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a b s t r a c t

The vision ability is fundamentally important for a mobile robot. Many aspects have been investigated
during the past few years, but there still remain questions to be answered. This work mainly focuses on
the task of road detection, which is considered as the first step for a robot to become moveable. The
proposed method combines the depth clue with traditional RGB information and is divided into three
steps: depth recovery and superpixel generation, weakly supervised SVM classification and context-
aware label transfer. The main contributions made in this paper are (1) Design a novel superpixel based
context-aware descriptor by utilizing depth map. (2) Conduct label transfer in an efficient nearest
neighbor search and a temporal MRF model. (3) Update the learned model adaptively with the changing
scene. Experimental results on a publicly available dataset justify the effectiveness of the proposed
method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

To autonomously navigate a robot in an outdoor environment,
the vision system should be capable of perceiving the surrounding
world. For example, the robot needs to know who he is interacting
with [1], which way he could follow [2], and where he should stop
to conduct his mission [3]. Among these abilities, road detection [4]
is the primary one for a robot to become moveable. For this purpose,
the road detection task needs to provide a clue of the drivable road
in an input image or video so that the intelligent system can plan its
path. In this paper, we put our focus on the road detection problem,
which is fundamentally important not only for a robot, but also for
an autonomous vehicle with an advanced driver-assistance system
[5], such as object tracking [6] and anomaly detection [7].

Since the road images may differ with each other greatly, the
detection task is actually not an easy task. Take Fig. 1 as an
example. The roads have different pavements and are laid on
different places, leading to various color, texture, and shape
appearance. Along with these factors, the lighting condition is
another influential one, inducing shadows on the road surface.
These complexities in together make a reliable road detection
difficult. Motivated by this fact, in this paper we propose a robust

road detection method based on depth fusion and label transfer in
a video sequence. The stable depth clue ensures the robustness of
the proposed model and the ever-updating mechanism makes the
transferred labels accurate (Fig. 2).

1.1. Overview of the proposed method

Though many works have been proposed in the past few years,
most of them focus on the individual image. In fact, video
sequences are the most frequently confronted situation instead
of single images. Therefore, we lay our attention on the video
sequence in this paper. The task is to infer the road area in each
frame given a camera recorded street scene. The proposed method
in this paper is named as context-aware label transfer (CALT),
which is divided into the following three steps:

� Preprocessing: To facilitate the processing, the input video
frames are firstly segmented by SLIC [8] to get superpixels.
The subsequent label transfer is based on the obtained super-
pixels. Since we want to utilize the depth clue in the frame-
work, the depth map of each frame is also reconstructed
according to a consistent depth recovery technique [9].

� Context-aware label transfer: The preprocessed sequence is
tackled frame by frame in this step. For the first frame, its
ground truth labels (road or non-road) are manually marked.
For the subsequent frames, their labels are sequentially
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transferred according to the previous one, taking the obtained
result of current frame as the updated ground truth. This
operation is iteratively conducted until all the frames are
treated.

� Result demonstration: After the above procedure, each super-
pixel in a frame is allocated a label. To get a consistent labeling
map without noisy labels, a Winner-Take-All (WTA) smoothing
is applied to rule out the isolated inaccurate labels. Then a
geometric triangle constraint is employed to restrict the road
area. The final results are then demonstrated overlaid in the
original sequence.

1.2. Contributions

Although there are existing road detection methods by employ-
ing depth map and label transfer, the proposed one in this paper is
distinguished with them in the following aspects, which also
makes the main contributions of this paper.

� Design a novel superpixel based context-aware descriptor by
utilizing depth map. Most existing methods only consider the
color information of the obtained image or video. Several
works employ the depth map, but the way they incorporating
it into the frameworks is simple and straightforward [10,11]. In
this paper, we segment the image into superpixels and capture
its characteristic by simultaneously concatenating the color and
depth features. This combination is effective because it
leverages the superiorities of the color's distinctiveness and
depth's robustness. Based on this characteristic, a context-
aware descriptor is developed to represent the superpixel's
relationship with the adaptive circular neighborhood, which
further paves the way for the optimization of label transfer.

� Conduct label transfer in an efficient nearest neighbor search.
Label transfer can reduce the inference problem of training
sophisticated parametric models for an unknown image to the
problem of matching it to an existing set of annotated images [12].
But in this process, accurate registration is a challenging task [13].

For a more precise correspondence, we choose to transfer the
labels between superpixels with the most similar contextual clues
in adjacent images, instead of searching for the best match in a big
training set. Since the two examined images are similar to each
other, we utilize a new dense pixel correspondence method [14] to
register the near superpixels respectively in the adjacent frames,
which effectively exploits the video temporal relations between
frames.

� Update the learned model adaptively. Traditional offline meth-
ods learn the model only once in the beginning. This strategy
leads to an expensive training stage with large amount of
images. More importantly, it means even if the actual scene
changes much from the training ones, there is no adaptability.
Based on this consideration, the proposed model updates the
parameters of the classifier frame by frame, yet in an efficient
manner. Novel properties of specific labels are dynamically
updated, which ensures that the model can handle the
changing scene.

The rest of the paper is organized as follows. Section 2 reviews
the related work. Section 3 introduces the recovery of depth map.
Section 4 describes the main part of the proposed method –

context-aware label transfer. Section 5 gives the experimental
results to justify the effectiveness of the proposed method.
Conclusions are finally made in Section 6.

2. Related work

The techniques for road detection can be categorized according to
the types of road images, which are structured ones (e.g., a road in
urban street) and unstructured ones (e.g., a road in rural area) [15].

For the structured road detection, the captured images have clear
road markings and the designed algorithms are based on these
extracted markings [16]. Among the earliest attempts, Bertozzi and
Broggi [17] assume that the road markings are visible. Based on this
assumption, the stereo image pair is first mapped to another 2D
space to remove the perspective effect. Then the left image is used to
recognize the road markings and both the two images are further
employed to detect the free areas ahead the vehicle. Wang and
Frémont [18] first use sky removal to enhance the axis-calibration
stability. Then the stereo vision based extension is applied to extract
the line function and reconstruct the ground plane. But the stereo
images are vulnerable to weather conditions such as rain, snow, fog,
and darkness. The radar sensor, on the contrary, being an active
sensor and operating at millimeter wavelengths, can provide an
alternate image of the scenario in front of the vehicle. For example,
Ma et al. [19] propose a Bayesian model to interpret the radar and
optical road images. In this procedure, they incorporate the lane and
pavement prior to guide the boundary detection. Feng et al. [20]
design a system equipped with a 2D laser radar. By measuring the
distance from the radar to the road surface, a rectangle-searching
algorithm is implemented to find the road rectangle containing the
most road points. Besides the multi-sensor approaches, many other
ones mainly focus on the feature representation, which can avoid
the inconvenience of sensor setups and the undesired radioactiveFig. 1. Road images with different colors, textures, shapes and lightings.
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Fig. 2. General framework of the proposed method.
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property. Han et al. [21] conduct road detection in the structured
environment. They first extract line segments in polar coordinates
using range data. Then the line segments are classified into road
segments and obstacle segments by utilizing Markov chain propaga-
tion models and Bayesian update. Kühnl et al. [22,23] use SPatial
RAY (SPRAY) feature and slow feature to learn the detection model
that applies for both structured and unstructured roads. However,
the main weakness of these structured road detection methods is
that they highly rely on the prior structure. If the road markings are
not clear in the image, the designed algorithms might not work well.

For the unstructured ones, no explicit road marking can be
incorporated. In this case, different kinds of low-level image clues
and multi-model data are generally employed [24,25]. For exam-
ple, He et al. [26] propose to detect roads in campus and urban
scenes. They first estimate the boundary in the intensity image
using basic mathematical morphology operators – erosion and
dilation. Then the color distribution of the road area is modeled as
a multivariate Gaussian to extract it from the color image.
Unsatisfyingly, the detected boundary is always disconnected.
Franke et al. [27] achieve the country road detection by fusing
color, texture and edge features. These features are modeled by a
maximum-a posteriori estimation which is solved by particle filter.
Apart from the color, texture, boundary/edge clue, the vanishing
point and superpixel are alternative valuable information that can
be used for inferring the road region. For instance, Rasmussen [28]
deals with the problem of road following in ill-structured roads, in
which the dominant texture orientations are computed with
multi-scale Gabor wavelet filters. Then the obtained orientations
vote for a consensus vanishing point. The subsequent tracking of
vanishing point among frames is updated by a particle filter. Kong
et al. [29] detect the straight part of road area with a set of
weighted Gabor filters. Instead of using the hard voting strategy, a
locally adaptive soft-voting is employed to determine the vanish-
ing point. Later, they extent this work in the segmentation of road
area by incorporating more features [30] and designing a novel
generalized Laplacian of Gaussian (gLoG) filter [31]. As for the
superpixel feature, Song et al. [32] detect roads using weighted
aggregation based segmentation. Firstly, a road identifier is trained
with supervised learning algorithm. Secondly, road regions are
detected by combining a posteriori probability and the visual
information using segmentation. There are still others trying to
involve the multi-modality clues. Guo et al. [33] tackle the road
detection problem in the stereo vision setup. They get the
estimated camera parameters first, in order to infer the underlying
road geometry. Subsequent detection is then formulated in the
framework of MRF optimization, enforcing image evidence, geo-
metry information and temporal constraint. Zhou et al. [34] use a
monocular clue from the dark channel prior to get the estimated
depth. Then six features are integrated to segment the input image
into regional groups. By this means, the road region can be
extracted. Different from the above works towards the road related
clues, other literatures focus on the roads themselves. A few cases
are listed as follows. Wang et al. [35] employ a hyperbola road
model to cope with roads with varying curvatures. The geome-
trical and statistical reasoning in vanishing point leads to an
accurately estimated parameter set. In the end, they integrate
the hyperbola road model with a condensation particle filter to
track the road in real time. Álvarez and López [36] focus on the
situation that the road surface has different lighting conditions.
They utilize a shadow-invariant feature, together with a
likelyhood-based classifier to fulfill this task. Álvarez et al. [37]
use a convolutional neural network based algorithm to learn
features from noisy labels to recover the 3D scene layout of a
road image. Its main contribution lies in utilizing the machine
generated labels to learn the road detection model. This type of
methods is comparatively more robust than the structured ones.

However, in situations of particular lighting conditions, existing
method is still far from perfect.

Apart from the road detection methods, the semantic scene
segmentation is closely related to the proposed method. In the
following, we will review the different techniques from this aspect.
Hoitem et al. [38] assign the region labels through exploiting a
combination of features, such as location, shape, color, texture, and
perspective context. By learning boosted decision trees for each
classifier, the class of each superpixel is determined. Kang et al. [39]
integrate a color and near-infrared images to conduct scene seg-
mentation, which utilizes hierarchical bag-of-textons features. But
these two models are both learned offline and cannot handle the
new confronted environment. Liu et al. [12] propose a label transfer
framework called nonparametric scene parsing. They first construct
a large database containing fully annotated images. Then, the system
establishes dense correspondence between the input image and the
nearest neighbors in the database using the dense SIFT flow
algorithm. Finally, the existing annotations and segmentations are
warped to the input image. However, this method needs large
annotated database to supervise the image segmentation and
extremely long time to train its model. Li et al. [40] propose a
hierarchical generative model to segment the image into different
levels of expression. Its success depends on the generative model
that jointly expresses the visual and textual clues, and a fully
automatic learning framework that is able to learn robust scene
models from noisy web data. But the hierarchical level determina-
tion and the error accumulation between different image levels are
the main problem for image segmentation. Zheng et al. [41] use the
3D cloud points of the examined scene to infer the semantic objects.
They first form a 3D volumetric primitive by filling the missing
voxels. Then a compact graph of the primitives is established for a
more efficient representation. With this graph, a physical reasoning
process is applied to merge the related nodes to get a stable
segmentation. Similar to [12], the physical reasoning process relies
on large external image dataset. Farabet et al. [42] use a convolu-
tional network to learn the semantic features of different scales. By
owing the complex interaction of various features to the deep
learning process and combining a prerequisite segmentation, an
input image can be well labeled with the trained model. Although
this type of methods is widely studied in the vision community,
most of them focus on the static images and the extreme large
image datasets are needed to train their models. As for the video
sequences, the considerations are absolutely different.

3. Depth recovery

Traditional depth map is obtained from stereo cameras or radar
lasers. Nevertheless, the former needs to configure two cameras,
which is a tedious work, and the latter has limited perception
range. In this work, consistent depth maps are reconstructed from
a video sequence [9] captured by a moving camera. Suppose the
video sequence to be processed is I ¼ fIt j t ¼ 1;…;ng, where It(x)
represents the color of pixel x at frame t. Our objective is to
calculate the corresponding depth map D¼ fDt j t ¼ 1;…;ng. There
are four main steps for this procedure.

(1) Recovery of camera parameters: The camera parameters are
denoted as C¼ fKt ;Rt ; Ttg, where Kt is the intrinsic matrix, Rt is the
rotation matrix, and Tt is the translation vector. They are recovered
by the shape from motion (SFM) technique [43], which can handle
long sequences with varying focal lengths. The estimated para-
meters are used for subsequent depth refinement.

(2) Depth initialization: In this step, an initial depth map is
obtained for each frame independently. By minimizing an energy
function containing a data term and a smoothness term with loop
belief propagation [44], each pixel is assigned a depth label. The

Q. Wang et al. / Neurocomputing 158 (2015) 174–183176



energy function is defined as

EðDt jI Þ ¼
X
x

1�uðxÞLinitðx;DtðxÞÞþ
X

yANðxÞ
λðx; yÞ � ρðDtðxÞ;DtðyÞÞ

" #
;

ð1Þ
where uð�Þ is the adaptive normalization factor, λð�; �Þ is the
adaptive smoothness weight, N(x) is the neighborhood of x, and
ρð�; �Þ is the smoothness cost. Linit is the disparity likelyhood
defined as

Linitðx;DtðxÞÞ ¼ σc

σcþ J ItðxÞ� I0tðx0ÞJ
; ð2Þ

where σc controls the shape of the differentiable robust function
and x0 is the corresponding pixel (given a specified disparity) of x
within frame I0.

(3) Bundle optimization: The depth map obtained from the
above step is a rough estimation. Here each frame is associated
with others to refine the result. For a pixel x in frame t, its
corresponding pixel x0 in frame t0 is computed by the epipolar
geometry as

x0h � Kt0R
T
t0RtK

�1
t xhþDtðxÞKt0R

T
t0 ðTt�Tt0 Þ; ð3Þ

where Dt(x) is the estimated disparity and h denotes the homo-
geneous coordinate system. According to this relationship, an
energy function is derived and minimized to refine the initial
depth map.

(4) Space-time fusion: Though bundle optimization can improve the
accuracy of depth maps greatly, there are still reconstruction noises. To
get a better reconstruction map, a space-time fusion algorithm is
employed to reduce the disparity noises. It is actually an optimization
operation. The main idea is that spatial continuity, temporal coher-
ence, and sparse feature correspondence are simultaneously consid-
ered to constrain the depth map. By defining an energy function and
optimizing it, the previously obtained results can be enhanced with
fewer errors. More details can be found in [9].

4. Context-aware label transfer

In this part, the details of the proposed context-aware label transfer
are introduced. Suppose the frame It have been processed, which
means each superpixel sit has been assigned a label ℓt

i Af0;1g and the
label map Lt ¼ fℓt

i j i¼ 1;…;Ng is treated as the ground truth of It. Here
N is the number of superpixels in It and 1 and 0 respectively represent
the road and non-road area. Our task is to estimate Ltþ1 of Itþ1

according to the previous result. There are mainly three steps for this
procedure as illustrated in Fig. 3. Firstly, a rough label map is predicted
according to a weakly supervised SVM classifier. Then the previously
obtained label map Lt is transferred to current result to refine the
estimation, by employing the contextual information. In the end, a
smoothing operation is applied to get a more consistent result and the
detected road region is demonstrated on the original sequence.

(1) Weakly supervised SVM prediction: To decide the label of a
superpixel is actually a classification problem. After the former
frame It had been processed, the obtained result was employed to
train a kernel SVM classifier [45]. Therefore, when Itþ1 is being
examined, the previously trained SVM classifier is applied to
determine the current labelings of superpixels. The classifier is
later updated with the newly obtained Ltþ1 when the cycle at time
tþ1 is finished. This updating strategy makes the model adaptable
to the changing scenery.

As for the training of SVM classifier, there are several questions
to be answered. The first one is how to select the samples. If all the
pixels are involved in the training set, the efficiency cannot be
ensured. Therefore, we select the collection of each superpixel's
central pixel (red dots in the RGB image of Fig. 4) as the training

data, which is representative enough and fast to be realtime. The
second one is how to select the label and feature. For each central
pixel, its label is set as the average of the labels within the
superpixel, weighted by a Gaussian filter located at the center
pixel. The feature vector is concatenated by two parts, one is from
the color image and the other is from the depth map. For the color
image, the HOGþLBPþColor is used, which has been proved to be
effective in [46]. For the depth map, since there is no obvious
gradient, only the LBPþ Intensity is used.

There is still one important factor that should be pointed out.
Except for the first frame, not all the sample features are
recalculated for the updating procedure of SVM classifier when
the label transfer at time tþ1 is finished. We only put those
samples that are not correctly classified into the previous training
set to replace the same number of samples that are correctly
classified with high confidence. As for the correctness, we employ
the previous frame result as the ground truth, which means if the
classification result at frame tþ1 differs with the result at frame t,
the related pixels are treated as the incorrect classified ones.
Though this strategy is not perfect, it is proved to be effective in
our experiment because the consecutive frames are supposed to
have no much difference. This implies that many unchanged
samples do not need to conduct label assignment and feature
extraction again, which makes the update effective. Because of the
partially updated samples and the sparsely sampled points,
instead of the whole, the classifier is called weakly supervised.

(2) Context-aware label transfer: The obtained labeling result by
the above SVM classifier is a rough estimation. To get a more
precise prediction, the contextual clue is employed to optimize the
label map. For this purpose, we first introduce the contextual
descriptor of each superpixel as illustrated in Fig. 4.

Suppose the label of the examined superpixel is ℓtþ1
i (either

0 or 1), its feature vector is sptþ1
i and its central pixel is

Ctþ1
i ¼ ðxtþ1

i ; ytþ1
i Þ. Then we draw a series of equally sampled

points (green points) around Ctþ1
i , forming a circle with a radius

r of the size of the superpixel's maximum edge. The sampling
interval is denoted asΔθ and there are in total M ¼ 2π=Δθ sample
points. Suppose ℓtþ1

i;k is the label of the kthðkAf1 : MgÞ sample
point. The contextual descriptor for the examined superpixel is
then represented as Ttþ1

i ¼ ½ℓtþ1
i;1 ;ℓtþ1

i;2 ;…;ℓtþ1
i;M �. The defined

descriptor is simple yet efficient and robust to noise, as described
in the following. For a visual illustration, we draw a circular area
around Ctþ1

i , with different colors indicating different label per-
centages around the examined superpixel. This is illustrated in the
bottom-right of Fig. 4.1

With the above contextual descriptor, we will check if the
estimated label for each superpixel in the SVM prediction step is
appropriate. This is achieved by a temporal MRF optimization proce-
dure. For this purpose, we first find the corresponding counterpart at
time t of the examined superpixel at time tþ1 by registering the two
adjacent frames with a recent dense pixel correspondence method
[14]. After that, the obtained label map is further refined by minimiz-
ing an energy function. It is defined as

EðLÞ ¼
XN
i ¼ 1

Dðℓtþ1
i Þþ

XN
i ¼ 1

wi;jVðℓtþ1
i ;ℓt

j Þ; ð4Þ

1 In order to demonstrate the contextual difference of different superpixels, we
draw the largest percentage of road/no-road labels surrounding the examined
superpixel with yellow/orange colors. And the drawn color mask is superimposed
in the original RGB image. Because of the dark environment of the video scene, the
RGB image shows almost a black color. Meanwhile, there are many superpixels
lying on the boundary of different label regions. Therefore, the superimposed color
mask may not take up the entire circle region centered with these superpixels.
Hence, it occurs that the contextual descriptor has three colors (road, no-road and
the color of the original RGB).
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where j is the superpixel index at time twhich is matched with the ith
superpixel at time ðtþ1Þ, and wi;j is temporal varying weight, which
balances the contextual consistency between the examined superpixel
at time ðtþ1Þ and its corresponding counterpart at time t. The larger
wi;j is, the poorer the contextual consistency is.

The first term is the data term, reflecting the likelihood probability.
It measures the consistency with the previously learned road/nonroad
priors, assuming each class label with a Gaussian Mixture Model
(GMM). In this paper, it is defined as

XN
i ¼ 1

Dðℓtþ1
i Þ ¼

XN
i ¼ 1

log
1

pðℓtþ1
i j sptþ1

i ;ΦtÞ

 !
; ð5Þ

where Φt is the parameter set of GMM estimated by the EM
algorithm [47].

As for the smoothness term in this paper, it considers the temporal
contextual consistency between the two adjacent frames. Since the
two adjacent frames are nearly similar, our assumption is that those

superpixels with its contextual descriptor different from the previous
ones at the same locations might get its label transferred from the
previous one. Whether this transfer is allowed or not depends on the
value of the objective energy function. If the transfer can get a lower
energy value, then the label change is encouraged; otherwise, it is
rejected. To be specific, different from the traditional pair-wise label
constraint [48,49] in spatial neighborhood, the smoothness term
balances the temporal contextual consistency and is defined as

XN
i ¼ 1

wi;jVðℓtþ1
i ;ℓt

j Þ ¼
XN
i ¼ 1

wi;j jℓtþ1
i �ℓt

j j ; ð6Þ

where wi;j ¼ JTtþ1
i � Tt

j J1=M, and � represents the “bitxor” opera-
tionwith an output of a vector whose elements are 0 or 1. When Ttþ1

i
and Tj

t are prone to be the same, which means the assigned label at
frame tþ1 is more consistent with previous label, wi;j tends to be
smaller towards 0. This implies that the smoothness term encourages
a smooth labeling between frames. Otherwise, if Ttþ1

i and Tj
t are

RGB Depth

Superpixel ImagePseudo-Groundtruth

SVM

Contextual Clue 

Depth RGB

(Features)

Superpixel Image

Time  t+1Result of Time  t

Context-aware 
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Context-aware Label Transfer

Label Transfer
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Fig. 3. Illustration of the proposed context-aware label transfer (CALT).

Fig. 4. Illustration of contextual descriptor. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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prone to be the different, wi;j tends to be larger towards 1, which
indicates that the smoothness term discourages the inconsistent
labeling between frames.

The above description about the smoothness term implies if the
labels of two corresponding superpixels are the same, the exam-
ined superpixel maintains its label unchanged. Otherwise, we
need to consider the contextual consistency between the exam-
ined superpixel and its associated one matched by the dense
correspondence method. Different from the appearance consis-
tency constraints in video foreground segmentation [50] and
target detection [51,52], the contextual consistency in this work
concentrates on label domain. Because of the only two road/non-
road regions, the temporal label constraint is more efficient and
effective than the appearance based methods.

Since the road detection in this paper is a binary-labeling
procedure, it is obvious that the smoothness term in the energy
function is a metric in ℓtþ1

i ;ℓt
j . The optimization procedure can be

conducted by the α-expansion algorithm in [44]. Note that the
proposed method utilizes pairwise energy function in a temporal
manner, i.e., the between-frame constraint. Although the temporal
and spatial constraint can be jointly modeled in the pairwise
energy function, we focus on the temporally contextual consis-
tency of the MRF model in this work. At the same time, the spatial
constraint is carried out by a post-processing Winner-Take-ALL
(WTA) strategy in the following.

(3) Final road delineation: After the above steps, the label map is
basically fixed, except for a small amount of noisy superpixels. To
get a smoother map, an 8-neighborhood Winner-Take-All filter is
applied, which encourages the pixel's label should comply with its
surrounding labels and the obtained results should be smooth. We
also note that after the perspective transformation, the road area
always becomes a triangle, as shown in Fig. 5 by points A, B and C.
Thus a prior geometric restriction is further considered. To be
specific, we assume that the pixels lie outside this triangular
region (the green areas in Fig. 5) do not belong to the road area.
Though this constraint is a little coarser for the curved road, our
focus is mainly on the large road area ahead of the vehicle.
Therefore, this refinement can cover most of the road regions.
Besides, our primary contribution in this work is in the previous
part. After the above steps, the road detection results are generally
satisfying. Thus we do not lay more emphasis on the step.

With this constraint, the obtained results can rule out the
outliers and keep neat. In the end, the detected road region is laid
on the original sequence as a display.

5. Experiments

5.1. Dataset

In this work, we selected three video clips to test the proposed
method. Among them, one video clip is from Cambridge-driving
Labeled Video Database (CamVid) [53] (“Sequence1”), and the
others (“sequence2 and Sequence3”) are downloaded from web
site database. CamVid Database is a popular collection of urban
videos with object class semantic labels, together with metadata.
All the videos are captured by a camera mounted inside a car and
the frame size is 960�720. Instead of using bounding boxes or
approximate boundaries, the database provides pixel-precision
ground truth, allowing for more accurate learning and inference
purpose. We select 250 frames from seq01TP because this clip is
shot at dusk. Objects in the scene can still be identified, but the
road and its surrounding street scene have similar brightness. This
makes the recognition very difficult, in which case we can just see
the robustness of the proposed method. Unfortunately, the ground
truth labeling is provided every 30 frames, which we think is too
few to get a precise evaluation. Therefore, in this work we re-label
the sequence every 5 frames to produce more ground truths. In
addition to the urban sequence [53], we also prove the efficiency
of the proposed method in the sequences downloaded from the
web site. These sequences are all captured in the highway
circumstance, by which we can see the performance of our
method when driving fast. The frame size of these highway videos
is 500�280. In order to validate the performance of our method,
the ground truths are provided by ourselves for every 5 frames.

5.2. Comparative methods

The success of the proposed method depends on the coopera-
tion of several components. They are the SVM classifier and its
updating strategy, the context-aware based MRF optimization and
depth fusion. For evaluating the effects of different components,
we select “Sequence1” to compare because of the most difficulty
of this clip. Therefore, experiments with different component
combinations are conducted and then evaluated according to
the ground truth (GT). They are denoted as SD (SVMþDepth),
SMD (SVMþMRFþDepth), SUM (SVMþUpdateþMRF), and SUMD
(SVMþUpdateþMRFþDepth).

Besides, we also select three popular works representing the
state-of-the-art to be compared with the proposed method on all
the video sequences selected in this work. The competitors are a
vanishing point based method (VP) [30], an illuminate invariance
based method (ILL) [36], and a causal graph based video segmenta-
tion method (CA) [54]. The reasons for choosing the three methods
are explained as follows. First, VP does not need any training
samples. It can prove the superiority of using road sample training
in our context-aware label transfer process. Second, ILL is designed
to test the illuminate invariant ability. Its involvement can demon-
strate the robustness of our method. At last, CA utilizes optical flow
to correspond the labeled semantic regions, whose label is predicted
by the state-of-the-art scene parsing method [42]. It can be used to
test the effectiveness of our label transfer operation.

5.3. Evaluation metrics

For the evaluation of different methods, two sets of metrics are
employed. The first one contains precision, recall and F-measure
[55–57]. Precision reflects the rightness of the detected results,
and recall indicates the ability to retrieve the desired information.
F-measure is a balance between them. They are defined as

Precision¼ TP
TPþFP

; Recall¼ TP
TPþFN

;
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Fig. 5. Illustration of the final road delineation. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this
paper.)
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F�measure¼ Precision� Recall
ð1�αÞ � Precisionþα� Recall

; ð7Þ

where α is set as 0.5. The second one is accuracy [58]. It reflects
the overlapping ratio of the detected results with the ground truth,
which is formulated as

Accuracy¼ areaðD \ GÞ
areaðD [ GÞ; ð8Þ

where D is the detected results and G is the ground truth
benchmark.

5.4. Parameter setup

There are several parameters to be set. The first one is for SLIC
segmentation [8]. There are two parameters, regularSize and reg-
ularizer. regularSize controls the size of the superpixel and is set to
10. Smaller value of this parameter will lead to more training
samples of SVM classifier and larger value will result in less accurate
segmentation of semantic objects. regularizer is empirically set to
1 to ensure the superpixel has a smooth boundary.

The second one is the SVM classifier. Gaussian is selected as the
kernel function and C is set to 105. The third one is the radius r for
context-aware descriptor. We set the size from small to large and then
calculate the performance under the three metrics. Fig. 6 shows the
results on 10 training frames (each frame has about 1000 samples).
From the curves, we can see clearly that when r is set equal to
regularSize, the model performs best. Therefore, r is set to 10.

The last set of parameters is the σc, Δθ, and M. In our
experiments, they are all empirically determined as σc ¼ 10
(according to [9]), Δθ¼ π=72, and M¼ 2π=Δθ¼ 72.

5.5. Results

In this part, the experimental results are demonstrated and
analyzed. First of all, we present some typical example results in
Fig. 7 to compare the effects of different components in the
proposed method. From the figure, we can see that SD generates
results with many unpleasant isolated superpixels. This is mainly
due to the absence of optimization. With the MRF optimization
added, SMD gets better results. This is true for SUM even though the

A

B C
Fig. 6. The performance under different r values.

SD SMD SUM SUMDGT

#030 #090 #110 # 135 #230 #260

Fig. 7. Typical road detection examples of different component integrations.
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depth information is removed from the model. But SUMD is the
most superior method in all comparisons.

Then we conduct intensive quantitative analysis to give a more
objective evaluation. Fig. 8 presents the averaged precision, recall
and F-measure across all the frames. It is manifest that the SVM
classifier plus the depth (SD) performs worst. If we add the MRF
optimization component without updating mechanism (SMD), the
performance improves a bit. But if we replace the depth clue with
MRF optimization together with the updating mechanism (SUM),
the model demonstrates a lot more improvement. However, the
best performance is achieved by combining all these factors in a
unified model (SUMD). The reason is that compared with SMD, the
updating procedure can infer the correctness of predicted road
region, and compared with SUM, the depth map can provide a
clearer feature description for road and background. Fig. 9 illus-
trates a similar result for the metric of accuracy, except that SMD
and SUM are hard to say which one is better. But in all cases,
SUMD, even with some small defect regions, is the most out-
standing one, which means utilizing those components together is
the appropriate choice. Note that the significant drop in the
accuracy curve of SUMD is caused by the triangle region constraint
of road delineation in Fig. 5. Because the upcoming car in the
roadside from 150th frame to 170th frame in the CamVid
sequence, the constrained road region by our method abandons
some pixels belonging to the actual road region in ground truth.

We also compare our results with three typical methods represent-
ing the state-of-the-art on all the video sequences selected in this work.
Fig. 10 shows the typical examples. It is obvious that our method
outperforms the competitors because we have an updating scheme
that can adapt to the changing scene. To be specific, the VP method
without any training data, approximates the road region through a
computed vanishing point. It has poor adaptation to the street roads
because of the cars near the sidewalk. As for ILL, it aims to tackle the
illuminative variance in the road surface (such shadows). However, the
video sequence in this paper has low environmental illumination,
which causes the features in the road and the background difficult to
be distinguished. In terms of CA, it utilizes an efficient graph segmen-
tation to cluster the semantic regions. Then the region labels are given
by a state-of-the-art scene parsing method. However, CA only corre-
sponds the regions in the adjacent frames by an optical flow
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Fig. 8. Quantitative comparison of the averaged precision, recall and F-measure
across all the frames. Different components of the proposed method are compared
in this experiment.
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Fig. 9. Quantitative comparison of accuracy for each frame. Different components
of the proposed method are compared in this experiment.
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Fig. 10. Typical road detection examples for different methods.
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computation, and the correctness of the clustered regions is not
ensured.

Fig. 11 shows the averaged precision, recall and F-measure for the
four methods. We can see that on the precision and F-measure, our
method is obviously better than the other three ones. Though the VP
method has a high recall value, its corresponding precision is very
low, which means it has an inferior performance. The same conclu-
sion can be found in Fig. 12, where for all the frames, it is manifest
that the proposed method has a higher accuracy. All these evidences
prove that our method is more effective than the competitors.

5.6. Efficiency analysis

The proposed method and two competitive ones (VP and ILL)
are run on MatLab 2010, while AC is run on Cþþ . The employed
computer is consistent, with Intel(R) Core(TM), i3-2130 @3.40 GHz
and 4 GB RAM. For the proposed method, we get the statistics of
each component. They are feature extraction (0.8 s), SVM predic-
tion (1.02 s), label transfer (0.45 s) and postprocessing (6.06 s).
For the vanishing point based method (VP), it takes 50 s to process
one single frame, which is the slowest one. For the CA and ILL
methods, they respectively take 50 ms and 1.25 s. These two
methods are more efficient than the proposed one, but their
performances are not satisfying. From this point, our method can
be thought as a compromise, having the best performance and a
moderate computational time.

6. Conclusion

In this work, we propose a road detection method based on
context-aware label transfer. Based on the combination of depth clue
with traditional RGB colors, the method utilizes label transfer to
predict the road and nonroad area. The whole procedure can be

divided into three steps. Firstly, the input images are segmented into
superpixels and the depth maps are extracted. Then the road areas
are estimated with a weakly supervised SVM classifier, and an MRF
optimization process is followed to refine the obtained results,
during which the context-aware information plays an important
role expressing the neighborhood correlation. In the end, the
optimized results are smoothed by Winner-Take-All and restricted
by a geometric triangle. Experiments on a publicly available dataset
demonstrate the effectiveness of the proposed method.

In the future, we plan to extend our work to the detection of
multiple class objects. The ultimate goal is to understand the street
scene automatically.
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