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Scale Invariant Feature Transform is a widely used image descriptor, which is distinctive and robust in

real-world applications. However, the high dimensionality of this descriptor causes computational

inefficiency when there are a large number of points to be processed. This problem has led to several

attempts at developing more compact SIFT-like descriptors, which are suitable for faster matching

explore a dimensionality reduction for its local representation. By using the manifold learning

algorithm of Locality Preserving Projections, a more effective and efficient descriptor LPP-SIFT can be

obtained. A large number of experiments have been carried out to demonstrate the effectiveness of

LPP-SIFT. Besides, the practicability of LPP-SIFT is also shown in another set of experiments for image

similarity measurement.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Local interest points, extracted from images and described with an
effective descriptor, are commonly employed in applications such as
object recognition [1–4], robotic visual attention [5], stable target
tracking [6,7], image retrieval [8,9] and image/video annotation
[10,11]. Local interest points have the advantages of effectiveness,
distinctiveness and robustness. In addition, when applied, no pre-
processing onto the input images. Therefore, research toward local
interest points has been standing as a hot topic over the past years.

As for the description of interest point, probably the most
popular work is the one of Lowe’s [12]. In this work, a 128-
dimensional Scale Invariant Feature Transform (SIFT) descriptor is
proposed. This descriptor is reported to have achieved tremen-
dous success in a wide range of applications due to its superior
computational effectiveness [13]. However, there are also a lot of
complaints about the lack of efficiency caused by its high
dimensionality. The 128-dimensional description is not an obsta-
cle when only a few detected points are needed to be represented
and matched, but it will become a demanding problem when
there are millions of points to be processed with limited compu-
tational resources. This issue has led to a new task for researchers
to develop more compact SIFT-like descriptors suitable for faster
matching without loss of matching performance.

This paper focuses on the improvement of SIFT in practice, and
explores a dimensionality reduction to its local representation
ll rights reserved.
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using LPP. The proposed detector is named as LPP-SIFT, which can
preserve the intrinsic geometry relationship among interest
points with the dimensionality lower than the standard SIFT.
Our primary motivation is to develop an intrinsic description
more efficient and compact in the context of image similarity
comparison while maintaining its excellent performance.

The rest of this paper is organized as follows. Section 2
describes the related works. Section 3 presents a review of the
standard SIFT. Section 4 details the proposed LPP-based repre-
sentation for local features. Section 5 shows the experiments for
evaluating the descriptor and Section 6 concludes the paper.
2. Related works

Generally, efforts toward local interest points include two
aspects: detector and descriptor. The fundamental requirement
for the detector is that the local interest points should be detected
with high repeatability, invariant to image transformation and
robust to noise. In this aspect, Laplacian-of-Gaussian (LoG) is
among the earliest detectors that are widely utilized [14,15].
Besides that, there are still other detectors widely employed in
applications. For example, Lowe [12] proposes a detector to
extract the extremum of Difference-of-Gaussian (DoG) which is
proved to be the close approximation of the scale-normalized
LoG. Mikolajczyk and Schmid [14] propose the Harris-Affine and
Hessian-Affine detector, which uses a multi-scale version of the
Harris and the Hessian Laplace detector to localize interest points
respectively, and then adopt an affine shape-adapted smoothing
method [16] for scale selection and affine adaptation. These two
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detectors can obtain higher localization accuracy of local interest
points than the DoG based approach, because the latter also
responds to edges and detection in this case is unstable [14].

As for local descriptors, probably the most popular one is the
SIFT descriptor proposed by Lowe [12]. Several evaluations (e.g.,
[13]) have demonstrated that this descriptor has superior perfor-
mance compared to others. Given a local point, SIFT descriptor
mainly covers two stages. First, local image gradients are com-
puted around the keypoints and the major orientation of these
gradients are obtained. Secondly, 16 histograms of the local patch
are calculated and rotated relative to their corresponding major
orientations. Each histogram contains eight bins, thus yields a 128
dimensional descriptor.

In light of dimensionality reduction of SIFT-like descriptors,
Principal Component Analysis (PCA) is a popular and direct choice.
Among these algorithms, probably the most representative two are
PCA-SIFT [17] and Gradient Location and Orientation Histogram (GLOH)
[13]. PCA-SIFT detects local interest points as the original SIFT does
but describes it on a 39� 39 patch by a PCA based dimensionality
reduction. Ke and Sukthankar show in their work that the resulted
feature vector is significantly shorter than the standard SIFT feature
vector, while the performance of this descriptor is comparable to the
original one. The GLOH descriptor proposed by Mikolajczyk and
Schmid [13] constructs a histogram of 272 bins, and then uses PCA
to reduce the size of the descriptor. Though proved to be more
distinctive than SIFT with the same dimension, the computational
cost is somehow expensive. In addition, performing PCA directly to
reduce the dimensionality of the standard SIFT descriptors is also a
popular way in computer vision community [18,19].

Despite the widespread use in various fields, the validity of PCA
is limited by its priori assumption that the relationship among data
is linear. However, in real-world applications, it is common where
the relation among variables is nonlinear. In this case, nonlinear
techniques (e.g., Isomap [20], Locally Linear Embedding (LLE) [21,22],
and Laplacian Eigenmap (LE) [23]) might be more appropriate,
which are proposed to discover the submanifold structure hidden
in high dimensional ambient space. Though these methods have
been successfully applied to some benchmark artificial datasets, the
yielded mappings are only defined on the training data points and it
is unclear how to extend the mapping for new test data points.
Therefore, these nonlinear manifold learning techniques [20–25]
are limited in applicability for information comparison tasks. In
contrast, the Locality Preserving Projections (LPPs) [26] which defi-
nitely considers the structure of the manifold may be expediently
and reliably applied to any new data point to locate it in the
intrinsic low dimensional submanifold.

LPP [26] is a local structure preserving method, which can
preserve the intrinsic geometric relationships of the data and share
many important properties with nonlinear techniques such as LLE
[21] or LE [23]. LPP builds a graph maintaining neighborhood
relationship of the given dataset, and then uses the notion of the
Laplacian of the graph to compute a projection matrix. This projec-
tion matrix can map the high dimensional data points to a subspace,
and has the property that local neighborhood information is well
preserved. This property makes the algorithm insensitive to outliers
and noises to some extent. Since it is likely that a nearest neighbor
seek in the locality preserving low dimensional submanifold will
yield corresponding results to that in the high dimensional ambient
space, the locality preserving quality of LPP is to be of effective and
credible use in the information comparison applications.
3. Review of SIFT

The standard SIFT mainly covers three steps. First, keypoint
candidates are determined in a series of DoG images by local
extremum detection. Second, Taylor expansion of the scale-space
function is employed to eliminate the unstable candidates of low
distinctiveness and strong edge responses. In the end, local image
gradients and orientations are computed around each survived
keypoint.

In the first step, the keypoint candidates are identified effi-
ciently by constructing a Gaussian pyramid and obtaining local
extremum over a series of DoG images.

In the second step, the scale-space function can be approxi-
mated by using a second order Taylor expansion:

DðxþdxÞ ¼Dþ
@DT

@x
dxþ

1

2
dxT @

2D

@x2
dx, ð1Þ

where x¼ ðx,y,sÞT denotes a keypoint candidate whose coordi-
nate is ðx,yÞ and the scale factor is s. The function value at the
local extremum, DðbxÞ ¼DðxþdbxÞ, can be obtained by

DðbxÞ ¼Dþ
1

2

@D

@x
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Consequently, a threshold g1 ¼ 0:03 [12] is adopted to reject
keypoint candidates f8bx,9DðbxÞog1g, because these candidates
with low DoG value are also with low contrast and unstable.

Another important characteristic of DoG is that this operator
will have strong responses to edges, and detections in this case
are unstable. To remove such fake keypoint candidates which
‘‘have a large principal curvature across the edge but a small one
in the perpendicular direction’’, Lowe suggests to use a 2� 2
Hessian matrix H, whose eigenvalues can bo used to estimate the
principal curvatures:

H¼
Dxx Dxy

Dxy Dyy

" #
: ð3Þ

Let g2Z1 be the ratio between the larger eigenvalue and the
smaller one. Then algorithm just needs to reject those candidates
satisfying:

TrðHÞ2

DetðHÞ
Z
ðg2þ1Þ2

g2

: ð4Þ

The third and final step of SIFT identifies the dominant
orientation around each survived keypoint and then builds a
representation based on a patch of 16� 16 pixels in its neighbor-
hood. Patches are divided into 4� 4 blocks. For each block, a
histogram indicating eight gradient orientations is produced, and
the feature vectors are therefore constructed with 128 dimen-
sions.

The complexity of the SIFT descriptor can be varied by two
parameters: the size of the n� n patch and the number r of
orientations in the histograms. The resulting SIFT-like descriptor
is of n� n� r dimensions. With the increasing complexity, the
descriptor will be more distinctive but it will also be overly
sensitive to registration error, nonrigid transformation and occlu-
sion. Lowe [12] shows that, setting n¼1 will be very poor for its
discriminative ability and the performance continue to rise until
the complexity of the descriptors up to a 16� 16 patch with eight
quantized orientations. Descriptors of higher complexity will
actually lead to adverse effects.
4. LPP-SIFT descriptor

Our approach for local descriptors utilizes the same inputs as
the standard SIFT (i.e., the location, scale, dominant orientation
and local patch of the keypoint). It contains three steps: (1) com-
pute the projection matrix off-line with a set of training patches
and descriptions; (2) calculate the SIFT descriptions of the
examined keypoints; (3) project the descriptive vectors by the
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learned matrix to build the more compact descriptions. This
reconstructed compact feature vectors are significantly smaller
than the standard SIFT feature vectors.

To build the projection matrix, this work executed the stan-
dard SIFT on a database of diverse images and collected a large
number of sample patches. Each was processed to create a 128-
element vector.

Then the LPP technique [26] was chosen to pre-compute the
projection matrix. Suppose the dataset of SIFT descriptions is
ðx1,x2, . . . ,xmÞ and let N xi

denote the k nearest neighbors of xi, N xj

denote the k nearest neighbors of xj. Then use yi ¼wT xi to denote
the one-dimensional representation of xi with the transformation
vector w, and define the similarity matrix Sðsij ¼ sjiÞ as follows:

sji ¼
e�Jxi�xjJ

2=t if xiAN xj
or xjAN xi

;

0 otherwise:

(
ð5Þ

The criterion for choosing a reasonable projection is to mini-
mize the objective function as follows:

f ¼
1

2

X
ij

ðyi�yjÞ
2sij: ð6Þ

This objective function undergoes a severe penalty if the
neighboring points xi and xj are mapped far apart (i.e., ðyi�yjÞ

2

is large). Therefore, minimizing f can ensure that if xi and xj are
adjacent then yi and yj are close as well. Exercising some simple
algebraic deduction, f can be rewritten to
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where D is a diagonal matrix ðdii ¼
P

j

sjiÞ, and L¼D�S is the
Laplacian matrix [27]. As the bigger value of the dii corresponds
to the more important yi, there is a natural constraint:

YT DY ¼wT XDXT w¼ 1: ð8Þ

This minimization problem can be predigested to finding:

arg min
w

wT XLXT w

s:t: wT XDXT w¼ 1, ð9Þ

which can be translated as the generalized eigenvalue problem:

XLXT w¼ lXDXT w: ð10Þ

Let the column vectors wiði¼ 0,1, . . . ,l�1Þ be the solution of
the above generalized eigenvalue problem, ordered according to
their eigenvalues, l0o � � �oll�1. The final n� l projection matrix
WLPP , which projects the n-dimensional descriptive vector to the
lower l-dimensional representation, is constructed as WLPP ¼

ðw0,w1, . . . ,wl�1Þ.
The images used in building the projection matrix were not

used in any of the performance evaluating experiments. An
appreciative value (48) was empirically determined for the
dimensionality of the feature space in this work. The greater
detail described in Section 4.3.1 discussed the effects of n on
performance.
5. Experiments

The following parts first describe the experimental setup and
then discuss the evaluation metrics used to compare the descrip-
tors. In the end, experimental results are shown and analyzed in
detail.
5.1. Experimental setup

Two types of experiments have been done to prove the
effectiveness of the proposed descriptor. The localization and
scale of the local regions are estimated by the Hessian-Affine or
Harris-Affine detector [13].

The first type of experiments evaluates the descriptors’ robust-
ness. These experiments employ a dataset of 100 real-world
images randomly sampled form a public data set provided by
Achanta et al. [28], and extract more than 37,000 sample patches
to train the projection matrix using LPP. In the evaluation process,
a data set from the work of [15] is employed. In this process,
keypoints in different images are first extracted and described
with the obtained projection matrix. Then their matches are
identified to see whether the descriptor is robust enough to find
correspondences in various conditions.

The robustness is defined in terms of four different transfor-
mations (Fig. 1): (1) Scale change and rotation: the camera zoom
is modulated and rotated at approximately 30–45 degrees around
its optical axis. (2) Viewpoint change: the camera position is
changed according to a series of significant fronto-parallel angles,
which are approximately 50–60 degrees. (3) Blur: images are
directly obtained by modulating the camera zoom and focus
respectively. (4) Illumination change: photoing condition is chan-
ged with the camera aperture.

Each of the above four tests involves a sequence of six images with
different geometric or photometric transformation. The geometric
relationships between images are known or could be computed by a
set of parameters. Therefore, this predefined mapping between
images could be used to determine the ground truth matches.

The second type of experiments attempt to evaluate each
descriptor’s performance when integrating it into an image
similarity comparison application. The database employed here
is collected by Ke and Sukthankar [17], which contains 30 images
with 10 common household items photographed from different
viewpoints, scales and lightening conditions.

5.2. Evaluation metrics

The definition for a correct match between two keypoint descrip-
tors must to be discussed firstly. There are three common criterions
for a match of two keypoint descriptors: (1) threshold; (2) nearest
neighbor based matching; (3) nearest neighbor distance ratio.

Suppose A and B are two local descriptors. According to the
first criterion, A is a match of B if their Euclidean distance is below
a given threshold. In the second criterion, A is defined as a match
of B if A is the nearest neighbor to B and the distance between
them is below a given threshold. With respect to the third
criterion, two local descriptions (A and B) are matched if the ratio
of distance (l) between the first nearest neighbor (B) and the
second nearest neighbor is below a given threshold. A compre-
hensive comparison [13] showed that the third criterion selects
the best match based and penalizes those with many similar
matches. This can improve the matching precision and exclude
false matches. Therefore, this criterion is employed for defining
correct matches in both types of experiments.

In the experiments for the robustness evaluation, the criterion
called ‘‘recall vs. 1-precision’’ is employed. This criterion was first
proposed by Ke and Sukthankar [17] and this experiment use its
variant proposed by Mikolajczyk and Schmid in [13]. Recall is
determined by the number of correct matches (c) with respect to
the total number of corresponding regions (Z) between two
parallel images:

recall¼
c

Z
, ð11Þ



Fig. 1. Sample images used in the experiments. (a) scale change and rotation; (b) viewpoint change; (c) image blur; (d) illumination change; and (e) samples in image

similarity comparison application.
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and 1-precision is defined as the number of false matches (f) with
respect to the total number of matches (tÞ:

1�precision¼
f

t
: ð12Þ

To explain these two formulas, there need to introduce another
concept: the overlap error [29]. The Hessian-Affine detector and
the Harris-Affine detector could provide a normalized blob-like
region determined by the affine adaptation process [16]. Denoting
A, B as the local region and H as the homography between the two
images of the same scene, the overlap error is defined as

es ¼ 1�
A
T

HT BH

A
S

HT BH
: ð13Þ

A correct match is that the intersection of the corresponding
local regions is more than 50% of the union of the two regions, i.e.,
eso0:5. A false match is the opposite case. The total number of
correspondence (i.e., the number of possible correct matches) for
the given database is determined with the same criterion.

In the image similarity comparison application, each image was
used as a query into the database. Given two images, all the local
interest points need to be detected firstly, then their correspond-
ing feature vectors are computed. The number of matched feature
vectors between images counted by the ‘‘third criterion’’ described
above is treated as a similarity. The results are measured on a
three point scoring system as Ke and Sukthankar [17], i.e., 0, 1 and
2 respectively corresponds to the instance of zero, one or two
correct matches appeared in the top three similarity comparison
results.
5.3. Results

The following part presents the results compared between the
LPP-SIFT and some other popular descriptors on transformation
controlled experiments and an image similarity comparison appli-
cation. The comparative descriptors include: the 128-dimensional
SIFT, 36-dimensional PCA-SIFT, and 128-dimensional GLOH.
For these three comparative descriptors, this paper employed
the implementations of [13]. It is reported that the selected
dimensionalities can achieve the corresponding best results.
Besides, Harris-Affine and Hessian-Affine are selected as the local
detectors.
5.3.1. Dimensionality selection

Fig. 2(a) and (b) show experimental results about the relation-
ship between LPP-SIFTs performance and the dimensionality n of
the feature vector in condition of image blur. It can be observed
that a small value (e.g., n¼4) of the dimensionality is poor at
discriminative ability, but the performance continues to improve
until the dimension reaches 48. After that, higher dimensions
cannot improve the performance greatly, and on the contrary, the
computational cost is intensive.

More experiments are then performed, which showed that the
relationships mentioned above is also strongly stable at other
three different image transformations. An extrapolation for these
results is that the 48 dimensions have already made up 95% of the
information contained in full-dimensional feature vector (n¼128).
Therefore, n¼48 is chosen in the experiments.
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Fig. 2. Evaluation for different dimensions of LPP-SIFT descriptor. (a) and (b) show the results based on Harris-Affine and Hessian-Affine regions respectively.
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Fig. 3. Evaluation for scale changes of 2–2.5 combined with image rotations of 301–451. (a) and (b) show the results based on Harris-Affine and Hessian-Affine

regions respectively.
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Fig. 4. Evaluation for viewpoint changes of 50–60 degrees. (a) and (b) show the results based on Harris-Affine and Hessian-Affine regions respectively.
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5.3.2. Controlled transformation

Figs. 3–6 present the results comparing LPP-SIFT to other
descriptors on the first set of experiments.

Fig. 3 shows the descriptors’ performance in condition of scale
and rotation changes with: (a) Harris-Affine detector and (b)
Hessian-Affine detector. Scale changes and image rotations are
implemented by modulating the camera zoom in the range of
2–2.5 and rotating it at approximately 301–451 around its optical
axis respectively. As shown in Fig. 3(a), the LPP-SIFT computed on
Harris-Affine regions clearly dominates SIFT, PCA-SIFT, and GLOH.
The rank of the descriptors computed on Hessian-Affine regions is
the same, but the dominance of the LPP-SIFT is weakened as
shown in Fig. 3(b).

Fig. 4 shows experimental results based on viewpoint transforma-
tion. As can be seen that the LPP-SIFT, standard SIFT and GOLH obtain
nearly equivalent performance both on Harris-Affine and Hessian-
Affine regions. LPP-SIFT computed on Hessian-Affine regions even
perform slightly better than SIFT and GLOH at false matching rates
above 0.3. PCA-SIFT computed on both Harris-Affine and Hessian-
Affine regions are significantly inferior compared with others.

Robustness to image blur is evaluated in Fig. 5. As can be seen that
all the descriptors can resist a significant amount of blur introduced
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Table 1
Image similarity comparison accuracy and time consuming using Harris-Affine

detector.

Method Accuracy (%) Score of each image Time (s)

SIFT 65 1.370.7479 223.774

PCA-SIFT 61.67 1.233370.7279 112.888

GLOH 66.65 1.333370.6609 229.860

LPP-SIFT 68.34 1.366770.6687 118.434

Table 2
Image similarity comparison accuracy and time consuming using Hessian-Affine

detector.

Method Accuracy (%) Score of each image Time (s)

SIFT 70 1.470.6215 160.099

PCA-SIFT 60 1.270.6644 90.460

GLOH 68.34 1.366770.7184 157.995

LPP-SIFT 71.65 1.433370.6261 95.789
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by changing the camera focus. LPP-SIFT and SIFT computed on both
Harris-Affine (Fig. 5(a)) and Hessian-Affine regions (Fig. 5(b)) always
obtain better results than the other two obviously. Besides, LPP-SIFT is
slightly better than SIFT at false matching rate above 0.1.

Fig. 6 presents results for photoing condition changes. PCA-
SIFT computed for both Harris-Affine regions and Hessian-Affine
regions obtain the significantly lower score than others. When the
descriptors were computed on Harris-Affine regions, LPP-SIFT
obtain significantly better score than SIFT and GLOH at false
matching rate above 0.2. When the descriptors were computed on
Hessian-Affine regions, it is difficult to distinguish the difference
between LPP-SIFT and SIFT, whereas they both outperform PCA-
SIFT and GLOH at false matching rate above 0.15.

All these comparative results in together are sufficient to
demonstrate that, the compact LPP-SIFT is more resistant to
geometric or photometric transformations. As all these descrip-
tors shared the same locations and scales of keypoints, it is
reasonable to believe that the enhanced robustness of the LPP-
SIFT is mainly benefitted by the more instinct descriptions.
5.3.3. Image similarity comparison application

In practical applications, the most concerned properties of detec-
tors are the efficiency and accuracy. When calculating Euclidean
distance based matching degree between two local keypoints, it is
clear that the n-dimensional descriptions will take n times subtrac-
tion and multiplication, and one square root operation. Therefore,
reducing n can effectively improve the speed of the matching
procedures. However, accuracy and speed are often mutually antag-
onistic. As for keypoint descriptors, an algorithm emphasizing on high
speed is often associated with the sacrificing of accuracy, unless it can
capture the essential characteristics of the keypoints with low-
dimensional structure. In this experiment, the practicabilities of SIFT,
PCA-SIFT, GLOH, and LPP-SIFT are compared based on the trade off
between speed and accuracy.

Tables 1 and 2 present the results for an image similarity
comparison application conducted in a small dataset [17]. It can be
seen clearly that LPP-SIFT obtains the best matching accuracy with
significant lower computational cost than standard SIFT and GLOH.
When compare to the PCA-SIFT (36 dimensions), the LPP-SIFT (48
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dimensions) clearly dominates the former on matching accuracy with
approximately equivalent time cost, so it can be reasonable inferred
that using the LPP-SIFT should be of practical benefits.
6. Discussion and conclusion

In this paper, a new compact representation for local image
descriptor is reported. To prove the effectiveness and efficiency of
the proposed descriptor, a large amount of experiments on robust-
ness are conducted and evaluated in terms of image transformations
and image similarity comparison. Experimental results demonstrate
that the proposed LPP-SIFT substantially improves matching speed
and accuracy in the context of image similarity comparison applica-
tion. It meanwhile obtains better performance as SIFT in some cases.

When compared to PCA-SIFT and GLOH, LPP-SIFT is more dis-
tinctive and robust for both controlled and real-world conditions. The
reason is that the local manifold structure is more important than the
global structure in some applications such as image similarity
comparison. Manifold learning techniques, e.g., LPP can preserve the
local structure of the feature space and the intrinsic geometry
relationship of the data, while PCA only see the global Euclidean
structure which is not discriminative enough. Therefore it is compre-
hensible that the LPP-SIFT shows some significant improvements
over PCA-SIFT and GLOH in both discrimination and robustness.
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