is that the
new target should resemble its corresponding template pool
in appearance. Each target appearance ni

t+1 is compared with

each template pool of appearance T f
T . Then the reconstruc-

tion error ei,f
t+1 is computed by (13). The consistency of the

ith target appearance with f th template pool is denoted as
LT

i,f
t+1 = exp(− 1

2λ
ei,f

t+1). The larger the value is, the more
consistent the appearance is with the template pool.

2) Neighborhood Smoothness: Apart from the appearance
consistency, the neighborhood smoothness is also a constraint
for target association. The neighborhood of the target is rep-
resented by a surrounding rectangular region centered in the
target. The smoothness of the ith target neighborhood with that
of the f th template pool is denoted as LC

i,f
t+1. The inferring

strategy is the same as the appearance consistency.
With the above two constraints, the target sample most

related to the f th template pool is defined as

nf
t+1 = arg max

ni
t+1

Normalize
(
LT

i
t+1 · LC i

t+1

)
(15)

where Normalize(·) is the function normalizing the {LT
i
t+1 ·

LC i
t+1}Mi=1 into [0, 1]. If Normalize(·) > 0.8, the examined tar-

get is defined as an observer; otherwise, it is discarded and fails
in the target association. At the same time, the corresponding
template pool is updated by

T f
T = Concatenate

(
T f

T , nf
t+1

)
T f

C = Concatenate
(
T f

C , ncf
t+1

) (16)

where Concatenate(·) is the function concatenating the
obtained new target sample with its related template pool.

After association, each target sample and its contextual
sample are added to its corresponding template pool and the
template pool will be updated at the same time. But for compu-
tational efficiency, the size of the template pool cannot increase
without a limit. We therefore set a maximum threshold so that
the redundant one will be ruled out if necessary. The detailed
screening strategy is discussed in Section IV-C.

C. Incremental Template Updating

As for the template updating (including template pools of
target appearance and neighborhood), there are two aspects to
be balanced.

1) The reliability with the previously constructed template
pool. It hopes that the updated template maintains more
information contained in the previous frames.

2) The adaptability for the dynamic scene. It on the con-
trary desires the updated template changes adaptively
with the dynamic scene. In fact, there are no perfect
criterions to balance them.

But in general, the templates in the beginning of the tracking
have no dramatic changes in appearance or with surround-
ing environment. But in later times, the targets are prone to
change. Therefore, this paper designs a two-stage updating
strategy. In the beginning of the tracking, reliability is selected
as the main criterion, and then the adaptability is advocated
in the subsequent tracking.

1) Reliability Preservation: Assume the capacity of each
template pool is fixed as K. For the new f th template pool Tf

obtained by (16), if the size is smaller than K, Tf should not be
changed. But if its size reaches K+1, the most dissimilar target
should be removed from the template pool. For this purpose,
we iteratively evaluate the similarity between each target sam-
ple n f

k , k ∈ [1, K] within Tf and the remaining s f
III(:, :, 1:K)

(which is actually {Tf − n f
k }) according to the reconstruction
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error in Section IV-B. The removed target n f is chosen by

n f = arg min
k

exp

(
− 1

2λ
||nf

k − (sf
III)
∗(:, :, K)||2

)
(17)

where
(

sf
III

)∗
(:, :, 1:K) is the obtained 3-DDCT model.

2) Adaptability Preservation: As for the adaptability
preservation, it hopes that the template pool puts more empha-
sis on the newly observed sample than the historical ones. This
makes the template pool adapt to the dynamic scene efficiently.
The similarity measurement between each target sample and
the remainder ones of the template pool is the same to the
reliability preservation. However, the target sample nf need to
be removed is on the contrary defined as

nf = arg max
k

exp

(
− 1

2λ
||nf

k −
(

sf
III

)∗
(:, :, K) ||2

)
. (18)

It is worth noting that the strategy of updating target contextual
template pool is the same as the one mentioned above.

V. ONLINE ANOMALY DETECTION

Most methods proposed recently for anomaly detection need
labeled data for normal/abnormal definition. However, this
requirement is difficult to be satisfied in actual applications.
Considering the abnormal frame usually presents a very dif-
ferent state with the previous motion context, such as the
“evacuation” in global abnormality and “sudden motion change”
in local abnormality, this paper designs an online anomaly
detection strategy by self-learning the normal motion patterns
represented by proposed SCD. In order to efficiently detect
anomalies, it is conducted from frame-level and pixel-level.

A. Frame-Level Anomaly Detection

The frame-level abnormality is defined by comparing the
corresponding observers between frames. The detection results
label the abnormal frames as output. Suppose the number
of observers is β. The SCD of the γ th(γ = 1, 2, . . . , β)

observer at time t is {Wγ
t , Fγ

t } ∈ {Wt,Ft} and {Wγ

t+1, Fγ

t+1} ∈{Wt+1,Ft+1} at time t+ 1. The SCD variation of the observers
is computed by the EMD [28] which can adapt to the dis-
tributions with different dimensions. The difference between
adjacent frames is defined as

dt+1
γ = 1− EMD

(
Wγ

t , Wγ

t+1, Fγ
t , Fγ

t+1

)
ADt+1

frame = 1−
(

β∑
γ=1

dt+1
γ

)
/β.

(19)

By this mean, the anomaly is online declared by the average
value ADt+1

frame > 0.5. The threshold 0.5 is a reasonable choice
for distinguishing normal/abnormal crowd behavior according
to the following experiments. It is worth noting that if ADt+1

frame

of the γ th observer is smaller that 0.5, Wγ
t ← Wγ

t+1, Fγ
t ←

Fγ

t+1.

B. Pixel-Level Anomaly Detection

Pixel-level abnormality is defined on the detected pedes-
trians of rectangular pixels at current frame. The output is

Fig. 8. Example of pixel-level abnormality detection result. Top row: normal
crowd; bottom row: abnormal crowd (a cycling person appears). For each row,
the right image demonstrates the abnormal degree of each individual. The
motion differences between the normal individuals and the cycling person are
larger than the ones between the normal individuals themselves. The abnormal
cycling person is marked by red color.

the labeled abnormal regions in each frame. By analyzing its
motion difference from the surrounding ones, abnormality can
be identified on each individual. The pixel-level anomaly is
conducted when the examined frame is judged as an abnor-
mal frame. For computing the motion difference, χ2 distance
is utilized. To be specific, assume the number of the individ-
uals at time t+ 1 be M+ 1. The motion difference of the mth

individual dt+1
m with other M individuals is defined as

dt+1
m = 1

M2

M∑
j

M∑
k=1

(Wm
t+1(k)−Wj

t+1(k))
2

Wm
t+1(k)+Wj

t+1(k)
(20)

where k is the component index of the weight vector W, and
j is the index of the surrounding individuals. The abnormal
degree is defined by

ADt+1
pixel = dt+1

m /

M+1∑
m=1

dt+1
m . (21)

The abnormal individual is declared by ADt+1
pixel > 0.5. It

means that if no less than half of the individuals think the
mth individual is an abnormal, the mth individual is abnormal.
With the detected abnormal individual, the pixel-level abnor-
mal result is obtained by filling the rectangle bounding box of
the abnormal individual. Fig. 8 gives an example of pixel-level
abnormality detection result.

With the above introduction, the proposed anomaly detec-
tion algorithm is finally summarized in Algorithm 1.

VI. EXPERIMENTS AND DISCUSSION

A. Datasets

To test the performance of the proposed method, this paper
applies several publicly available datasets to evaluate it. They
are explained as follows.

1) UMN Dataset: UMN dataset [46] is recorded and
labeled by University of Minnesota to evaluate the ability of
detecting global abnormality, such as sudden crowd evacua-
tion. It contains 11 video sequences representing three differ-
ent crowd scenarios, each of which begins with a normal activ-
ity behavior. The total frame number is 7740 and the resolution
of each frame is 320×240. The original ground truths are given
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Algorithm 1 OADC-SA
Parameter setting.
Input: Video sequence.
Method:
1: Detect each individual in each frame.
2: Compute the SCD for each individual in different frame.
3: Track multiple objects to seek β observers.
4: Online compute the SCD variation dt+1

γ of the γ th

observer by (19), and obtain the frame-level abnormal
degree ADt+1

frame.
5: Compute motion pattern difference dt+1

m of the mth

individual and its abnormal degree ADt+1
pixel respectively

by (20) and (21).
Output: ADt+1

frame, the frame-level abnormality is deter-

mined by ADt+1
frame > 0.5. ADt+1

pixel, the pixel-level

abnormality is declared by ADt+1
pixel > 0.5.

with the dataset. In addition, for efficiently detecting pedes-
trian in this paper, the resolution of each frame is enlarged
to 640 × 480. Besides, we also generate our ξ to judge the
main attribute for determining anomaly for UMN dataset.
Interestingly, the optimal ξ is set to 0, which indicates that
the magnitude inconsistency is the main attribute for anomaly
determination.

2) USCD Dataset: USCD dataset [47] is adopted to test the
ability of detecting local abnormality. The local abnormalities
display: 1) unusual individuals in crowd (e.g., individuals on
wheelchair) and 2) irregular behaviors in the present surround-
ings (e.g., people cycling or skating across walkways). USCD
dataset contains two different scenarios named as ped1 and
ped2. In ped1 video set, there are 34 normal video sequences
for training and 36 abnormal video sequences for testing. Only
frame-level ground truth is available for ped1. As for ped2
video set, 16 normal video sequences and 14 abnormal video
clips are contained within it. There are both frame-level and
pixel-level ground truths for ped2. For each video sequence,
it has 200 frames with a resolution 158 × 238 of ped1, and
360×240 of ped2. Because the proposed method is an online
one, only the abnormal testing video sequences are adopted.
Besides, since the anomaly detection in this paper focuses on
the pedestrian detection, the video sequences with abnormal-
ities of unusual car or small carts are rule out of the testing
dataset. For detecting pedestrian effectively, each frame in
USCD dataset is enlarged twice the size of its original scale.
In this dataset, the optimal ξ for ped1 dataset is the same as
UMN, and ξ = 0.9 for ped2 dataset, which indicates the mag-
nitude plays more important role in ped1 dataset. As for ped2
dataset, it also depends on the magnitude inconsistently, but
the learned ξ equals 0.9. It seems against to our underlining
meaning of SHOF, that when ξ is large, the main attribute
for anomaly detection is motion direction. However, from the
observation on the first frame of video sequences in ped2,
all the individuals move at the same direction in the normal
frames, and the motion difference between them maintain con-
sistent no matter what ξ is. In other words, whatever ξ is, the
experimental results of ped2 dataset will not be affected by ξ .

Fig. 9. Relations between r and w(r). Different m and n lead to a similar
characteristics for weighting.

B. Implementation Details

1) Parameter Setting: There are a few parameters to be
set. The first one is the size of the template pool K and the
second one is the constants in (2). Once they are set, they
maintain unchanged for all the sequences. For computational
efficiency and robustness of the multiple object tracker, K is
empirically set as 6. The constants a, b, m, and n in (2) are set
as 1, 1, 3, and 1, respectively. The reason for this configuration
is described as follows.

Based on the empirical consideration in physics, both a and
b are set as 1. For a fixed n, different m generates nearly the
same characteristic. This is shown in Fig. 9. From the figure,
the larger n takes, the stronger the weighting effect (the curve
is more steep). But for a larger n, the weights of r < 83.01
increase rather slow and the weights of r > 83.01 increase
rather fast, which may cause the undistinguished normalized
weights. Therefore, the constants m and n are set as 3 and 1,
respectively.

Besides, the parameters in the state-of-the-art pedestrian
detection algorithm [25] are set as default.

2) Evaluation Criterions: To evaluate the efficiency of the
proposed method, both qualitative and quantitative criterions
are utilized. For the qualitative evaluation, the detected frame
shots are presented and analyzed subjectively. As for the quan-
titative criterions, there are four indexes. The first two are
receiver operating characteristic (ROC) and area under ROC
(AUC). For a better understanding of ROC, two terms should
be introduced because ROC reflects the relationship of them.

1) True positive rate (TPR): the rate of correctly labeled
frames.

2) False positive rate (FPR): the rate of incorrectly labeled
frames.

They are defined as

TPR = TruePositive
TruePositive+FalseNegative

FPR = FalsePositive
TrueNegative+FalsePositive .

(22)

The third one is equal error rate (EER) for frame-level eval-
uation, which reports the frame percentage with the abnormal
likelihood equal to 0.5. The fourth one is rate of detection
(RD) for pixel-level evaluation, representing the detection rate
at equal error point [38].
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Fig. 10. Qualitative evaluation of the proposed method for the 11 sequences in UMN dataset. Top row represents the snapshots of the detected first abnormal
frame in each sequence by the proposed OADC-SA. Bottom row shows the labels of the ground truth and the detection results respectively by the proposed
method with (OADC-SA) and without (OADC) PEF-PIF. Among them, green represents the normal situation and the red specifies the abnormal situation.

TABLE II
FRAME-LEVEL AUC COMPARISON FOR ABNORMAL DETECTION IN

UMN DATASET

3) Competitors: For UMN dataset, several methods repre-
senting the state-of-the-arts are selected. They are respectively
the pure OF[7], SF [7], chaotic invariants (CI) [8], IEP [14],
local aggregates (LA) [18], and sparse reconstruction cost
(SRC) [13].

For USCD dataset, to the best knowledge of the authors,
there are not trajectory-based anomaly detection methods
implemented in this dataset. Therefore, the methods chosen
here are all motion-based ones which represent the state-
of-the-arts. They are the MDT model [38], SF [7], the
MPPCA [37], Adam et al.’s work [48], SRC [13], spatial-
temporal motion context (STMC) [49], and newly proposed
Hierarchical MDTs with CRF filter (H-MDT-CRF) [39],
respectively.

C. Performance Analysis for Anomaly Detection

1) Performance on UMN Dataset: UMN dataset is col-
lected to validate the performance of sudden evacuation event
detection. According to Fig. 10, the detected results generated
by OADC-SA are almost the same as the ground truth. This
is also true for the quantitative evaluation of the frame-level
AUC values in Table II and the ROC curves in Fig. 11. The
reason of the superiority of the OADC-SA is that the other
competitors all need labeled motion patterns for defining nor-
mal/abnormal prototypes. The procedure needs significantly
different motion patterns, which may not detect the margin
representing the transition between them. Therefore, they all
may cause a delayed abnormal detection. As for OADC-
SA, it is an online type which does not need any training
data and is sensitive to the gentle structure change. In addi-
tion, through the structural context description, the abnormal

Fig. 11. Frame-level ROC comparison in UMN dataset.

individual with larger motion behavior difference to the sur-
roundings is enlarged, which makes the motion behavior of
normal and abnormal individual more distinctive, and anomaly
detection easier. Thus, it can capture the tiny structure varia-
tion of the crowd, by which the abnormality can be predicted
immediately.

2) Performance on USCD Dataset: Fig. 12 demonstrates
the frame-level ROC comparisons for USCD dataset, and the
AUC comparisons are shown in Table III. It can be seen that
the proposed method is superior to the other state-of-the-arts.
This is because the proposed method does not need any train-
ing data. For a certain video sequence, the normal motion
patterns learned from itself are more adequate for predicting
anomaly. However, the other methods depending on the motion
patterns in the training data more or less are vulnerable to the
margin between the normal and abnormal.

As ped1 dataset has not only the frame-level but also the
pixel-level ground truth, we further present more pixel-level
evaluation of ped1 dataset with other popular competitors. In
Fig. 14 and Table IV, the AUC value (0.75) of our method
demonstrates a little smaller than the newly proposed H-
MDT-CRF (0.827). The reason is that H-MDT-CRF utilized
a CRF filter to refine the detected pixel-level results, which
rules out the false pixel around the individuals. However, our
method takes all the pixels belonging to the marked rectan-
gle region into computation. Therefore, the ROC curve shows
a little weaker. But the proposed method is a more deci-
sive one (EER = 0.09) and obtains a comparative RD = 0.74
with H-MDT-CRF (RD = 0.745). Meanwhile, from the typical
abnormal frame shots in Fig. 13, our method outperforms the
other competitive ones visually.
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Fig. 12. Frame-level ROC comparisons in USCD ped1 and ped2 dataset.

TABLE III
FRAME-LEVEL AUC COMPARISON FOR ABNORMAL DETECTION IN

USCD DATASET

Fig. 13. Typical abnormal detection results generated by MDT [38], SF-
MPPCA [37], SRC [13], STMC [49], and our OADC-SA in ped1 dataset.
The detected pixel-level abnormality is marked by red color.

D. Discussion

1) Computational Complexity: For the proposed method,
the time is proportional to the crowd density, which can be
proved from Fig. 15. The main time consumption contains
two parts: SCD computation for every frame and target asso-
ciation via 3-D DCT. Assume the number of targets in the
newly observed frame is M, and the target number in the
previous frame is N. The computational complexity of SCD
computation is O(M2). The target association via 3-D DCT is
O(N(N−1)/2). Therefore, the total computational cost in the
approach is O(M2)+O(N(N− 1)/2). Because the number of
the targets in every frame is about 20 in this paper, the method
is very fast.

To give a more fair comparison, the average time cost
for judging a frame (to be normal/abnormal) is utilized. For

Fig. 14. Pixel-level ROC curves for ped1 in USCD dataset.

TABLE IV
PIXEL-LEVEL COMPARISON IN USCD PED1 DATASET

Fig. 15. Efficiency evaluation of the proposed multi-object tracker. From the
results, the time cost depends on the density of the crowd.

MDT [38], the time cost is 25 s/frame on a standard plat-
form with 3 GHz CPU and 2 GB RAM. With respect to the
SRC [13], the average time cost for USCD dataset is 3.8 s
and 0.8 s for UMN, executed on the same platform with MDT.
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TABLE V
FRAME-LEVEL AUC COMPARISON BETWEEN OADC AND THE

PROPOSED OADC-SA FOR UMN, PED1 AND PED2 DATASETS

STMC [49] takes about 1.2 s to judge a frame of USCD dataset
on a platform with 4 GB RAM and 3 GHz CPU. H-MDT-
CRF [39] only reports the average time cost 0.67 s on USCD
ped1 dataset. As for Adam et al. [48], the authors claim that
their method can run in real-time. For our method, it needs
about 0.6 s to judge a frame of UMN and USCD datasets on
a platform with 2 GB RAM and 2.93 GHz CPU without any
code optimization. Therefore, from the efficiency mentioned
above, the proposed method in this paper is the best one. In
the future, through code optimization or GPU acceleration, the
approach is probable to perform in real-time.

2) Influence of PEF-PIF: In this paper, we propose to use
PEF-PIF model to adjust the inconsistency weight between
individuals. Larger weight is magnified and smaller one is
weakened. In order to prove the effectiveness of this princi-
ple, we conduct the experiments with and without this PEF-PIF
adjustment (OADC and OADC-SA, respectively). The frame-
level AUC comparative results are shown in Table V. It can
be seen that the introduction of PEF-PIF makes the proposed
method more feasible for anomaly detection. The physical
meaning behind the success of introducing PEF-PIF is that
PEF-PIF makes the large motion difference more salient and
the small motion difference more uninteresting. Inspired by
that, the anomaly with large motion context change is easier
to be detected after introducing PEF-PIF.

3) Difference With the Single 3-D DCT Tracker: In order
to show the originality of the proposed tracker, the difference
between the single 3-D DCT tracker [24] and the proposed
multi-object tracker is described as follows.

First, the candidate samples in this paper are generated by
state-of-the-art pedestrian detection algorithm [25], instead of
particle filter [24] which is computational expensive for multi-
object tracker. Second, the target association strategy in [24]
is based on discriminative classification which needs nega-
tive samples. However, the detected samples in this paper
are all positive, which makes the discriminative framework
infeasible in this paper. Therefore, we paper designs a simple
yet efficient target association strategy considering both the
appearance consistency and context consistence. Finally, the
template updating strategy in [24] only considers the adapt-
ability of the template pool. The template reliability is not
treated. However, reliability can make the appearance of each
target more discriminative in the crowd.

To further show the effectiveness and robustness of the
proposed tracker, several more typical tracking results are dis-
played in Fig. 16. For each scenarios, two frames near the
beginning and the end of the sequence are respectively shown
with the observers’ trajectories. From the figure, it is obvious
that the computed trajectories are smooth and can adapt to

Fig. 16. Illustration of more typical tracking results. For each scenario, two
frames near the beginning and end of the sequence are displayed as a group.
The observers’ trajectories are also demonstrated at the same time. From
the tracking results, the trajectories are all smooth, which indicates that the
designed multi-object tracker is robust to occlusion, appearance, and illumi-
nation change. These reliable trajectories make the further anomaly detection
feasible. (a) Typical tracking results of sequences in UMN dataset. (b) Typical
tracking results of sequences in USCD ped1 dataset. (c) Typical tracking
results of sequences in USCD ped2 dataset.

the change of the scene. This greatly facilitates the abnormal
detection.

4) Adaptation and Potential Applications of the Approach:
This paper addresses the problem of anomaly detection in
crowded scenes (frame-level anomaly, pixel-level anomaly).
As for the crowded scenes with heavy occlusion, the success of
the proposed method relies on two hypotheses: 1) it is impos-
sible that every individual is occluded by the others and 2) the
abnormal individuals should be visible or partially visible at
least for pixel-level anomaly detection. Through observation,
the former one is often the case in the crowd. The latter
one is the fundamental condition for the pixel-level anomaly
detection, not only for this paper, but also for the competi-
tive methods in the literatures. If these two hypotheses can be
established, we can say that the proposed method is effective
for the crowded scenes with heavy occlusion. The reasons are
described as follows.

1) In this paper, we find that the frame-level nor-
mal/abnormal can be judged alternatively by a single
individual in the crowd by treating the individual as an
observer. If some other individuals appear inconsistently
with its historical observation, an abnormality occurs.
Although the success of this approach depends on the
accurate association of the observers, as long as at least
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one observer is accurately matched at every association,
the frame-level abnormality can also be detected by its
SCD variation analysis.

2) With respect to the pixel-level abnormality, it only relies
on the motion differences between each individual and
others at current frame. If the abnormal individual is
visible or partially visible, it can be detected by its
significantly different motion pattern from others.

Since this paper exploits the crowd structure variations, the
frames with severe structure motion context changes will be
efficiently extracted. Therefore, the structure context analysis
of this paper might provide some guidance for the video key
frame extraction [50], [51] and video coding [52]. In addi-
tion, the selected key frames can also be helpful for video
annotation [53]–[55].

VII. CONCLUSION

This paper proposes an online anomaly detection method
from crowd structure modeling. The visual structural con-
text of the individuals is for the first time explored in this
field. For this purpose, we originally introduces the PEF-PIF
to construct the SCD contributed by a novel SHOF, which
can effectively represent the relationship among individuals.
In order to compute the SCD variation efficiently, a robust
multi-object tracker is then designed to associate the targets
in different frames. The proposed tracker introduces the excel-
lent incremental ability of 3-D DCT and only limited number
of targets need to be stably tracked. This makes the tracking
method feasible for anomaly detection in crowd scenes with
high density. By online spatial-temporal analysis of the SCD
variation, the crowd abnormality is detected in the end. From
the testing results on several popular datasets, the proposed
method is superior to others representing the state-of-the-arts.

Our paper is tested only in the visible video sequences con-
taining RGB channels. However, in severe weather conditions
like foggy and rainy days, it takes difficulties to the proposed
method, as well as the other competitive ones. We think one
possible solution to this problem is to incorporate the multi-
spectral clues that have different properties with the traditional
visible spectrums. Besides, because of the individuals in the
normal crowd always demonstrate consistent motion patterns,
salient object in motion indicates that the object may be in
exceptional. Therefore, in the future, we also want to intro-
duce saliency detection method for RGB [56] or multispectral
data [57], [58] into anomaly detection. This may compensate
the limitations of existing methods. The future work is mainly
toward these direction.
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