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Part-based Online Tracking with Geometry
Constraint and Attention Selection

Jianwu Fang, Qi Wang, and Yuan Yuan, Senior Member, IEEE

Abstract—Visual tracking in condition of occlusion, appear-
ance or illumination change has been a challenging task over
decades. Recently, some online trackers, based on the detection
by classification framework, have achieved good performance.
However, problems are still embodied in at least one of the three
aspects: 1) tracking the target with a single region has poor
adaptability for occlusion, appearance or illumination change;
2) lack of sample weight estimation, which may cause overfitting
issue; and 3) inadequate motion model to prevent target from
drifting. For tackling the above problems, this paper presents the
contributions as follows: 1) a novel part-based structure is utilized
in the online AdaBoost tracking; 2) attentional sample weighting
and selection is tackled by introducing a weight relaxation factor,
instead of treating the samples equally as traditional trackers
do; and 3) a two-stage motion model, multiple parts constraint,
is proposed and incorporated into the part-based structure to
ensure a stable tracking. The effectiveness and efficiency of
the proposed tracker is validated upon several complex video
sequences, compared with seven popular online trackers. The
experimental results show that the proposed tracker can achieve
increased accuracy with comparable computational cost.

Index Terms—Attention selection, multiple parts constraint,
object tracking, online AdaBoost (OAB), relaxation factor.

I. Introduction

ROBUST visual tracking has many applications in the
field of computer vision, such as face recognition [1], [2],

traffic monitoring [3], [4], and human behavior analysis [5],
[6]. Though many efforts [7]–[9] have been spent on this topic,
it remains a challenge on the accurate localization and tracking
for a target of interest. The difficulty is mainly caused by the
influence of the dynamic scene, that is, constant occlusion,
alternating appearance, and illumination.

Recently, some online learning trackers based on detection
by classification, such as online AdaBoost tracking (OAB) [10]
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and multiple instances learning tracking (MIL) [11], have been
established to restrain from the influence of the above factors.
However, these online trackers still have some limitations:
1) modeling the object appearance with a single region has
poor adaptability; 2) only the current sample in every frame is
used to contribute the classification, which is easy to yield an
overfitting issue; and 3) without consideration for a reasonable
motion model for trajectory constraint.

For tackling the above issues, this paper addresses them
from seeking for an adaptive appearance model, a reliable
data association strategy and a reasonable motion model for
trajectory constraint. Our work is based on the framework of
OAB [10], but for the improvement of OAB, contributions are
made to the above three aspects.

A. Literature Review

For the appearance model, let us start from the mean shift
[12] based trackers. Within this field, many trackers usually
track the target with a single region [13]–[15], leading to a
poor adaptability for occlusion. To solve that, some literature
[5], [16], [17] consider the object as a part-based type, which
has been established to demonstrate a superior performance.
As for these part-based trackers, the essential point is to
seek an adequate part structure. However, most of the part-
structures (i.e., point-based [16], [18]–[20] or discriminative
part [17], [21]) are not effective for general applications.
For example, Frag [17] represents template object by mul-
tiple image fragments or patches. However, the fragments or
patches are easy to roam away around the ones with similar
appearance cues, and prone to cause drift. For a general part
structure, Maggio and Cavallaro [22] divide object into four
nonoverlapping rectangle parts, but it conducts the object
searching by mean shift, which has poor adaptability for
appearance and illumination change.

With respect to the online data association strategy, only the
current tracked region is used and the importance of the region
lacks updating, which may cause localization shift in condition
of occlusion. Actually, it is known that human perception can
chase the object excellently even with an occlusion. The main
reason is that human can omit the other scenes occluding
the original object. Based on that, the concept of reweight-
ing for image patches has been presented in some trackers
[21], [23]–[27]. Among them, the method of Yang et al. [23]
selects attentional regions (AR) like salient image regions
in the first step, and then fuses the AR clusters to separate
the target from background. The weighting strategy for the
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Fig. 1. Part structure utilized in this paper. (a) Original global structure in
OAB. (b) Part-based structure presented in this paper.

attentional regions is decided by the distinctiveness of regions.
Grabner et al. [24] conduct the reweighting of patches (feature
points actually) by modeling the motion of points. In [21], the
patches’ smoothness and steepness are the main aspects for
their weights. These reweighting approaches, most of the time,
pay more attention to the more discriminative patches. But the
discriminative patches (other scene occluding the true object)
could gradually replace the original patches in condition of
occlusion and background clutter, and the drift occurs if the
these strategies of reweighting are adopted.

In terms of object trajectory constraint, these online trackers
have no adequate motion model to restrict the object trajectory.
For constructing a trajectory constraint, direction consistency
[28], [29] and displacement consistency [11] are usually
assumed. For example, motion model is constructed using
smoothness of direction and speed at adjacent two frames in
[28]. Babenko et al. [11] predict the new location with a fixed
circle at consecutive two frames. But two frame-based motion
models are easy to be blurred by an abnormal frame. To avoid
that, Kwon and Lee [29] build a motion model based on a
cluster strategy k-harmonic means (KHM) [30], which is a
Gaussian filter for trajectory and calculates the main direction
of the lasted five frames. Although KHM shows a superior
performance, it is prone to be influenced by the outliers.

B. Contributions

In view of the above points, this paper proposes a generic
tracking algorithm based on geometry constraint and attention
selection. The geometry constraint is constituted by a multiple
parts constraint (MPC), and the attention selection is imple-
mented with a weight relaxation factor (WRF). Thus the pro-
posed tracker is named as part-based online AdaBoost tracking
with geometry constraint MPC and attention selection (WRF)
(P-OAB-MW). The detailed contributions are presented as the
following threefold.

1) Introduce a generic part-based structure to OAB. This
structure is similar to [22]. However, different from [22],
this paper conducts the object searching by OAB. The part
structure is shown in Fig. 1. Meanwhile, different parts of
target can be assigned with different weights within the part-
based online AdaBoost tracker (P-OAB).

2) Introduce a new attention selection concept for sample
weighting. The more importance the sample gains from previ-
ous iterations, the more attention it would be paid in the next
iteration. This mechanism is achieved by the consideration that
the tracking process can be considered as a combination of
different scene conditions (normal conditions and abnormal

conditions). Usually, the abnormal conditions are the low
frequent1 sections in the tracking process. Consistently, the
samples (tracked regions) collected from these conditions are
low frequent ones. In the field of classification, the low
frequent samples [31] are unrepresentative and easy to cause
an overfitting issue. Based on this priori and different from
the sample reweighting mechanisms of [21], and [23]–[27],
this paper derives a relaxation factor (RF) [32] to lower the
initial weight of samples collected from abnormal conditions.
In this procedure, a WRF is constructed.

3) Present an MPC for defining the relationship among
part-structures. In normal conditions, each part conducts its
data association independently. When occlusion, appearance or
illumination change occurs, the stable part(s) could recover the
otherwise drifting part(s) by the MPC. This principle ensures
that the target could not be lost even in complex scenes.

The remainder of this paper is organized as follows. In
Section II, the algorithm of P-OAB-MW is introduced. In
Section III, online boosting for feature selection is reviewed
and attention selection concept by means of WRF is proposed
to adjust matching confidence. In Section IV, MPC for lo-
calization is presented. Section V presents the experiments.
Section VI discusses several issues related to the proposed
tracker. Section VII concludes this paper.

II. System Overview

The general framework of the proposed P-OAB-MW is
illustrated by the diagram shown in Fig. 2. It is generally
divided into three parts: 1) initialization of target part; 2) online
boosting for feature selection embedded with WRF; and 3)
target localization using MPC.

For the initialization of object parts, denote the part structure
as P={pj, j = 1, ..., 4}. With the part-based structure P, online
boosting for feature selection is conducted for every part pj .
The outputs are the matching confidence confj ,t of OAB
and the displacement of target {�x,j,t, �y,j,t}, where confj ,t
is the consistency measure of predefined target template and
the observation, �x,j,t and �y,j,t represent the shift of target
in direction x and y, respectively. By evaluating the priori
confj ,t−1 , the initial sample weight at time t is updated
using WRF to restrain from the overfitting issue. The detailed
strategy is introduced in Section III-C.

For the localization of target Xt , it is constrained by MPC.
MPC can be expressed in two stages.

1) At time t, determine the reliability rj,t of pj , where
rj,t represents the feasibility of estimated target location and
the moving trajectory of the jth part, and is modeled by the
posterior probability p(X

(lj)
j,t |Yj,1:t). The posterior probability

is constructed by the KHM and confj ,t , where X
(lj)
j,t and Yj,1:t

respectively represents the target state and observations up to
time t, and lj is the index of candidate searching patches
for pj . Consistently, the estimated state X̂j,t of pj is set as
arg max

lj
p(X(lj)

j,t |Yj,1:t). If rj,t = p(X̂j,t|Yj,1:t) > T , pj is reliable,

1Low frequent means that the condition, such as occlusion, occurs occa-
sionally and the corresponding tracked region has low frequency in the whole
tracking process.
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Fig. 2. General framework of P-OAB-MW.

Algorithm 1 P-OAB-MW

Input: P={pj, j = 1, ..., 4}, time index t, S = 0.
1: Conduct OAB embedded with WRF.
2: Output confj ,t and {�x,j,t, �y,j,t}.
3: Localization of pj: X̂j,t=arg max

lj
p(X

(lj)
j,t |Yj,1:t).

4: Determine the number of unreliable parts S .
5: Localize the target state Xt as the following strategies.
6: if S = 0

7: X̂t =
4∑

j=1
wj,tX̂j,t, wj,t = rj,t

4∑

j=1
rj,t

.

8: else if S = 1
9: Draw back the drifted part using Eq. 17, and then

10: X̂t =
4∑

j=1
wj,tX̂j,t, wj,t = rj,t

4∑

j=1
rj,t

.

11: else
12: X̂t = arg max

j
p(X̂j,t|Yj,t).

13: end if
Output: X̂t .

where T is the threshold for determining the reliability of parts
and set as 0.5 empirically.

2) Draw back the drifted part using MPC if necessary.
With different number of unreliable parts S, localization is
conducted by different strategies (described in Section IV in
detail). The framework of P-OAB-MW can be summarized in
Algorithm 1.

III. Online Boosting for Feature Selection with

Attention Selection

In this section, online boosting is firstly reviewed. Then the
WRF is introduced to estimate the sample weight to train a
series of classifiers, especially when occlusion, appearance or
illumination change occurs. Finally, results are analyzed to
evaluate its performance.

A. Online Boosting for Feature Selection

In order to explain the online boosting, offline boosting
is introduced firstly. Offline boosting trains all the weak
classifiers sequentially using the original training samples N .
Suppose the size of N is d. Then each weak classifier is trained
by all the d samples sequentially, which indicates each weak
classifier is trained d times. Different from offline boosting,
online boosting [33] employs a sequential inputs and discards

each one after updating the weak classifiers. Because only
the latest sample is utilized to train the weak classifier, in
order to obtain a trustworthy weak classifier, online boosting
bootstraps the latest sample K times. Based on [33], K is a
Poisson variable and K ∼ Poisson(λ), where λ is the weight
of latest sample. After N weak classifiers are trained, the
final strong classifier hstrong(x) is the linear combination of
{hweaki (x)}i=1,...,N , where x denotes the object samples.

Inspired by the online boosting framework, Grabner and
Bischof [10] propose a feature selection model where it con-
tains M selectors {hsel

m }m=1,...,M , and each selector is obtained
from N weak classifiers {hweaki

m }i=1,...,N

hsel
m (x) = hweak

m (x), (1)

where hweak
m is the classifier with minimum classification error

em = arg min
i

ei
m, and ei

m is the estimated error of each

weak classifier. In summary, the strong classifier is the linear
combination of M selectors which select the best features from
a subset of global feature pool, and defined as

hstrong(x) = sign(
M∑
m

αmhsel
m (x)). (2)

The matching confidence of the sample is represented as

conf =
M∑
m

αmhsel
m (x) (3)

where αmis the weight of each selector, and denoted as
1
2 ln( 1−em

em
). Here, the conf is normalized to [0,1]. With the

strategy of [10], the features’ distinctiveness for object have
been strengthened greatly.

B. Motivation of Weight Relaxation Factor (WRF)

From the work of [33], K is subject to e−λ

K! . Accordingly, the
expectation of K equals λ. In [10], the initial λ is a constant
(λt = λt−1 = 1), which doesn’t consider the frequent condition
[31] of tracking process. Therefore, when occlusion, appear-
ance and illumination variation occur, the predicted matching
confidence conf fluctuates frequently, which makes the fol-
lowing target localization output a poor accuracy. Because the
conf is related to the selectors, and the selectors have direct
relationship with sample weight λ, to address the fluctuating
issue, an adaptive strategy is constructed to determine the
weight of samples for training every weak classifier.

Meanwhile, conf to some degree gives an expression indi-
rectly for occlusion, appearance or illumination change. As in
these cases, the matching confidence becomes smaller. At the
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same time, the cases impact on the sample weight. Therefore,
there should be an intrinsic relationship between the sample
weight λ and the conf . Therefore, this paper reports a concept
of WRF to make this bridge.

C. Attentional Selection for Samples

In order ro derive the concept of WRF, the formulation of
RF is firstly introduced. Then, the relationship between the
matching confidence and sample weight is derived. At last,
the formulation of WRF is given.

For a simple introducing, RF [34], [35] is generally used to
ensure algorithms’ convergence or adjust parameters’ changing
speed in the field of computer vision. Here, RF is employed
to determine the degree-of-attention for the current sample
employed to train the weak classifiers. To be more specific,
when occlusion, appearance and illumination change occur,
the samples extracted in such conditions should be paid less
attention, and it is achieved by down-weighting the samples
via RF.

The formulation of RF is represented in (4), and utilized for
each part pj independently. So the new sample weight λj,t at
time t is obtained by the following iteration

λj,t = λj,t−1 + RFj ,t · �j,t−1, j ∈ {1, ..., 4}, λ ∈ [0, 1] (4)

where �j,t−1 is the step size of λj,t at time t −1, and RFj ,t is
the relaxation factor controlling the changing speed of λj,t−1.
RFj ,t > 1 indicates the variation of λj,t−1 is accelerated and
RFj ,t < 1 decelerated. After introducing RF, the essential
point is to interpret the weighting strategy for samples. Based
on the motivation of WRF, there is a relationship between the
matching confidence and sample weight. This relationship is
explicated in the following.

1) The relationship between the matching confidence and
sample weight:

Derived from this formulation of RF, the step size �j,t−1 is
calculated by λj,t−λj,t−1. However, λj,t is unknown and should
be estimated. From the motivation of WRF (expressed in
Section III-B), if the previous matching confidence confj ,t−1

becomes smaller than confj ,t−2 , it represents that the sample
at time t − 1 is weakened by surrounding scene. Based
on this prior, the sample weight λj,t at time t should be
reduced accordingly. In other words, the matching confidence
confj ,t−1 give an another expression for λj,t . Based on this
expression, �j,t−1 can be approximated as conf j,t−1 − λj,t−1,
where conf j,t−1 at previous time is less than one.

According to the above description, if conf j,t−1 < conf j,t−2,
λj,t should be reduced. However, the predicted conf j,t−1
fluctuates frequently in condition of occlusion [illustrated
in Fig. 3 (b)]. Therefore, if conf j,t−1 becomes larger than
conf j,t−2, it can not indicate that the sample at time t is better.
In the following explanation, the formulation of WRF is given.

2) WRF formulation:
Denote C to be a set of real numbers {cj,t}j=1:4, cj ∈ (0, 1).

If conf j,t−1 − λj,t−1 < 0, the conf j,t−1 can be estimated as
cjλj,t−1. The step size �j,t−1 can be modified as

�j,t−1 = conf j,t−1 − λj,t−1 ≈ (cj,t − 1)λj,t−1 (5)

Fig. 3. Illustration of the function of WRF. (a) Poisson distribution with
λ=0.5 and 1. (b) Confidence trace before and after the embedding of WRF
(2σ2=0.6). Green line indicates the new sample having the initial weight
1.0, and blue line indicates the new sample having a relaxed initial weight
λt−1WRF (Here, the λt−1 is the weight of global object, and accordingly the
index j of patch is neglected).

where (cj,t − 1) ∈ (−1, 0). Substituting (5) into (4), leads to

λj,t = λj,t−1(1 + RFj(cj,t − 1)). (6)

In order to satisfy the relationship between conf j,t−1 and λj,t ,
(1 + RFj,t(cj,t − 1)) should be within (0,1). In fact, the RFj,t ∈
[0, 1], and is an under relaxation factor (URF) [32]. Here,
there is no need to estimate RFj,t and cj,t , but to estimate
(1 + RFj,t(cj,t − 1)). Utilize an exponent value to approximate
(1 + RFj,t(cj,t − 1)), leading to the proposed WRF

WRFj,t = (1 + RFj,t(cj,t − 1)) = e
− (conf j,t−1−λj,max )2

2σ2
j (7)

where λj,max is the reference matching confidence, λj,max =
0.990 for a soft estimating, and σ2

j ∈ (0, 1) the scale of
relaxation. The larger σ2

j is, the little relaxed weight λj,t is.
Denote the training times Kt at time t as Kt = {Kj,t}j=1:4. With
(7), the training times Kj,t for every weak classifier is chosen
by λj,t set as λj,t−1WRFj . P-OAB with WRF is summarized
in Algorithm 2. The gray rows represent the weighting for the
latest sample.

In order to illustrate the function of WRF, firstly we conduct
a simulation experiment by setting λ = 1 and λ = 0.5 into
Poisson(λ), respectively. The result is shown in Fig. 3(a).
Secondly, a simple analysis with a video sequence including
partial occlusion is done to illustrate the effect of embed-
ding WRF, and the result is shown in Fig. 3(b). From the
simulation, it can be seen that, with the decreasing of λ in
Poisson(λ), the distribution of K turns left, which denotes
a lower expectation of K. This phenomenon demonstrates the
following two points: 1) with the decreasing expectation of K,
the {hweaki (x)}i=1,...N [expressed in (1)] trained K times would
output higher classification errors, which generates a lower
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Fig. 4. Failure case of believing the most confident part. (a) Confidence
trace. (b) Index of the part with max-confidence. If we choose the most
confident part as the guiding one, the localization would be wrong sometimes.

weight of the selector hsel(x), and makes the confidence conf

[indicated in (3)] reduced. Therefore, the target can recover
itself when the occlusion disappeared, not replaced by the
occluding scene; and 2) the time for training classifiers is
reduced. Meanwhile, from the analysis in Fig. 3(b), before
the embedding of WRF, the confidence trace (green line)
shows a severe fluctuation in the condition of partial occlusion.
However, the confidence trace (blue line) is filtered by the
proposed WRF. With the filtering of matching confidence
trace, the modeling for localization will be more effective.

IV. Multiple Parts Constraint

The critical problem for part-based methods is how to
execute localization with multiple parts. Most existing works
choose to believe the most confident part [5]. However, this
criterion is not appropriate for online tracking, because the
part with the most distinctive features may always have
the maximum confidence even when occlusion occurs. For
example, in Fig. 4, the max-confidence is assigned to the 4th

part while it is occluded by the green box in the 254th frame,
and the undesirable part may be chosen to support the decision
of target location. Therefore, in this paper, a more suitable
mechanism for accurate localization is explored.

For tackling the problem mentioned above, the MPC is
proposed. MPC is actually a two-stage motion model. Firstly,
reliable parts are determined with Bayesian theory. If there are
unreliable parts, their location can be recovered by the reliable
ones. Secondly, the target location is established according to
the number of unreliable parts.

A. Determination of Reliable Parts

In this section, the determination of reliable parts follows the
Bayesian framework. For a clear explanation of reliability, we
firstly express the localization of each part, then describe the
motion model, which is utilized to estimate the localization,
and finally give the definition of reliability. The reliability of
part pj at time t is constructed by the posteriori probability
p(Xj,t|Yj,1:t) which is defined as

p(Xj,t|Yj,1:t) ∝ p(Yj,t|Xj,t) ·∫
p(Xj,t|Xj,t−1)p(Xj,t−1|Yj,1:t−1)dXj,t−1, j ∈ [1, J]

(8)

where p(Yj,t|Xj,t) is the appearance model measuring the con-
sistency between the target and the observation, p(Xj,t|Xj,t−1)

is the motion model predicting Xj,t with the previous state
Xj,t−1.

Then the target state X̂j,t of pj can be determined by max-
imum a posteriori (MAP) estimate over L candidate patches
of pj

X̂j,t = arg max
lj

p(X(lj)
j,t |Yj,1:t), lj ∈ [1 : L]. (9)

Here, the appearance model is modeled by Haar features
[10], and motion model is constructed by KHM [30], which
is contributed by collecting velocity vectors constructed by
two neighbor states for the latest five frames. Since online
AdaBoost is employed, the appearance model is only related
with the current observation Yj,t . But the motion model refers
to the latest five frames. Therefore, on the basis of hidden
Markov model (HMM) [36], (9) can be changed into

X̂j,t = arg max
lj

p(Yj,t|X(lj)
j,t )p(Xj,t|Xj,t−1). (10)

For the appearance model, it has been illustrated in
Section III in detail. With respect to the motion model, it is
presented in the following description.

1) Construction of motion model:
The motion of pj is constructed by KHM, which is deter-

mined by the variation {�x,j,t, �y,j,t}, and expressed as

p(Xj,t|Xj,t−1) = p(Xj,t|Xj,t−1)xp(Xj,t|Xj,t−1)y (11)

where

p(Xj,t|Xj,t−1)x = N (μj,t, σ
2
j,t)

x, (12)

p(Xj,t|Xj,t−1)y = N (μj,t, σ
2
j,t)

y. (13)

However, KHM is easy to be disturbed by an outlier. There-
fore, the variation {�x,j,t, �y,j,t} at time t is weighted accord-
ing to [37] as

�x,j,t = �x,j,tη(�x,j,t|μj,t−1, σ
2
j,t−1),

�y,j,t = �y,j,tη(�y,j,t|μj,t−1, σ
2
j,t−1), (14)

where η satisfies Gaussian distribution.
2) Definition of reliability: By integrating the above ap-

pearance and motion models, the reliability rj,t of pj can be
defined as

rj,t = p(Yj,t|X̂j,t)p(X̂j,t|Xj,t−1) > T. (15)

The threshold T is set as 0.5 empirically in our work.

B. Recovery by MPC

In line with the different number of unreliable parts, the
process of recovery by MPC is executed by the following
different strategies.

If all the parts are reliable, then the target location X̂t at
time t can be determined by the linear combination of X̂j,t as

X̂t =
4∑

j=1

wj,tX̂j,t,

wj,t = rj,t/

4∑
j=1

rj,t (16)
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Fig. 5. MPC. For the d14 > d12 and d14 > d13, point 4 should be out of the
circle centered at point 1 and with a radius of max{d13, d12}. For d23 > d12
and d23 > d24, point 4 should fall into the circle centered at point 2 and with
a radius of d23. For d23 > d13 and d23 > d34, point 4 should fall into the
circle whose radius is d23 and center is point 3. For d14 > d24 and d23 > d34,
point 4 should be in the mid-perpendiculars between (mpd13) and (mpd12).

where rj,t is represented in (15). However, because of the
occlusion, alternating appearance or illumination change, it is
difficult to avoid the occurrence of unreliable parts. How to
recover these unreliable part(s) is the key issue for localization.

1) Recovery of one part:
For this case, one part needs to be recovered by the other

three reliable ones. In order to clarify the MPC, Fig. 5 is
employed to show the main principle. Suppose the center of
the three reliable parts are denoted as points 1, 2, and 3.
The premise is that the proper alternative space of point 4
connected with other three points is not in the global image. To
make the part-based structure having a reasonable geometric
shape, we propose the following proposition.

Points 1, 2, 3, and 4 form a quadrangle. The lengths of
the edges of the quadrangle cannot be larger than the two
diagonals of the quadrangle. This assumption is proven to
be effective in our experiments. To be more mathematically
specific, let D={dmn, m, n = 1, 2, 3, 4} be the distance matrix
with its element dmn being the distance between point m and
n. The point 4 conforming with the constraint should satisfy

d14 > d12 & d14 > d13

d23 > d12 & d23 > d24

d23 > d13 & d23 > d34

d14 > d24 & d14 > d34.

(17)

Equation (17) can be illustrated as Fig. 5. The solution space is
the shadow area. From the solution space, we can see that the
part structure defined in this paper can be reconstructed after
recovered the unreliable part. After the recovery, the location
of target is estimated using (16).

2) Recovery of more than one part:
In this situation, there are at least two unreliable parts and

recovering the drift parts using (17) is infeasible, as its solution
space may be the global image. In this situation, the constraint
is constructed using a greedy strategy similar to [5] (choosing
the part with the maximal posterior probability).

The most reliable part pbest can be estimated as
arg max

j
p(X̂j,t|Yj,1:t). The other parts should follow pbest .

Here, different from [5], this paper straightforwardly localizes
the other parts with the geometric relationship of the four parts
as illustrated in Fig. 1.

V. Experiments

A. Data Sets

In order to evaluate the proposed P-OAB-MW algorithm,
experiments on eight video sequences are conducted. There are
five publicly available videos as illustrated in Fig. 6 (namely,
Occluded-Face and Woman in [17] and David-Indoor,
Twinning-Box, and Dollar in [11]) and three recorded by our-
selves (ColorCup, WhiteBoy, and WhiteCar). These video se-
quences can be classified into two categories: partial occlusion
(Occluded-Face, Woman) and appearance change (David-
Indoor, Twinning-Box, Dollar, ColorCup, WhiteBoy, and
WhiteCar). Among them, the ground truths of the five public
video sequences from [11] and [17] are provided on the
authors’ homepages, and those of the other three recorded in
this paper are labeled by ourselves in every frame.

B. Implementation Details

1) Experimental Setups: Performance evaluation is con-
ducted using seven popular trackers: Fragment tracking (Frag)
[17], OAB [10], semi-supervised online AdaBoost track-
ing (SemiBoost) [38], MIL [11], tracker by sparsity-based
collaborative model (SCM) [39], block histogram tracking
(BHT) [40], and tracker by patch-based dynamic appearance
modeling and adaptive basin hopping Monte Carlo sampling
(BHMC) [21]. Among them, BHT and BHMC are originally
designed for tracking non-rigid objects. As for choosing them,
the purpose is to prove the efficiency of the part-based model
in this paper. In order to prove the efficiency of the proposed
tracker, each tracker is executed ten times, and the best result is
selected. It is known that the initialization of target has direct
impact on the tracking result. In this paper, the initial bounding
box of target abides by the following principle: Contain the
target pixels as many as possible and background pixels as few
as possible. Meanwhile, for a fair comparison, the initialized
bounding box in every tracker is the same.

2) Parameter Configuration: For the parameters in this
paper, the best result is generated when the numbers of
candidate weak classifiers N and selectors M of OAB are set
as 200 and 40, respectively. Therefore, the number of weak
classifiers and the number of selectors are set as the same as
OAB. The scale of each part’s searching region is twice the
size of the original part. For each tracker, this paper not only
considers the default parameters provided by the authors, but
also changes them tentatively in a reasonable range according
to the initial size of bounding box. The best performance for
each tracker is obtained from ten runs.

C. Localization analysis

Firstly, the quantitative performance of the trackers is eval-
uated. In order to quantitatively evaluate the accuracy of the
tracking algorithms, center location error (CLE) is employed to
measure the deviation (in pixels) between the detected position
and the ground truth. Precision with accepted bias (PAB) is
also utilized to represent the ratio of frames below a certain
accepted CLE threshold. Besides, average center location error
(ACLE) is employed to specify the average center location
error of all the frames in every sequence. Figs. 7 and 8
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Fig. 6. Eight video sequences. (a)–(f) Severe appearance or illumination change. (g)–(h) Partial occlusion.

Fig. 7. Center location error. Comparison is done between eight trackers (Frag [17], OAB [10], SemiBoost [38], MIL [11], SCM [39], BHT [40], BHMC
[21] and our P-OAB-MW).

Fig. 8. Precision with accepted bias. Horizontal axis represents an accepted threshold bias (in pixels) between the target center and the ground truth center.
Vertical axis is the ratio of the number of frames whose location error is below the threshold.

show CLE (in pixels) and PAB results, respectively. It can
be seen from the illustration that the influence of appearance
or illumination change can be restrained effectively by the
proposed tracker. Beside quantitative evaluation, the qualitative
experimental results of eight video sequences are explained in
detail as follows.

1) Severe appearance or illumination change:
David-Indoor—In this sequence, illumination variation and

appearance change are the main challenge. In this situation,
mean shift-like data association model (Frag) is weaker than
online boosting framework. But for the OAB, because of the
appearance change, the face features have been replaced by
the shirt and generates drift. For the SCM tracker, it constructs

a sparsity-based generative model (SGM) module and assigns
quite small weights to the background candidates. However,
the initial bounding box contains more and more background
clutter in the tracking process. Therefore, the tracking result
demonstrates drift from the 380th to the 460th frame. As for
the patch-based BHMC tracker, it models the patch’s cues by
the smoothness and steepness characteristics in RGB channels.
However, the patches with similar cues in the background may
lead the tracking result to a mistake, such as the wall under
the shadow which has similar cues to David’s hair. Therefore,
BHMC generates a mistaken location in the 173th frame.
Besides, BHT constructs the appearance model using block
histogram, and tries the best to approximate the whole target
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TABLE I

Average Center Location Error (in Pixels). Bold in Each Row is the Best Choice, and Italic is the Second

with several blocks. Nevertheless, this tracker has a problem
that if the block with the maximum confidence has drift, the
whole target will be led to a false location. For example,
in the 173th frame, BHT drifts to the bookcase. In contrast,
P-OAB-MW has a more stable and accurate performance.

Dollar—In Dollar sequence, similar object is its key chal-
lenge. Frag and SemiBoost (first frame-based) show a poor
performance because of the similar dollar. SemiBoost only
uses label information from the first frame, and updates the
appearance model with online semi-supervised learning in the
following frames. Therefore, it is robust for the situation where
the target leaves the scene completely. However, this method
relies strongly on the first frame, which is prone to cause drift
when the target is surrounded by similar objects. MIL has tiny
drift because of its background clutter. As for the patch-based
BHMC tracker, it cannot distinguish the target with the similar
object, which is caused by the fact that the dollars have the
patches with similar appearance cues. In addition, because the
block covering the top-half target has the same appearance
to the similar object, BHT generates drift in the 235th frame.
Actually, because the left-top part of target maintains constant,
P-OAB-MW can draw back the lost part(s) and show more
robustness.

Twinning-Box—This sequence has drastic scale and ap-
pearance variation. For this video sequence, our tracker and
OAB have a similar performance and outperform the other
trackers. Because SemiBoost initialize the target appearance
with the first frame and bootstrap the samples using semi-
supervised classification model, which is easy to be influenced
by outliers, such as the background clutter, it generates a poor
localization. MIL also has an unfavorable performance, which
is mainly caused by the influence of the positive samples
bag. If the samples in positive bag are all with insufficient
confidence, it will cause a location bias. The precision of
accepted bias (PAB) curve of Twinning-Box in Fig. 8 also
proved this observation. For the SCM tracker, it assigns the
lower weight to the background clutters. However, the other
side of the box is also seen as the background. Therefore,
it shows severe drift in the 318th frame. Similarly, BHT and
BHMC generate false target locations because the patches and
blocks have similar appearance cues with target.

ColorCup and WhiteBoy—The main challenges for these
sequences are severe illumination change. From the experi-
ment, our P-OAB-MW and SCM tracker outperform the other

trackers. However, in the 649th frame of ColorCup, SCM
generates a drift. The reason is that the appearance of the
whole ColorCup is influenced by the severe illumination
change. Similarly, in the sequence WhiteBoy, because of the
whole appearance change, Frag shows drift. MIL demonstrates
rather poor performance in the sequence WhiteBoy. The main
reason is that the positive bag may be replaced by the samples
of road, whose appearance cues are similar to the jeans. As for
the BHMC tracker, the sampling of patches pay more attention
to the white-coat. Therefore, the patches within the coat guide
the tracking process. Taking the 123th frame for example, the
bounding box of target shrinks into a box which only contains
the coat. For the BHT, the boy wearing the black jacket has
the similar block histogram owning to the severe reflection of
light, which makes BHT generate a mistaken location in the
123th frame. When the white boy walks from the bright region
to the shaded region, BHT tends to the region having higher
illumination. Therefore, BHT drifts away at last.

WhiteCar—In this sequence, the scale alternating and sim-
ilar object is the main problem. From the CLE analysis,
our tracker and SCM demonstrate a superior performance.
However, from the demonstrated video shots in Fig. 9, P-OAB-
MW has a better adaptability for scale. OAB, Frag and BHT
show poor localization result because of the similar car. As for
the BHMC tracker, the patches with similar appearance make
the tracking bounding box contain cluttered background and
show a poor performance.

2) Partial occlusion:
Woman—In this sequence, partial occlusions, illumination

variations and sudden scale change are the main problems. It
is obviously that the performance of P-OAB-MW and SCM
show a superior performance than the other trackers. For
Frag, illumination variation is the main challenge for data
association. Because of the leg feature is replaced by car,
OAB outputs an early drift. The representative shots are shown
in Fig. 9. Particularly, the 560th frame with sudden scale
change is accurately localized by P-OAB-MW. Similarly, BHT
is caused by the mistaken block when the woman is occluded.
In this situation, the block having the cues of car play
more important role in tracking. For the BHMC tracker, the
tracking result similarly is influenced by the patch sampling
and generates a contracted bounding box in the 96th frame.

Occluded-Face—Partial occlusion is the main chal-
lenge. P-OAB-MW seems with a weak performance for
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Fig. 9. Video clip shots. (a) Tracking with severe appearance or illumination change. (b) Tracking with partial occlusion.

Occluded-Face because the occluded part is against the
assumption (occlusion is a low frequent situation), but its
location error remains stable. However, Frag demonstrates
an excellent performance. Because the histogram structure of
Frag is a superior structure for partial occlusion with constant
appearance. It votes the target region as multiple annular bins.
Every bin votes different weight for the target. When partial
occlusion occurs, the internal bins put more weights for the
target and occluded part of external bins take a small portion.
But this structure is inadequate to model data association
for P-OAB-MW. For the SCM, it can estimate the occluded
patches and compare the histograms only formed by the non-
occluded ones. Therefore, it shows a beautiful localization.
From Table I, OAB, SemiBoost and MIL demonstrate a better
average error than P-OAB-MW, but there is large location error
in the 522th frame for OAB and SemiBoost and in the 880th

frame for MIL. Meanwhile, from Fig. 8, the accepted bias
for Occluded-Face is less than 40 in our tracker (it is an
acceptable situation). As for BHMC and BHT, they generate
a poor performance. Especially for the BHMC, the patches
within the face region make the BHMC tend to shrinkage.

From the above qualitative analysis, our P-OAB-MW
demonstrates a superior performance in summary.

VI. Discussion

A. Adaptability of MPC

In this discussion, a video sequence Magic is employed to
validate the feasibility of MPC explicitly. T in (15) is set as
0.5. Some representative frames are shown in Fig. 10. Taking
a closer look at Fig. 10, the unreliable part p3 is always with
a hopping. Take the 96th frame as an example. Without the
MPC, the global object localization presents a rough result.
In contrast, by embedding MPC, p3 is recovered by the

TABLE II

Parameter of Three Representative Frames

Fig. 10. Experiment for MPC. Top row: object model embedded MPC.
Bottom row: object model without MPC. The white box represents the stability
of the part structure after the drift part is recovered by MPC, and is set as
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j represent the top-left

coordinate of part pj , height and width represent the height and width of
each part, and are set as the same size.

other reliable parts. The detailed parameters are expressed in
Table II. In addition, because the MPC is constituted with
latest five frames, the confidence of p3 could not regain
immediately and remains low after recovering. In addition,
without the MPC, the number of unreliable parts became two
in the 190th frame. However, after initializing the MPC, this
situation does not occur. From the experiment, the MPC can
recover the hopping part p3 robustly, and yield a superior
performance for localization.
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TABLE III

Average Frame Time Consuming (AFTC) for Every Tracker

Naturally, the structure in MPC may not be the best choice
for localization of all kinds of object, but if the structure of
moving object satisfies the form shown in Fig. 1, the MPC
could work well regardless of the rigid or non-rigid objects. To
further interpret the efficiency of MPC, it can be summarized
as follows. MPC provides a strategy to draw back the drifted
part of target. Taking the first part of target for example, the
other three parts implicitly represent its context. To be specific,
the localization of each part not only depends on itself, but
also the results generated by the other ones. The construction
of MPC provides not only the motion cues for the localization,
but also a kind of geometrical context implicitly.

B. Computational Complexity Analysis

In the framework of OAB, the feature pool is extracted
in integral image. The computational complexity of integral
image is related to the scale of original image. Suppose the
size of image I is w ∗ h, where w and h represent the width
and height of I. The computational complexity of integral
image is O(wh). Therefore, the computational complexity for
a new frame does not only depends on O(MN) described
in OAB, but O(wh)O(MN), where N is the number of
candidate weak classifiers, and M is the number of selectors.
However, from the structure shown in Fig. 1, the searching
region of P-OAB-MW approximates OAB. Therefore, the size
of integral image utilized in this paper approximates OABs.
Meanwhile, we simulated the average frames per second for
OAB, P-OAB-MW (all video sequences). They can reach 3.52
f/s, 3.26 f/s on a PC with a 3.0GHz Intel(R) Core(TM)2 Duo
CPU and C++ implementation, respectively.

For a more detailed computational complexity analysis,
the average frame time consuming of all the sequences is
computed for every tracker and denoted as the average frame
time consuming (AFTC), which is listed in Table III. For a
fair comparison, the compiler of each tracker also is listed in
the table. From the simulation result and localization analysis
mentioned above, P-OAB-MW has comparable computational
cost with OAB, but with an increased accuracy. BHT actually
is a fastest one in the comparison list. However, the tracking
performance is a little weaker, as shown from the above
localization analysis.

VII. Conclusion and Future Work

This paper proposes a part-based online AdaBoost track-
ing with geometry constraint (MPC) and attention selection
(WRF)(P-OAB-MW). Because of the generic part-based struc-
ture, more reliable tracking results are achieved for different
objects, such as face, vehicle, and pedestrian. In situation of
occlusion or appearance change, with a strategy of attentional

sample selection, the distinctiveness of features extracted from
current sample is reduced for tackling the overfitting issue.
A two-stage motion model MPC can support the stable part-
based tracking by pulling back the drifted part(s) and achieve
an accurate localization. The proposed tracker demonstrates
superior performance to seven recently developed popular
trackers under the condition of appearance or illumination
change.

Our future research will firstly concentrate on the adaptive
selection strategy of features for part-based model. For each
part, through determining the number of features selected by
online AdaBoost, the tracking method will improve the adapt-
ability of restraining the influence of occlusion, appearance
or illumination change. Secondly, embedding other cues to
the tracking method, such as depth information, might avoid
the above scene clutter efficiently. At last, a better energy
minimization method like graph cut [41] for motion model
construction is also our concentration.
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