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Abstract—Short-range motion features and long-range de-
pendencies are two complementary and vital cues for action
recognition in videos, but it remains unclear how to efficiently
and effectively extract these two features. In this paper, we
propose a novel network to capture these two features in a unified
2D framework. Specifically, we first construct a Short-range
Temporal Interchange (STI) block, which contains a Channels-
wise Temporal Interchange (CTI) module for encoding short-
range motion features. Then a Graph-based Regional Interchange
(GRI) module is built to present long-range dependencies using
graph convolution. Finally, we replace original bottleneck blocks
in the ResNet with STI blocks and insert several GRI modules
between STI blocks, to form a Multi-range Feature Interchange
(MFI) Network. Practically, extensive experiments are conducted
on three action recognition datasets (i.e., Something-Something
V1, HMDB51, and UCF101), which demonstrate that the pro-
posed MFI network achieves impressive results with very limited
computing cost.

I. INTRODUCTION

Video action recognition is a fundamental yet challenging
task in the field of computer vision. It involves recognizing the
human actions in videos and has gained much attention from
academia and industry over recent years. Different from the
image, video is a sequence of frames with complex temporal
evolution. Temporal modeling for video action recognition is
usually considered in multiple ranges, including short-range
motion encoding between adjacent frames and long-range
dependency learning at the large temporal range. As shown
in Fig 1(a), action instance on a single frame is related to the
objects and background both in short-range and long-range.

In recent years, many methods have been proposed to
consider one or both of these ranges, but it is still unclear
how to capture temporal information with complex evolution
on multiple ranges using an efficient and effective way. Two-
stream CNNs [1], [2], [3] focus on learning the discriminative
temporal features from the optical flow. Although two-stream
CNNs have made performance improved, the optical flow
only represents the motion features between the neighboring
frames and extracting optical flow is usually expensive in
both space and time. LSTM regards the video as an ordered
sequence of frames to capture the temporal relationship be-
tween these frames, but LSTM-based methods [4], [5], [6]
normally cannot model the complex temporal relationship
among frames well. Recently, by stacking 3D convolution,
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Fig. 1. The illustration of our main idea. (a) Original video. Human action
on a single frame can be effectively determined by referring to the objects
and background both in the short-range and long-range; (b) The features from
the colored regions bi-directionally shift in the feature map of video models.

3D convolutional networks (3D CNNs) based methods [7],
[8], [9] are proposed to capture short-range temporal features
and long-range dependencies directly from RGB input frames.
3D CNNs based methods are capable of achieving outstanding
performance, but they suffer from heavy computational cost,
which limits the real-world deployments.

To remedy the aforementioned problems, we propose a
novel and effective method, referred as MFI network, which
regards short-range motion encoding and long-range depen-
dency learning as the interchange between features in multiple
ranges. As shown in Fig 1(b), we construct a feature inter-
change operation by bi-directionally shifting features in the
feature map. Specifically, for short-range motion encoding, we
propose a channels-wise temporal interchange (CTI) module.
CTI module first gains temporal difference related to motion
information and then interchanges temporal difference along
the temporal dimension with both previous and subsequent
frames. Finally, we insert an identity mapping path to combine
the original features with interchanged features. CTI module
makes the current frame obtain interchanged information and
retain the original features. For long-range dependency learn-
ing, we devise a Graph-based Regional Interchange (GRI)
module. GRI module first transforms the features in a regular
feature map into the state of nodes in a non-grid graph, and
then realize long-range features interchange and fusion with
graph convolution. Eventually, we reverse the state of nodes



into the features in a regular feature map to be compatible
with CNN models.

To construct a multi-range feature interchange (MFI) net-
work, we use ResNet as the backbone. The proposed CTI
module is inserted into an original bottleneck block in the
backbone to form a short-range temporal interchange (STI)
block. The entire network is built by replacing the original
bottleneck blocks with STI blocks and insert several GRI
modules between STI blocks. Benefiting from the proposed
two modules are not only complementary, but they only in-
troduce very limited additional computing costs, the proposed
MFI network is efficient and effective. Furthermore, compre-
hensive experiments on Something-Something V1, UCF101,
and HMDBS51 demonstrate our MFI network gains comparable
performance to the state-of-the-art methods with the help of
the very limited computing cost.

Overall, our main contribution can be summarized as follow:

o« We devise a channel-wise temporal interchange (CTI)
module, which is constructed by performing channel-wise
temporal interchange along the temporal dimension to
effectively encode short-range motion features.

o We build a graph-based regional interchange (GRI) mod-
ule, which learns efficiently long-range dependencies
by interchanging distant regional features using graph
convolution and can be compatible with CNN models.

e We propose a novel multi-range feature interchange
(MFI) network, which integrates the proposed two mod-
ules to perform temporal modeling in short-range and
long-range. Extensive experiments on three benchmark
datasets demonstrate our MFI network offers comparable
performance to the state-of-the-art methods using very
limited computing cost.

II. RELATED WORK
A. Action Recognition

There are extensive studies in action recognition. Early
approaches rely on extracting hand-crafted features to learn
video representation [10], [11], [12]. And then with the great
success of deep learning methods in the computer vision area,
many researchers attempted to apply deep networks to video
action recognition. Among them, Simonyan et al. [2] proposed
a two-stream network, which takes the RGB frames and the
stacked optical flow frames as input for extracting spatial
features and temporal information in two CNN branches,
respectively. Wang et al. [13] proposed Temporal Segment
Network to perform the sparse sampling strategy for long-
range video clips and learn temporal evolution between the
sampled frames. Additional 2D CNNs methods include Con-
volution Fusion [14], Temporal Relation Network [15], and
TSIN [16]. These approaches are sufficiently straightforward
and effective, but they either require additional optical flow
modality or cannot capture complex temporal relationships
well. Moreover, some 2D CNN+LSTM works [4], [17], [5],
[6] have been proposed, which regard the video as an ordered
sequence of frames, and capture the temporal relationship by

using LSTM to aggregate 2D CNN features extracted from
individual frames. In those methods, since the feature learning
of each frame is isolated and only the high-level 2D CNN
features are utilized for temporal relationship modeling, they
normally cannot capture the complex temporal relationship
among frames well. Recently, some researchers introduce 3D
CNNs. Tran et al. [18] proposed C3D architecture to learn
spatiotemporal information jointly. Carreira et al. [7] inflated
2D convolutional kernels into 3D on an Inception V1 model
[19]. Hara et al. [8] attempted inflated 2D convolutional
kernels into 3D on ResNet and some derivate models of
ResNet. After trained on large-scale datasets, these inflated
3D models obtained significant improvements in performance.
However, 3D CNNs have quadratic growth of parameter
and high computational costs compared to 2D counterparts,
making them more prone to overfitting.

B. Trade-off between Performance and Efficiency

Many attempts have been made to trade off performance
and efficiency. Lee et al. [20] constructed a motion filter
to attain spatio-temporal features from 2D CNN. Qiu et al.
[21] and Sun et al. [22] decomposed 3D convolution into
2D convolution follow by 1D convolution. Xie et al. [23]
built mixed convolutional models, where 3D convolution was
used in either the top or bottom layers and 2D convolution
in the rest. Top-heavy architecture has also been attempted
in ECO [24]. In general, the above approaches alleviated the
rapid growth of computational cost by 3D convolution. But
most of them still not have the same order of magnitude
computational cost as 2D competitors. The most recent work
TSM [25] is designed to shift the original features on part of
the channels along the temporal dimension, but this method
neglects long-range dependencies. In our work, the proposed
CTI module interchanges the temporal difference related to
motion information between adjacent frames and preserves the
original spatiotemporal information by an identity mapping
connection. We also consider the long-range dependencies by
the proposed GRI module.

C. Long-range Dependency

There are some works [26], [27],[28], [29] to capture long-
range dependencies in videos with graph structure. Among
them, Wang et al. [27] proposed to use space-time region
graphs to represent videos and followed by graph convolu-
tions for inferring relationships between objects, in which the
objects need to be detected using an object detector trained
on extra annotated data. Zeng et al. [28] proposed to construct
graph convolutional networks for capturing temporally disjoint
information. And Xu et al. [29] regards video snippets as
nodes in a graph and form edges between them based on
both their temporal ordering and semantic similarity. Attention
mechanism is also proved to be effective for long-range
dependency learning [30], [31], [32], [33]. For example, Non-
local Network [33] attempts to deliver temporal dependencies
from one place to another. Moreover, Temporal 3D Con-
vNets [34], DynamoNet [9] and LGD [35] are effective for
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Fig. 2. The overview architecture of Multi-range Feature Interchange Network for video action recognition. Following the sparse sampling strategy [13], We
adopt T" sampled frames obtained from a video as the input of the network. 2D ResNet-50 is utilized as the backbone and all original bottleneck blocks are
replaced by the proposed STI blocks (X m represents the number of STI blocks is n in a stage), we also insert two GRI modules between middle and top
STI blocks in the network architecture. The global temporal pooling is applied to average action predictions for all of the sampled frames.

learning long-range dependencies. Nevertheless, most of these
approaches are either computationally heavy or require extra
data annotations. Different from previous work, our proposed
GRI module projects the features from the grid map into
the state of nodes in a non-grid and performs information
interchange between distant features using graph convolution.
There are no extra object detectors, data annotations and 3D
convolution required for the entire process of our GRI module.

I11.

In this section, the proposed method will be described
in detail. Specifically, we first give elaborative procedures
of the proposed CTI module and GRI module and show
how to capture short-range motion features and learn long-
range dependencies, respectively. Afterward, We will present
how to assemble CTI module and GRI module to form our
multi-range feature interchange (MFI) network. The overview
architecture of our MFI network is illustrated in Fig 2.

APPROACH

A. Channel-wise Temporal Interchange (CTI) Module

The existing approaches directly shift original features or
extract optical flow to capture temporal features. Different
from these works, the intuition behind the proposed CTI mod-
ule is that, among all features, different features would focus
on distinct information. A part of features tends to describe
the static information related to background scenes; other
features mainly focus on capturing the motion information
about temporal evolution. For video action recognition, it is
beneficial to enable the model to discover and then interchange
those motion information.

The architecture of CTI module is shown in Fig 3. The goal
of CTI module is to discover and then interchange the temporal
difference related to motion information in the short temporal
range. Given a spatiotemporal feature map X € RT*HxWx¢
as input, 7" represents the range of temporal evolution, H and
W are the height and width of spatial representation and C' is

the number of channels. A 2D convolutional layer with kernel
size 1 x 1 is first utilized to reduce the number of channels
by a factor r for efficency. In our experiments, we set r to
16. Therefore, we obtain a compressed spatiotemporal feature
map Y € RT><H><W><C/7"

The temporal difference can be obtained by calculating the
difference between the features of two consecutive frames
(e.g. Y* and Y**!). In fact, experimental evidence shows
that different channels focus on different features, and the
computation cost is able to be reduced by a factor of G where
G represents the number of channel groups. Thus we set G
to C/r, apply 2D channel-wise convolution on features Y ‘*!
and then subtract from Y to obtain temporal difference H?
in time t. The calculation process for each channel can be
formally expressed as:

= COMtrans @Y =Y te[1,T—1], (1)

here C'onvyrqns represents 2D channel-wise convolution with
kernel size 3 x 3. ® and c indicate the convolutional operation
and c-th convolutional channel, respectively. ¢ € [1,C/r].
Similarly, H*~! can be acquired by performing 2D channel-
wise convolution on features on Y? and then subtracting
from Y*~1. To keep the temproal length compatible with the
temproal evolution range of the input spatiotemporal feature
map, we claim the temporal difference in time 7' as zero, i.e.
HT =0.

Then we perform temporal difference interchange operation
for the obtained temporal difference. Specifically, inspired by
previous work [25], the proportion of interchanged channels
is 1/4, where 1/8 of the channels are exchanged with the
previous timestamp, and 1/8 of the channels are transferred
with the subsequent one. The temporal interchange operation
is formally described as:
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Fig. 3. The architecture of the channel-wise temporal interchange (CTI)
module. The feature maps are represented as the shape of their tensors.
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where H/, is the obtained feature map by performing the tem-
poral interchange operation for temporal difference, ¢t € [1,T].
We then concatenate all of the interchanged features along the
temporal dimension and use another 2D convolutional layer
with kernel size 1 x 1 to expand the number of channels
to C. In order to avoid hurting the original spatiotemporal
features, an identity mapping is built to combine the input
spatiotemporal feature map with the output of CTI module.
Finally, we embed the proposed CTI module into the origi-
nal bottleneck block in ResNet to form a new residual block,
namely STI block. In a STI block, the first 2D convolutional
layer with kernel size 1 x 1 is utilized to reduce the number
of channels, and the proposed CTI module is used to discover
and interchange temporal difference from compressed features.
Afterward, a 3 x 3 2D convolutional layer and a following 1 x
1 2D convolutional layer are applied to extract spatial features

and restore the number of channels. Overall, our STI block
not only learns motion-related information but takes spatial
structure modeling into consideration.

B. Graph-based Regional Interchange (GRI) Module

Previous video action recognition methods typically infer
relationships between annotated objects or stack many 3D
convolutional operations to learn the long-range dependencies.
They are inefficient approaches since extra object detection,
data annotation and a large number of 3D convolutional
operations are computationally expensive. To remedy this
issue, we build a GRI module to efficiently learn long-
range dependencies. The proposed module consists of feature
transformation, graph convolution, and feature reverse. We
first construct a graph and transform the features in a regular
feature map into the state of nodes over the graph. Then the
state of nodes is interchanged and fused with each other using
graph convolution. Finally, the output of graph convolution
process is reversed into the features in a regular feature map.
The detailed description of the proposed GRI module is shown
below.

A graph G(V, E) is designed to perform interaction between
feature pairs. Specifically, G(V, E) contains N nodes, where
each node encodes the feature contained in the feature map
as its state, and edges store the relationship between the
underlying features of node pairs.

1) Feature Transformation: To implement transforming
from the features in a regular feature map to the state of
nodes in a non-grid graph G, let us hypothesize a given
feature map X € RT*HXWXC jn 3 video CNN model.
We first obtain a reshaped feature map X,. € REXC by
reshaping X, where L = T x H x W. And then, we apply the
1D convolution and transpose operation for X,.. to gain the
transform weight matrix W; € RN*L, where N = |[C/4].
Finally, a transformed feature map V; can be acquired by
matrix multiplication between W; and X,.., and we project the
features in V; as the state of nodes in the graph G. Formally,
the entire feature transformation process can be formulated as:

WtGRNXL,
WGRNXC,

W, = [Convgrcms ® D, (X)]T7

3)
Vi = Wy ®,(X),
here C’onv;mn s represents a 1D convolution layer with kernel
1 for obtaining transformation weight; ® denotes the convolu-
tional operation; ®,. is the reshape operation; 7" and * indicate
the transpose operation and matrix multiplication, respectively.
2) Graph Convolution: When applying graph convolution,
each node propagates its state to the rest of the nodes and ag-
gregates information from others over graph G. For example,
two nodes contain regional features that focus on the player
and the basketball respectively, which learn a connection
and interchange information between each other in the long
temporal range, it is helpful to recognize the human action in
videos. Concretely, we use a single layer graph convolution
network in [26] as our graph convolutional operation:
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where A, € RV*" is the node adjacency matrix, and W, €
RE*C is the state update parameter matrix. A, and W, are
trainable and they can be randomly initialized and continually
optimized during training. Then we aggregate the output of
GCN and the input V; as the output of the graph convolution
process, which can be given by:

Vout = ReLU (F(Vy, Ag, Wy) + V2), (5)

here ReLU is the rectified linear unit as the activation func-
tion.

3) Feature Reverse: After graph convolution, we reverse
the output V,,,; into the features of a regular feature map to be
compatible with 2D CNN models. This process is the inverse
of the feature transformation process. Formally, the process of
feature reverse can be denoted as follow:

Yino = 0r (Wi % Vour), (©6)

where Y;,,,, represents the output of the feature reverse process.
W[ indicates the transposed matrix for the transform weight
matrix W;. ¢, is the inverse of reshape operation ®,.

C. MFI Network

In order to perform multi-range feature interchange, we
utilize 2D ResNet-50 as the backbone and construct a novel
network to assemble the proposed CTI module and GRI
module, namely MFI network. As we all know, 2D ResNet-50
is able to be divided into six stages, where stage 2 to stage
5 can be called conv2_x to conv5_x. Specifically, as shown
in Fig 2, for short-range motion features, the CTI module is
utilized to discover and interchange the temporal difference
related to motion information. We embed the CTI module
into the original bottleneck block in 2D ResNet architecture to
form an STI block, and then we replace all original bottleneck
blocks from conv2_x to conv5_x with STI blocks. For long-
range dependencies, because empirical evidence shows feature
maps in middle and top layers are more abundant in semantics
and much smaller in size than feature maps in bottom layers
for a CNN architecture, for reducing the number of parameters
and computational costs, we just insert two GRI modules
into the designed network, one between conv2_x and conv3_x
and the other between conv3_x and conv4_x. Following the
previous method [13], the global temporal average pooling is
utilized at the last stage of the model to average action score
of all of the sampled frames, and the average score can be
regarded as the action prediction of the entire video.

IV. EXPERIMENTS

In this section, we first give an introduction to experimental
datasets and implementation details. We then report the perfor-
mance of the proposed MFI network on different datasets and
compare them with some state-of-the-art approaches. Finally,
the ablation study is conducted. We testify the effectiveness
of different components within the proposed MFI network and
analyze the efficiency and performance of our MFI network.

A. Datasets and Implementation Details

1) Datasets: The proposed approach is evaluated on three
benchmark datasets, Something-Something V1 [36], HMDB51
[37] and UCF101 [38]. Something-Something V1 contains
more than 100,000 videos across 174 classes, collected for
generic human-object interaction. It contains many video
actions with ambiguous activity categories and related to
temporal order. Such as ‘Tearing Something into two pieces’
versus ‘Tearing Something just a little bit’, and ‘Moving
something away from something’ versus ‘Moving something
closer to something’. UCF101 dataset includes 13320 video
clips collected from Youtube with various camera motions
and illuminations, annotated into 101 action classes, which is
composed of three training and test splits. HMDBS51 dataset
contains 6766 video clips categorized into 51 classes, the
content of clips include daily life activities and unusual sports.
There are also three training and test splits for HMDBS51.

2) Implementation Details: Following the sparse temporal
sampling strategy in TSN [13], we first evenly divided a given
video into T' segments. Then one frame is randomly selected
from each segment to form the input sequence with 7" frames.
Afterward, the size of the short side of each frame is fixed to
256, and corner cropping and random scaling are applied for
data argumentation. We then resize these frames to 224x224
for network training. Therefore, the input size of the network
is set as 1'x224x224 consisting of T sampled frames with
resolution 224 x224. In our experiments, 7" is set to 8 or 16.

We choose 2D ResNet-50 as the backbone and SGD to
train the network. The training parameters include momentum
0.9, and weight decay 0.001. We evaluate performance with
accuracy and measure the efficiency with FLOPs, i.e. floating-
point multiplication-adds. For Something-Something V1, the
parameters contain 35 epochs, batch size 16 and dropout 0.5.
We initialize the learning rate to be 0.001 and decrease it
by 10 every 15 epochs. And for UCF101 and HMDBS1, the
parameters include 25 epochs, batch size 16, and dropout 0.8.
We use a small initial learning rate of 0.0005 and divide it by
10 every 10 epochs.

B. Benchmark Comparison

1) Something-Something V1: In this section, we first evalu-
ate the performance of the MFI network by the comprehensive
statistics (e.g. inference protocols, FLOPs, and recognition
accuracy) on Something-Something V1. As shown in Table
I, we list the comparison results of our MFI network with
some state-of-the-art methods on Something-Something V1.
Specifically, the methods in the first compartment are based
on 2D CNNs. Compared with the baseline model TSN, the
proposed MFI network gains 24.2% top-1 accuracy improve-
ment with the same number of input frames, while the FLOPs
of MFI network slightly increases to 33.6G (1.02x), which
demonstrates the effectiveness and efficiency of multi-range
feature interchange. When using 8 and 16 input frames respec-
tively, our MFI network achieved 0.4% and 0.8% performance
improvements compared to TSM.



TABLE I
THE COMPARISON OF PERFORMANCE ON SOMETHING-SOMETHING V1.

Method [ Backbone | #Frames [ FLOPs [ Val-Topl (%) [ Val-Top5 (%)
TSN [13] BNInception 8 16G 19.5 -
TSN [13] ResNet-50 8 33G 19.7 46.6
MultiScale TRN [15] BNInception 8 16G 34.4 -
TSM [25] ResNet-50 8 33G 43.4 73.2
TSM [25] ResNet-50 16 33G 448 74.5
ECOgy [24] BNInception+3D ResNet18 8 32G 39.6
ECO16y [24] BNInception+3D ResNet18 16 64G 41.4 -
13D [7] 3D ResNet50 32 x 2 153G x 2 41.6 72.2
Non-Local-I3D [33] 3D ResNet50 32 x2 168G x 2 44 .4 76.0
MFI(Ours) ResNet-50 8 33.6G 439 73.9
MFI(Ours) ResNet-50 16 67.2G 45.5 76.0
The second compartment contains the methods based on TABLE I

2D+3D and 3D CNNs. Among them, the most efficient
method is ECO, which is based on 2D+3D CNN and the
FLOPs are only 32G. Compared with ECO, the FLOPs of our
MFI network slightly increase 1.05x, but the performance is
increased by a big margin, a relative improvement of 4.3%
top-1 accuracy (39.6% vs. 43.9%) using 8 input frames and
4.1% top-1 accuracy (41.4% vs. 45.5%) using 16 ones. For
3D CNN based methods, because of the heavy computing
costs, the FLOPs of these methods are significantly higher
than our MFI network, but the proposed MFI network with
16 input frames still outperforms than I3D and Non-Local
I3D by 5.5% and 1.1% on top-1 accuracy, respectively. These
results demonstrate the effectiveness of our MFI network to
learn multi-range temporal information by feature interchange
operation on Something-Something V1 is quite impressive.

2) UCFI0l and HMDB51: We then evaluate the per-
formance of the MFI network and report the comparison
results on the UCF101 and HMDBS51 datasets. We utilize
the pre-defined training/testing splits and protocols provided
originally, and report the mean average accuracy over the three
splits for HMDBS51 and UCF101, respectively. As shown in
Table II, only using 8 input frames, the proposed MFI network
achieves 94.9% on UCF101 and 71.9% on HMDBS51, respec-
tively. Compared with the 2D CNNs based methods in the first
compartment, our MFI network significantly outperforms the
baseline method TSN by 8.5% (86.2% vs. 94.9%) on UCF101
and 7.2% (64.7% vs. 71.9%) on HMDBS51. Our MFI network
also gains the performance boost against other five 2D CNN
based methods (i.e. Conv Fusion, Two-stream CNN, Two-
stream TSN, StNet, and TSM) on both datasets. When utilizing
16 frames as input, our MFI network further obtains 95.6% on
UCF101 and 73.3% on HMDBS51 respectively. And compared
with the 2D+3D or 3D CNNs based methods in the second
compartment, MFI outperforms the most methods using the
same or fewer number of input frames on both datasets, except
for I3D. I3D-RGB uses 64 frames as input and two-stream 13D
further utilizes optical flow information as the additional input
modality. Therefore, the computing cost of I3D-RGB and two-
stream 13D will be far more than us. Surprisingly, our MFI
network with 16 input frames even slightly better than I3D-

THE PERFORMANCE OF OUR MFI NETWORK ON ALL THREE SPLITS OF
UCF101 AND HMDB51 COMPARED WITH STATE-OF-THE-ART METHODS.

Method | #Frames | UCF101 | HMDB51
Two-stream CNN [2] 16+16 88.0 59.4
Two-stream TSN [13] 8+8 94.2 69.6
StNet [39] 7 93.5 -
TSM [25] 8 94.5 70.7
ECO [24] 92 93.6 68.0
STC-ReNeXt101 [40] 16 93.7 70.5
ARTNet [41] 16 94.3 70.9
13D-RGB [7] 64 95.4 74.8
Two-steam 13D [7] 64+64 98.0 80.7
MFI(Ours) 8 94.9 71.9
MFI(Ours) 16 95.6 73.3

RGB on UCF101.

Note that, our MFI network has not utilized the optical flow
information as the additional input modality, and the number
of input frames is only 8 or 16. But our MFI network still gains
comparable performance to the state-of-the-art methods. These
results show the effectiveness of our MFI network to capture
short-range motion features and learn long-range dependencies
by feature interchange operation on UCF101 and HMDBS51.
This requires efficient methods like ours instead of additionally
extracting the expensive optical-flow information, which is
very computationally demanding, and limits the applications
in the real-world.

C. Ablation study

In this section, we first testify the effectiveness of differ-
ent components in our MFI network. Then we analyze the
efficiency and performance of the proposed MFI network.
All experiments in this section are conducted on Something-
Something V1.

1) Components Effectiveness: To evaluate the effectiveness
of each component in the proposed MFI network (i.e., CTI
module and GRI module), we use 8 frames as input for training
and compare the results of the baseline, the single module
and the combination of both modules. As shown in Table
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TABLE III
COMPONENTS EFFECTIVENESS OF MFI NETWORK.

Method | Val-Topl (%) [ Val-Top5 (%)
baseline(TSN) 19.7 46.6
GRI 38.2 67.2
CTI 42.8 71.3
MFI 439 73.9

III, compared to the baseline, GRI module learns long-range
dependencies by performing graph-based feature interchange
and gains 18.5% topl accuracy improvement. Meanwhile,
CTI module captures temporal difference related to motion
information by utilizing channel-wise feature interchange and
obtains 23.1% topl accuracy improvement. Furthermore, bet-
ter results can be produced by combining CTI module and
GRI module together.

2) Efficiency Analysis: To analyze the efficiency of our MFI
network, We compare the accuracy and model complexity of
our MFI network with some state-of-the-art methods. As il-
lustrated in Table IV, compared with the baseline model TSN,
our MFI network achieves 2 x higher accuracy while providing
similar model complexity (0.02% higher FLOPs and 0.01%
more parameters). And compared with ECO and 13D, our
MFI network gains significant accuracy improvements with
nearly 2x and 10x less FLOPs (33.6G vs 64G, 306G) and
fewer parameters. Moreover, with similar model complexity,
the proposed MFI network obtains slightly higher accuracy
against TSM.

3) Performance Analysis: Finally, to analyze the perfor-
mance of the proposed MFI network, we show some prediction
examples of MFI network on Something-Something V1. As
shown in Fig 4, the first column demonstrates that our MFI
is able to correctly identifying actions that are closely related
to the temporal order of frames. When reversing the tempo-
ral order of frames, the category “Moving something away
from something” will be transformed into “Moving something
closer to something”. And the second column shows our MFI
network is also capable of correctly recognizing the “pretend-
ing” action category (e.g. Pretending to put something into
something), where the actions contained in the short temporal
range normally convey essential semantic information about
the entire video action class.

1. Pouring something into something (0.884) 2. Pretending to pour something out of something (0.092)

Pretending to put something into something

1. Pretending to put something into something (0.731) 2. Pretending to scoop something up with something (0.140)

Some prediction examples on Something-Something V1. The top 2 predictions with green text indicating a correct prediction.

TABLE IV
ACCURACY AND MODEL COMPLEXITY OF MFI NETWORK AND OTHER
METHODS.

Model | #Frames | FLOPs | Param. | Acc.(%)

g 33G | 243M 9.7
TSN [13] 16 66G | 243M [ 199
ECO [24] 6 6dG | 475M | 414
B3D [7] 3 306G | 280M | 416

g 33G | 243M | 434
TSM [25] 16 36G | 243M | 448

g 336G | 24.6M | 439
MEI 16 672G | 246M [ 455

V. CONCLUSION

In this paper, we propose a multi-range feature interchange
(MFI) network for video action recognition, where the pro-
posed channel-wise temporal interchange (CTI) module and
graph-based regional interchange (GRI) module are used for
encoding short-range motion features and learning long-range
dependencies respectively. Furthermore, the proposed CTI
module is embedded into the original bottleneck block in
ResNet-50 to form a short-range temporal interchange (STI)
block, we replace the original bottleneck blocks with STI
blocks. Without any 3D convolution and additional optical
flow modality, our MFI network gains comparable perfor-
mance to the state-of-the-art methods on three video action
recognition datasets using very limited computing costs.
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