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a b s t r a c t

Video-based road detection is a crucial enabler for the successful development of driver assistant and
robot navigation systems. But reliable detection is still on its infancy and deserves further research. In
order to adapt to the situation consisting of environmental varieties, an online framework is proposed
focusing on exploring the structure cue of the feature vectors. Through the structural support vector
machine, the road boundary and non-boundary instances are firstly discriminated. Then they are utilized
to fit a complete road boundary. After that, the road region is accordingly inferred and the obtained
results are treated as ground truth to update the learned model. Three contributions are claimed in this
work: online-learning updating, structural information consideration, and targeted sampling selection.
The proposed method is finally evaluated on several challenging videos captured by ourselves.
Qualitative and quantitative results show that it outperforms the other competitors.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

According to one recent report [1], road traffic injury remains
an important health problem for the public. The total number of
road traffic deaths keeps unacceptably high at 1.24 million per
year, while the primary cause is unacceptably due to the driver's
inattention and tiredness. To alleviate this situation, Driver Assis-
tance System (DAS) [2–4] is developed and equipped, with the
hope that it can serve as an autonomous reminder and guidance
for the drivers. Among the various techniques enabling the DAS,
road detection is the fundamental one, because it is the first step
for a vehicle to become moveable and many other intelligent
maneuvers are based on it. For example, Lane Departure Warning
(LDW) [5,6], Lane Centering [7], and even full autonomous driving
[8] rely on the results of road detection. Moreover, it can provide a
significant contextual cue for target detection (e.g, vehicle or
pedestrian) [9–12] and act as the prerequisite for robot navigation
in an outdoor environment, which is widely researched in artificial
intelligence and computer vision.

Because of its practical and theoretical importances, road
detection has been thoroughly investigated in recent years.

According to the types of sensing modalities used for this purpose,
existing methods can be categorized into active sensor based and
passive sensor based. For the active sensor based methods, the
sensors project certain kinds of radiative lights and measure the
reflection from its projection. Typical examples include Light
Detection And Ranging (LIDAR) and Radio Detection And Ranging
(RADAR). Several active sensors have been widely used for road
understanding and great progress has been made since the DARPA
Grand Challenge and Urban Challenge [13].

However, due to the restriction of limited perceptual range by
the active sensors, and the risk of inter-vehicle inference or
pollution to the environment, the passive sensor based methods
have a tendency of dominating the trend because of their noni-
nvasive characteristic. To be specific, the passive sensors obtain
useful information from the environment by capturing the reflec-
tion of sun light or other artificial lights. This kind of method can
provide intuitive understanding of all the surrounding environ-
ment and deliver more meaningful cues, which are crucial for the
development of future intelligent transportation systems in mixed
traffic conditions [14]. As for the sensor, video cameras that
provide the visual data are the most frequent choice. Therefore,
the term “video-based” is interchangeably used with “passive
sensor based” for simplicity in the following sections.

In this paper, we address the problem of video-based road
detection utilizing an online strategy. The major focus is on
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exploring the structural information of the input data through the
structural SVM (SSVM). At the same time, the learned model is
online updated to adapt to the changing environment. Fig. 1 shows
some typical detection examples using the proposed method.

1.1. Related works

Since the presented work belongs to the passive sensor based
type, we only review the video-based methods. With respect to
the different emphasis on the prior knowledge, road detection can
be divided into three groups: model-based, feature-based, and
learning-based.

(1) Model-based method tends to have an assumption of road
shape, which is actually treated as road model. Then the aim is to
find the fittest parameters under the model assumption. Several
strategies of model fitting [15–19] are used to get the road model.
Oniga et al. [15] fitted a quadratic road model by RANSAC
approach and the fitting result was refined by a region growing-
like process so as to determine the road surface. Sappa et al. [16]
proposed Least Square Estimation (LSE) based approach to fit a
model for the road surface. Fardi et al. [17] utilized Hough domain
to determine the road borders after using the Gaussian pyramid
technique to model the scale information. Borkar et al. [18]
employed RANSAC to eliminate outliers caused by noise and
artifacts in the road and Kalman filter was finally used to smooth
the road boundaries. Sawano and Okada [19] utilized an internal
energy based on the tendency of a control point resisting changes
in its state of motion in an image space, to represent the road
model. Although Model-based methods can accurately determine
the road region given a proper road model, it may be invalid to
face the situations where road shapes change as the vehicle is
moving. Therefore, it is difficult to find an appropriate model for
unstructured roads with inconstant conditions.

(2) Feature-based method relies upon the extraction of image
features to detect road boundaries and road region. The features
such as color, gradient and texture are commonly used to measure
local neighborhoods and a likelihood function is formulated by
feature clustering [20], threshold segmentation [21] or region
growing approach [22] to obtain the road region. For example,

He et al. [23] assumed that the color components of road surfaces
obey the Gaussian distribution and the road areas were detected
based on the full color features. Sotelo et al. [24] utilized the Hue-
Saturation-Intensity (HSI) color features for segmentation to
model the road pattern. Alvares et al. [25] employed an illumi-
nant-invariant, which was converted from the RGB space, as the
feature space to accomplish the road detection task. The main
advantages of the feature-based method are that it is insensitive to
the shape of roads and little previous knowledge is needed. But it
is sensitive to shadows and other illumination changes.

(3) Learning-based method [25–27] generally makes use of a
trained neural network or classifier to distinguish between the
road region and non-road region. Such methods are independent
of special road markings and are capable of dealing with non-
homogeneous road appearance, if the characteristics of road or
non-road regions are properly represented by the feature space.
Alvarez and Lopez [25] introduced a shadow-invariant feature
space and it was used along with a likelihood-based classifier
which was online learned to achieve road segmentation. Son et al.
[27] constructed a probabilistic road model by supervised training
and a posteriori probability based on visual information was then
utilized to extract the road region. For learning-based method,
although less prior knowledge is needed, it heavily relies on the
training sets and training strategies. But unfortunately, most of the
classifier and neural network are trained once, unable to adapt to
the varieties of the environment.

Apart from the three types, most road detection problems can
be successfully interpreted using a variant of the three above
approaches or a combination of them. The proposed method in
this work belongs to the learning based prototype, while taking
advantages of advanced features and road boundary fitting.

1.2. Proposed framework

Though many works have been proposed, most of them are
based on the assumption that the road area is consistent in
intensity or color. However, in real-life environments, this assump-
tion might fail because the intensity often varies a lot as the
vehicle or robot is moving. Moreover, the shadows and occlusions

Fig. 1. Typical road detection results of the proposed method. From top to bottom, each row represents the detection results of a specific kind of scenery.
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would also influence the detection results. In this paper, we focus
on the drivable road detection, aiming at inferring the road region
in a video collected by a camera mounted ahead of a vehicle or
robot. Particularly, the road region is inferred from the road
boundary, which is not restricted to only structural roads with
distinguished lanes or curbs. Fig. 2 illustrates the pipeline of the
proposed method, which is named as Road Detection via Online
Learning (RDOL). The four main components are introduced as
follows.

(1) Road feature extraction: In this work, we tactfully transform
the road detection problem into detecting the road boundary. The
ultimate road region can be constrained and inferred from the
detected boundary. The reason for detecting the road boundary
instead of road region can be explained as follows. Firstly,
compared with road boundary, more pixels are involved for the
road region and it is more likely to be influenced by the intensity
change, shadow and lighting condition. These phenomena will
result in large intra-class differences and degenerate the model's
discriminative ability. Secondly, road boundary always coincides
with the image edge which is less ambiguous compared with the
region based method. As for the determination of road boundary,
the feature selection is a critical factor. In this work, only neighbor
information of road boundary is considered. The involved features
include local gradient and texture, for the reason that they are
significantly manifest for road boundary. Therefore, DSIFT (Dense
SIFT), HOG (Histogram of Oriented Gradient) and LBP (Local Binary
Pattern) are used for their robustness to intensity change and
shadow.

(2) SSVM inference: After feature extraction, a classifier is
employed to determine the existence of road boundary in the
examined frame. In this step, we assume that the boundary in the
previous frame has been detected and a classifier for boundary/
non-boundary has been learned. Both of them are available for
reference. Then a portion of sample instances are selected from
the current frame as the candidates for further verification. These
instances are purposefully chosen from the locations near the
previous boundary because the adjacent frames are prone to have
little difference in boundary location. After that, the sample
instances are tested by the previously learned structure SVM
classifier, with an output of binary labels. The classifier considers
the structure cue among input data and is robust for the adaptive
environment.

(3) Road boundary fitting: After classification, the detected road
boundary consists of sparse points and not reliable enough.
Accordingly, a segmentation result is used to improve it. Our
assumption is that the region edges of obtained superpixels are
more likely to share the same positions with the detected
boundary pixels. Those coincident pixels are treated as the reliable
ones to support further boundary fitting. Considering the fact that
straight road is the most common case in daily life, especially
when the camera is close to the ground, straight line fitting is
investigated as an example in our framework. The other situations
are similar to it.

(4) SSVM online updating: There is a strong possibility that the
road appearance varies as the vehicle or robot is moving. Conse-
quently, an online updating strategy is critical. When finishing the
boundary detection procedure, the road region is inferred from the
extracted boundary and it is treated as ground truth. At the same
time, the structural SVM classifier is updated with the misclassi-
fied samples from the examined frame. The retrained classifier
claims to be adaptive to the changed scene and will be utilized in
the next frame.

1.3. Contributions

Although many road detection methods are proposed in the
literature, the presented method in this paper still has its advan-
tages. The main contributions of this research are listed as follows.

(1) Online-learning framework: Traditional methods use a fixed
training set to generate the classifier. However, it is known to us
that the road features, such as intensity, color and gradient, may
change dramatically in a variety of environmental conditions. An
adaptive strategy might be necessary for a robust performance. In
view of this point, this work emphasizes on the online-learning
ability of the designed detector and the updated model maintains
capable of tackling the novel environmental changes.

(2) Structural information considered: For traditional classifica-
tion problem, the structural information among the training
instances is not considered. In fact, different classes may have
different underlying data structures. It requires the classifier to
adjust the discriminative hyperplane to fit for the data structure.
As for the context of road detection, we think that the boundary
and non-boundary samples have their respective characteristics
and data distribution. Therefore, structural SVM is introduced as

Fig. 2. Road detection pipeline. For an input frame at time t, the task is to detect the road area with reference to previously obtained detection result at time t�1. The first
step is to select a set of sample instances and express them with a fusion of three features. Then a SSVM classifier is utilized to distinguish the road boundary and non-
boundary instances. After that, a line fitting process is applied to get a more complete and reliable boundary, abandoning those outliers. At the same time, the road area can
be inferred from the obtained boundary. Finally, to keep the model adaptable to the changing environment, an updating strategy is enforced by emphasizing more on the
misclassified instances. The updated model will be used in the next frame.
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the classifier for its structured learning ability and the online
implementation is also used to accelerate the computation speed.

(3) Targeted sampling selection: Generally, any of the positive
and negative samples can be selected for the training purpose. In
this work, only specific neighbor pixels around the road boundary
are considered. We think the regions far from the boundary will
cause the degeneration of the classifier because of the lighting
differences and shadows. As for the update of the model, only the
misclassified instances are involved in the retraining procedure
because they are more informative. By meaningfully selecting the
training samples, the classifier would become more robust and
discriminative.

Moreover, these three contributions are generated into a
unified framework for the first time. Online learning strategy
makes the proposed method adapt to varying road scenes.
Structural information in the feature space helps to refine the
road detection results which can improve the performance of
online learning in return. The target sampling selection can also
avoid the degeneration of the model which online learning suffers.
To sum up, all these contributions are considered based on the
road detection problem and the detection results would be reliable
and robust.

The remainder of this paper is organized as follows. In
Section 2, the proposed method is described in detail, including
feature extraction, classification framework, boundary fitting and
model updating. In Section 3, experimental results are presented,
with a comprehensive qualitative and quantitative comparison
and analysis. Finally, conclusion is made in Section 4.

2. Road detection

The aim of this work is to detect the road area in an input video,
which is collected from a vehicle-mounted or robot-mounted
camera. Since region-based road detection is sensitive to intensity
change, shadow and lightening condition, we transform the road
detection problem into detecting the road boundary. Then the
road region is accordingly inferred from the obtained boundary.
Traditional road boundary detection methods mainly focus on the
intensity space and utilize fitting strategies to estimate the
candidate boundaries. Our method puts the boundary fitting on
the more robust feature space and regards the road boundary
detection as a binary classification problem.

Since the proposed method is based on adaptive learning, a
manually labeled ground truth is needed in the first frame. Then
the model is updated at each frame. In the following part, we will
introduce the proposed method step by step.

2.1. Road boundary feature extraction

In this work, the image patch centered at a sampling pixel is
defined as an instance. To appropriately represent the instances
and distinguish the positives from the negatives, transforming the
image from intensity space into feature space is a reasonably
better choice. This is because the intensity could change a lot
when the vehicle or robot is moving and its absolute value has
little meaning to a region especially when it passes through the
edge. Based on these characteristics, gradient and texture feature
are considered in the proposed method and three different feature
spaces are used, including Dense SIFT (DSIFT), Histogram of
Oriented Gradients (HOG) and Local Binary Pattern (LBP).

2.1.1. DSIFT feature
SIFT feature [28] has been widely used in computer vision, for it

is robust and invariant to scale, noise and illumination. DSIFT is
obtained by computing the SIFT descriptor of the same scale over

dense grids in the image domain. In our experiment, the sampled
instances are N � N image patches. The feature vector of each
instance can be achieved with a 4�4 array of histograms in which
it has 8 orientation bins. Therefore, the dimension of DSIFT
descriptor is 4� 4� 8¼ 128. The obtained DSIFT feature is
denoted as fdi j i¼ 1;2;…ℓg, where ℓ represents the number of
sampling instances in the current frame and di is the ith instance
descriptor.

2.1.2. HOG feature
HOG feature [29] was first proposed for the problem of human

detection. Ever since then, numerous experiments have proved the
effectiveness of HOG, because it is invariant to changes in lighting,
small deformations, etc. In this work, we also take HOG into the
boundary detection task. Similar to SIFT, the original HOG com-
putes a histogram of gradient orientations in a local block. In our
experiments, sampling instances are considered as a local block
and each block would generate one column feature vector. It is
represented as fhi j i¼ 1;2;…ℓg where hi is the 31-dimensional
descriptor. The dimension of the HOG descriptor can be adjusted
by changing the sampling distance of the histogram.

2.1.3. LBP feature
LBP [30] is a powerful descriptive method for texture informa-

tion. The original LBP operator labels the image by thresholding
the N � N neighbors of each pixel compared with the center pixel
in intensity space and considering the result as a binary number.
Then texture descriptor can be generated by converting the binary
number to decimal number or counting the histogram of the
labels. One extension to the original LBP operator is the introduc-
tion of uniform patterns [31] which is used in the proposed
method and a new pattern can be categorized into either one of
the uniform patterns or non-uniform pattern. The LBP feature
vector of the ith patch is denoted as fli j i¼ 1;2;…ℓg where li is the
10-dimensional descriptor. The dimension of the LBP descriptor
can also be adjusted by sampling distance of the histogram.

After the extraction of the features mentioned above, the
feature vector xi of the ith instance is obtained by concatenating
each kind of feature vector into a column vector, and written as

xi ¼ ½di;hi; li�; i¼ 1;2;…ℓ; ð1Þ
where di represents DSIFT feature vector of the ith patch, hi is the
HOG feature vector and li denotes the LBP feature vector.

2.2. Online structural SVM

With the obtained feature vectors, a SSVM classifier is adopted
to make a binary decision of boundary/non-boundary. For the fact
that the instances belonging to the same class may have the same
data structure distribution in the feature space, this structure
constraint can obviously eliminate the outliers. The classifier is
learned in the first frame and updated in every following frame.

2.2.1. Training set generation
Generally, the ground truth of the first frame can be generated

by region growing strategy assuming the middle-bottom pixels
belong to road region. This assumption is always effective in real
situations. On the other hand, it can also be manually labeled if the
assumption is incorrect. Since we have a ground truth of road
boundary in the first frame, the positive and negative training
instances can be identified. The positive instances are uniformly
sampled from the road boundary. The negative instances can be
sampled from all the other non-boundary regions. However, the
training is more effective if the negative instances are chosen near
the road boundary. This is because the surrounding environment
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varies a lot. Negative instances far from the boundary would make
the classifier more ambiguous and degenerate its accuracy. There-
fore, negative instances are merely sampled from the neighbor of
road boundary. This targeted sampling can ensure that the
classifier's discrimination is strengthened. In addition, the compu-
tational complexity is reduced. The training set is denoted as

T¼ fðxi; yiÞ ðxi; yiÞAX � Y; i¼ 1;…;ℓg;
�� ð2Þ

where xiAX represents the ith feature vector and yiAY is its label,
ℓ is the number of sampled instances for the classifier training.
Fig. 3 illustrates the sampling procedure of positive and negative
instances.

2.2.2. Road boundary inference
For the training set X composed of a number of instances

fxigℓi ¼ 1, the goal of road boundary inference is to find the related
label fyigℓi ¼ 1Af�1; þ1g of each instance. For simplicity, xi is
replaced by x. Instances considered either as road boundary or
not can been taken as an “one against all” classification problem.
And the problem can be cast as learning a prediction function f : X
to Y mapping the feature instance x to the binary classification
label y. For better considering the structural information between
instances, structural SVM is utilized to learn this prediction
function. Dissimilar to traditional classifiers such as SVM, SSVM
considers the separability between classes and the compactness
within classes simultaneously. It directly introduces the data
distributions of classes into the optimization function. By this
means, the underlying data structure is emphasized in the
classification procedure.

As for the implementation, f is actually defined to be a score
function F : X � Y-R. Generally, F is chosen as a linear combina-
tion of w and Ψ ðx; yÞ, written as

Fðx; y;wÞ ¼ w;Ψ ðx; yÞ� �
; ð3Þ

where w is the weight parameter and Ψ ðx; yÞ is the joint feature
transformation. Once their values are set, the corresponding label
of an input feature vector x can be inferred by maximizing the
output of F, which means

f ðx;wÞ ¼ argmax
y

Fðx; y;wÞ: ð4Þ

In this process, Ψ ðx; yÞ is denoted as a kernel function that
maps the feature space x to a higher dimension space in order to
further improve the classification performance [32]. Meanwhile,
the distribution of the instances in the same class, which repre-
sents its structural information, is also reflected in this function.
For the instances in the same class, the same mapping strategy
according to Ψ ðx; yÞ is utilized to project the instances into the

same higher dimensional space. Different classes would be pro-
jected into different higher dimensions.

As for the estimation of w, it depends on a set of training
instances T which are obtained from the training set generation
mentioned above. The structured SVM learns the parameter w
through the minimization of a constrained quadratic optimization
problem utilizing the risk minimization and margin maximization
strategies:

min
w;ξ

JwJ2þC
Xℓ
i ¼ 1

ξi;

s:t: w0Ψ ðxi; yiÞ�w0Ψ ðxi; yÞþξiZΔðyi; yÞ;
i¼ 1;…;ℓ; 8yAY; ð5Þ

where C is a balance parameter. The function Δ : X � Y-Rþ
measures a distance in label space. For binary labels, writes

Δðyi; yÞ ¼ ð1�yiyÞ=2: ð6Þ

2.2.3. SSVM online implementation
There are a number of constraints in (5) with respect to the

dimensionality of y. Therefore, the computational efficiency is a
critical problem. In order to speed up the calculation, an online
learning implementation is utilized to speed up the training
procedure.

Algorithm 1. SSVM online implementation.

Input: Training set feature X, corresponding label Y, threshold
γ.

Output: Classification hyperplane w.
Initialization: Randomly initialize w.
1: Set flag ¼ 1, accumulated cost C ¼ 0, constraint set T ¼∅;
2: while flag¼ ¼ 1 do
3: Set flag ¼ 0;
4: for each training instance do
5: Find the most violated constraint under the current w;
6: Add the most violated constraint to the constraint set T;
7: Calculate the accumulated cost C;
8: if C4γ then
9: Solve Eq. (5) under the constraint set T via cutting

plane algorithm;
10: Update w;

11: Reset accumulated cost C;
12: Set flag¼ 1;
13: end if
14: end for
15: end while

Fig. 3. Illustration of training sample selection. For the left images, the green lines indicate the ground truth road boundary. For the right images, positive instances can be
randomly selected from the red region and negative ones from the blue region. The yellow region is served as a transition area. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)
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The details of SSVM online updating is shown in Algorithm 1.
For each training instance, the most violated constraint, which
have the maximum error, is incrementally added to a constraint
set which are combined by linear inequalities considering the
structural information between instances of the same class. Then
the cutting plane algorithm [33] would iteratively refine before
analysing the constructed constraint set to solve the minimization
problem. In this way, the optimization can be efficiently realized.

Fig. 4 shows some typical inference results of SSVM classifier
which are randomly selected from the testing data.

2.3. Road boundary fitting

The inferred boundary instances deliver a certain level of true
information, but they are not continuously connected from place
to place. In order to make the detected road boundary more
reliable, it is necessary to consider other constraints which would
improve the robustness of the boundary inference result. For
this purpose, edge and road model are the two constraints
considered here.

As for the edge inspired constraint, our assumption is that the
inferred road boundary instances will mostly exist in the same
place where they can be detected by other edge detection
methods. For commonly used edge detection operators, such as
Canny, Sobel and Prewitt, they can only estimate the local edge
which is sensitive to the noise in the pixel space. Though noise
removal preprocessing can improve the performance, it is essen-
tial to consider more information in a bigger neighborhood.
Fortunately, image segmentation can solve this problem well
which integrates region-based cue and is robust to local noise.
The desired edges can be easily obtained from the superpixels
after segmentation [34]. In this case, even if the inferred boundary
is unreliable (especially in faint object boundaries and cluttered
background), the added edge cue from segmentation can enforce
the credibility. Those instances with road labels from both sources
are treated as the final detected road boundary instances. In our
framework, SLIC superpixel method [35] is adopted. It clusters
pixels in the combined five-dimensioned color space and it can
generate compact, nearly uniform superpixels efficiently.

As for the road model, it is mainly employed to complete the
disjoined boundary sections. In this work, the focus is primarily on
the straight road detection. This is because the straight type is
mostly seen in our daily life. Besides, the linear perspective
phenomenon makes the curved line more “straight” especially

when the camera is close to the ground plane. Thus the task
accordingly becomes to obtain a set of “inliers” satisfying the
straight line model. There are many ways for line fitting, but the
robust estimation by random sampling, especially RANdom SAm-
ple Consensus technique (RANSAC), has been proven to be the
most promising one. In our framework, the detected instances are
fitted through RANSAC method [36,37] which chooses the solution
that maximizes the likelihood rather than just the number of
inliers. After the road boundary fitting procedure, the road region
can be easily identified as the region enclosed by the two
straight lines.

The edge and road model constraints generally make the road
boundary detection more reliable. The SSVM classified result may
not be reliable enough, i.e. some non-road boundary parts may be
regarded as road boundary. When the non-road boundary parts
are incorrectly classified as road boundary, the edge constraint
obtained by superpixel segmentation would eliminate these parts.
Furthermore, the road model constraint would restrict the fitted
curved lines of road boundary. To sum up, these two constraints
can make final road boundary more reliable.

2.4. Online classifier update

Consider the situation that the road appearance, such as light-
ing, gradient, texture, etc., changes a lot as the vehicle or robot is
moving. As a result, the classifier performance would degenerate
without adaptation to the new road boundary condition. Given
this fact, an online updating procedure is desired, which would
make the classifier have more adaptability to the dynamic scene.
In our framework, after straightline fitting, misclassified instances
can be obviously distinguished by treating the obtained boundary
as a ground truth label. In other words, for a positive instance, we
consider it misclassified only if it is labeled negative by the
classifier. Similarly, for a negative instance not belonging to the
road boundary, we consider it misclassified only if it is labeled
positive.

Just as the Adaboost updating procedure [38], only the misclassi-
fied instances are used to update the model. Let Dp ¼ xp

i ; y
p
i

� �
;

�
i¼ 1;…;npg be the collection of np misclassified positive instances
at the tth frame, and Dn ¼ xn

i ; y
n
i

� �
; i¼ 1;…;nn

� �
the collection of nn

misclassified negative instances. Considering the problem of sampling
balance, we use a parameter τ to adjust the ratio between the number
of positive instances and the number of negative instances, which can
be interpreted as the knowledge of prior probability. Then the

Fig. 4. Typical road boundary inference results. The detected boundary instances are labeled in red. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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sampling number of positive is

k¼min np;nn=τ
� �

: ð7Þ
The updating training set would be

D¼ Dp
i ;D

n
j

���iArandðnp; kÞ; jArandðnn; τkÞ
n o

; ð8Þ

where randðn; kÞ means randomly select k numbers from f1;…;ng.
These misclassified instances can also be regarded as “support vectors”
which means the instances can make the classifier more robust.

After the training set updating by solving Eq. (5), the classifier
would be updated and the renewed classifier would be used for
the inference in the next frame.

3. Experiments and analyses

In this section, experiments are conducted to verify the effec-
tiveness of the proposed method. We first introduce the data set
constructed by ourselves. Then the experimental settings are
detailed and the parameter selection is conducted. After that,
experimental analysis and discussion are finally presented.

3.1. Data set

For validation of the proposed method, a data set of four kinds
of road videos has been collected. The videos are all RGB image
sequences and the acquisition rate is 25 fps. In our framework, the
size of video frames is normalized into 300� 500. In order to
validate the robustness and effectiveness objectively, we have
manually labeled almost 7000 frames of all the videos frames
and the labeled results are served as the ground truth. The detailed
attributes of these videos are listed in Table 1.

� Structured road in daytime (“srd” sequence): The first video
contains structured road which was captured in daytime. This
kind of road often has clear boundaries and they can be easily
distinguished from other non-boundary regions. Several T-
intersection road conditions are also included in the video.

� Structured road in nightfall (“srn” sequence): The second one is
structured road which was taken at nightfall. Compared to the
structural road in daytime, this video has lower intensity value
and the neon lights make the road region much more similar to
the surroundings in color appearance.

� Unstructured highway road (“uhr” sequence): The third video is
on highway road. In this case, the road markings and pave-
ments are not as good as the structured road. The boundaries of
the road region is not clearly differentiated from the surround-
ings. The camera's jitter also makes the detection more difficult.

� Unstructured muddy road (“umr” sequence): The fourth one is
muddy road. In this condition, the road surface is uneven and
no obvious road boundaries exist. This makes the problem
much more challenging.

3.2. Experimental settings

Before detailedly analyzing the performance of the proposed
method in this paper, the competitors and evaluation criteria will
be introduced in the following part.

1 Competitors: To verify the effectiveness of the proposed
method, we compare it with state of the art. In this work,
two competitors are employed, which are SVM-based and
vanishing point-based methods. Since the SVM classifier has
been widely used in computer vision applications, we firstly
adopt it to classify the road boundary and then the following
processing keeps the same to the proposed method. On the
other hand, this setting can test the usefulness of structural
information in the proposed framework. As for the vanishing-
point-based method [39], the dominant texture orientation at
each pixel is computed in a novel adaptive soft voting scheme
using confidence-weighted Gabor filters. Then a vanishing-
point constrained edge detection technique is used to detect
road boundaries. Although no prior knowledge is needed, this
method relies on time-consuming filters and the inference is
sensitive to other straight edges in the scene. The road region is
finally inferred from the boundary.

2 Measurement for road region: For the evaluation of the detected
road region, we mainly focus on the pixel-wise metrics.
Accuracy, precision, and recall are used in this work, which
measure different aspects of the road detection results. The
three metrics are defined based on the confusion matrix as
described in [40,41]. To be specific,

accuracy¼ TPþTN
TPþFPþTNþFN

;

precision¼ TP
TPþFP

;

recall¼ TP
TPþFN

: ð9Þ

But unfortunately, these metrics are sometimes contradictory.
In order to get a unified evaluation, F-measure is usually used
as a compromise. It is defined as

F�measure¼ precision� recall
ð1�αÞ � precisionþα� recall

; ð10Þ

where α is an adjustable parameter which is set to 0.5 in our
experiments.

3 Measurement for vanishing point: In our framework, after the
road boundary fitting procedure, vanishing-point can be
obviously inferred from the crossover of the two straight lines.
Based on the manually labeled ground truth, the Euclidean
distance in pixels is used to show the quality of the vanishing-
point estimation. The measurement can be calculated as
follows:

Distance¼ JP�P0 J ; ð11Þ
where P is the estimated vanishing-point location and P0 is the
labeled vanishing-point location. All the input frames are
normalized into 300� 500 so as to make the proposed method
adapt to more environmental conditions without any para-
meter changing.

3.3. Parameter selection

There are several critical parameters to be set in the experi-
ments. The first one is the region size N � N of each sampled
instance. In our method, the feature vector of the examined
instance is expressed by the information contained around the

Table 1
The data set description.

Video type Number of
frames

Attributes

“srd”
sequence

4000 T-intersection road

“srn”
sequence

977 Low intensity, street lamp lighting
reflection

“uhr”
sequence

1238 Large pitch and yaw change, wide baseline

“umr”
sequence

580 No clear boundary, variational road
boundary
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neighborhood. Its size will influence the expression of the feature
vector, and accordingly, the results of boundary inference. In order
to select a suitable N, we conduct comparisons under different
settings. Fig. 5 denotes the accuracy of the classifier with varying
choices of N under the four testing scenes, having the red line
indicating the average accuracy. In this figure, we can find that the
accuracy reaches the peak when the region size is N¼ 15 . This is
because the road boundary is located in a specific region and large
region size for feature extraction would make the classifier
confused. Based on this phenomenon, the region sizes after
N¼ 20 make no sense and this is demonstrated in the figure. In
our method, the region size N for feature extraction is set to 15.

The second parameter is the feature selection. There are three
features in our method, DSIFT, HOG and LBP. All of them reflect the
texture cue from a specific aspect and how to fuse them is a
remaining question up to now. If fewer features can achieve
perfect performance, it is more computationally efficient to use
the smaller feature set. For this purpose, different feature sets are
evaluated in Fig. 6. It can be seen that DSIFT plays an important
role and the features combined with DSIFT can have a good
performance. However, the best results are obtained by using
the three features altogether. But for faster speed in real applica-
tions, only DSIFT suffices for an acceptable performance.

The third parameter is the ratio τ between the negative and
positive training instances for the model updating procedure.
Since τ can serve as the prior probability of different category
numbers, its value will affect the trained classifier. In our experi-
ments, the ratio τ is set as follows:

τA 1;1:5;
1
1:5

;2;
1
2
;…;10;

1
10

	 

: ð12Þ

The dual pair of τðe:g:;2;1=2Þ makes a balanced choice for possible
negative and positive numbers. The evaluation results are shown
in Fig. 7. The red line is the average accuracy of the four testing
videos. It is obvious that after τ¼ 3:5, the accuracy changes little.
Larger τ will not greatly increase the performance. Instead, it may
cause the detection rate of boundary (TP) decrease, for the reason
that more instances will be determined as negative samples.
Therefore, the parameter τ is set to 3.5 in our method.

3.4. Performance analysis

In this part, experimental results are evaluated by qualitative
and quantitative means. Typical road detection results of the four
sceneries are shown in Fig. 8. From the figure, it is obvious that the
proposed method is more accurate and robust in defining the road
area and vanishing point. Even for the muddy road with no clear
markings, our method can demonstrate a superior performance.

For a more objective comparison, we calculate the statistics of
the five measures introduced in Section 3.2. The results are shown
in Table 2. We can see clearly that the highest scores are mostly
achieved by the proposed method. Only three recall values for the
SVM based method are a little better than ours, but the differences
are very small. Besides, the other scores of SVM based method is
not comparable with ours. Therefore, it is reasonable to claim that
the proposed method is more effective than the other competitors.

In the following, a more detailed analysis on the four video
sequences will be presented. Since the aforementioned metrics
focus on the overall statistics, we will alternatively discuss the
results on frame level. For each frame, we first compute its pixel-
wise accuracy based on the ground truth. Then we set different
thresholds to count the percentage of frames with a higher
accuracy above the threshold. Those selected frames are thought
to be the correct detections and a larger frame percentage
indicates a better performance. By changing the threshold from
0.8 to 1, we can get the statistical curves shown in Fig. 9, from
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which the robustness and effectiveness of the three methods can
be compared. Intuitively, the higher the curve line and the larger
the area below the curve line, the better performance a method
has. The same strategy is utilized for vanishing-point evaluation. If
the distance between the detected vanishing-point and ground
truth is smaller than the threshold, the detection of this frame
would be regarded as correct. By varying the threshold from 0 to
20 pixels, the properties of the three methods can also be
compared. The obtained results are shown in Fig. 10.

Structural road at daytime: This video is stable and the road
boundary has clear color and gradient. Figs. 9(a) and 10(a) show
that the proposed method and SVM based method nearly have the
same performance. Both of them are far better than the vanishing
point based one. In fact, we find the output after SSVM classifier is
better than the output by SVM. The subsequent boundary fitting

procedure fortunately makes up the gap. Thus the final results
demonstrate little difference. But the statistics in Table 2 still tell
us that the proposed method is superior to the SVM based one. As
for the vanishing point based method, the temporal cue between
adjacent frames is not considered, instead of utilizing the previous
result as the prior knowledge. Therefore, the obtained results are
not stable.

Structural road at nightfall: The environmental light in this
sequence is not adequate and the reflection of neon lights
influences the feature extraction. On this occasion, SIFT, HOG
and LBP features are all considered so as to obtain a stable
inference result of road boundary. The comparisons are shown in
Figs. 9(b) and 10(b). It is manifest that the proposed method and
SVM-based method are more robust to the cluttered scene than
the vanishing point-based method. The reason is mainly due to
their targeted sample selection and their use of a reference map.
Apart from this, the vanishing-point based method focuses on the
gradient information in color space which has a lot noise affected
by the light reflection and low contrast, while our method
considers the gradient and texture simultaneously, which can
adapt to the low contrast environment.

Unstructured highway road: The frames in this sequence have
large pitch and yaw and the road boundaries are ambiguous in
some frames. Figs. 9(c) and 10(c) show the comparative results. The
gradient and texture information of the road boundary change a lot
as the vehicle is moving. By utilizing the online-learning strategy
that updates the classifier as the new environment appears, the
proposed method and SVM-based one are able to tackle it. Mean-
while, since the proposed method considers the underlying struc-
ture of the sample instances, it can classify them more precisely.
Therefore, it is better than SVM. On the contrary, vanishing point-
based method does not consider the structure cue and is unable to
adapt to the changes. Thus its performance is poorer.

Unstructured muddy road: This sequence is cluttered by com-
plex texture in the muddy road, which causes the road boundaries
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Fig. 7. The performance under different sampling ratio τ. The horizontal axis is the
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Fig. 8. Typical road detection results of the vanishing-point based, SVM based, and the proposed method in this paper. The four kinds of scenes are separately showed in
(a), (b), (c), and (d). For each scene, from top to bottom are the ground truth, the results of two competitors and our method.
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to be ambiguous. We define the region between plants and muddy
areas as road boundary. The detection results are shown in Figs. 9
(d) and 10(d). There are three aspects to explain the good
performance of the proposed method. Firstly, although the video
frames are cluttered and some unnecessary information far from
the boundary may cause the classifier to fail, the targeted

instances are sampled along the road boundary which largely
improve the judgement of the classifier. Secondly, the online
updating strategy makes the classifier adapt to the changing of
the road boundary compared to the vanishing-point based
method. Thirdly, our method utilizes SSVM to obtain the structure
information of the same class which can help a lot for inferring the
new instances compared with SVM-based method.

As mentioned above, online learning strategy helps the model
adapt to the variable environments. Moreover, structure informa-
tion is utilized to improve the performance of the classifier and
mitigate the fact that an online learning strategy can degrade the
model a lot if previous detection results are incorrect. Thus the
structure information and the online learning complement each
other, each correcting the other's errors. This conclusion can be
generated from the detection results of the four testing videos,
especially for the last two videos. To be specific, the camera for
capturing highway road scenes have significant jitters aiming at
simulating complex road scene. The muddy road scenes are
chosen to verify the situation where the road boundary is
ambiguous. But under these two situations, our method can still
handle the unstructured road detection very well.

3.5. Discussion

In this section, we present two aspects for further discussion.
The first one is about the assumption on the road boundary type.
The second one is about the computational time. The details are
discussed in the following.

(1) Adaptability for road boundary type: In this paper, we have
made an assumption that the road boundary can be fitted by a
straight line. The starting point of making such assumption can be
explained in two aspects. Firstly, straight road boundary often
occurred and some non-straight road boundary can be regarded as
straight when it has small curvature. This phenomenon is even
more obvious under the circumstance that the road region almost
fully fills the field of view. Secondly, the analysis of curved
boundary follows a similar way as what has been discussed in

Table 2
Performance of our road detection framework. The data in each column is obtained
by computing the average value of the frames in each sequence, and the Bold one
represents the best.

Methods Testing
video

Accuracy
(%)

Precision
(%)

Recall
(%)

F-measure
(%)

Distance
(pixel)

VP [39] “srd”
sequence

96.43 95.72 97.34 96.48 9.14

“srn”
sequence

87.86 69.69 98.19 81.06 7.40

“uhr”
sequence

95.13 80.24 94.30 85.94 5.08

“umr”
sequence

89.68 66.68 94.64 77.52 4.82

average 78.26 78.08 96.12 85.25 6.61

SVM “srd”
sequence

99.02 98.20 99.90 99.04 2.46

“srn”
sequence

96.98 89.88 99.81 94.56 3.36

“uhr”
sequence

96.30 82.99 98.26 89.42 3.57

“umr”
sequence

94.27 84.19 88.82 85.37 16.83

average 96.64 88.82 96.70 92.10 6.56

Ours “srd”
sequence

99.19 98.71 99.69 99.20 2.20

“srn”
sequence

98.51 95.43 99.16 97.21 3.00

“uhr”
sequence

99.21 98.25 97.00 97.57 2.06

“umr”
sequence

99.07 96.49 98.23 97.27 3.10

average 99.00 97.22 98.52 97.81 2.59
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Fig. 9. Evaluation of the proposed method with two competitors by road region accuracy. After road detection, each frame has an accuracy according to the ground truth
labelings. Then we set different thresholds (horizontal axis) to count the percentage of frames (vertical axis) with a higher accuracy above the threshold. (a)–(d) are
respectively the results of the four road scenes.
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the straight boundary occasion. The only difference is the bound-
ary fitting procedure, in which case we only need to employ a
curve fitting function. This is not a difficult task. From this aspect,
our assumption is reasonable and the proposed framework can be
readily extended to the curved boundary.

(2) Computational complexity: In our experiments, the proposed
method is implemented in MATLAB on the platform of Microsoft
Windows with Inter i3 3.4 GHz, 2 GB memory without any specific
code optimization. The average running time of each frame is 14 s and
nearly 36% of the timing consumption is in the feature extraction
procedure. However, the main purpose of road detection is for real-
time driver assistance or robot navigation and efficiency is a critical
factor. One solution is to use fewer features while maintaining an
acceptable performance. For example, if only SIFT feature is employed,
the average time will be reduced to about 8 s. The second solution is
by hardware or software speedup. Parallel computation (e.g., feature
extraction and SSVM retraining can be conducted at the same time)
and GPU are possible choices [42].

4. Conclusion

In this paper, we present an online-learning method for
efficiently exacting the drivable road region in a video sequence.
Firstly, the targeted sampling instances are selected within the
boundary neighborhood. Then a fusion of features are used to
describe the extracted instances. After that, the feature vectors are
input to a structure SVM classifier to determine their binary label
of boundary and non-boundary, followed by a fitting procedure to
enhance the reliability of the detected boundary. Finally, the road
area is inferred from the boundary and the learned classifier is
updated online to ensure its adaptability to the changing environ-
ment. The superiority of the proposed method is verified on the
data set collected by ourselves and the experimental results show
that it outperforms the other competitors.

In the future, we plan to tackle more complex situations in real
life. For example, when the road shape is changeable or the

illumination is varying, how to estimate the road region is still a
challenging problem. Besides, the GPU implementation of the
proposed method is also desired to make the system practical
for real-time implementation.
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