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Abstract

Visual tracking is a central topic in computer vision. However, the accurate
localization of target object in extreme conditions (such as occlusion, scaling,
illumination change, and shape transformation) still remains a challenge. In
this paper, we explore utilizing multi-cue information to ensure a robust
tracking. Optical flow, color and depth clues are simultaneously incorporated
in our framework. The optical flow can get a rough estimation of the target
location. Then the part-based structure is adopted to establish the precise
position, combining both color and depth statistics. In order to validate the
robustness of the proposed method, we take four video sequences of different
demanding situations and compare our method with five competitive ones
representing state of the arts. Experiments prove the effectiveness of the
proposed method.
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1. Introduction

Visual tracking is the central topic in computer vision. The aim of this
operation is to identify the examined target in consecutive video frames con-
sistently. To achieve this goal, the target object is usually labeled in the
first frame by hand. Then its size and location are automatically determined

∗Corresponding author.
Email addresses: crabwq@opt.ac.cn (Qi Wang), fangjianwu@opt.ac.cn (Jianwu

Fang), yuany@opt.ac.cn (Yuan Yuan)

Preprint submitted to Neurocomputing November 15, 2013



in the following frames according to the initially labeled property. Since
tracking is widely used in applications such as motion-based recognition, au-
tomated surveillance, vehicle navigation, human-computer interaction, and
video content analysis, a great deal of efforts have been spent to develop
various tracking algorithms [1][2][3][4].

Generally, approaches for tracking can be classified into three categories,
appearance based, motion based and a combination of them. 1) For appear-
ance based methods, the object is firstly described by the statistics of a pre-
defined target template. This prior information could be global histograms
or local keypoint descriptors. Then the tracker searches for a candidate tar-
get that is most similar to the template. Popular tracking strategies include
point/region matching (SURF tracking [5][6], SIFT tracking [7], part-based
tracking [8], sparse representation [9]), kernel tracking (mean-shift tracker
[10], eigentracker [11]), and classifier-based tracking (MIL tracker [12], TLD
tracker [13], SVM tracker [14]). 2) For motion based methods, the target
movement is estimated in the first place. Then tracking is conducted accord-
ing to the motion field. Typical example is the optical flow based tracking
[15], where a dense velocity field is calculated from adjacent frames. Anoth-
er example focuses on methodologies tailored for tracking specific objects,
mostly humans [16]. In this case, human kinematic motions, such as jogging,
running and stretching, are modeled particularly and they cannot be extend-
ed to other situations. 3) Though the tracking algorithms are classified into
the above two categories, there are still a number of methods that do not
correspond to any single prototype, but a combination of them [17][18][19].
These techniques consider the appearance and motion simultaneously and
the tracking performance is much more promising.

However, the abundance of emerging tracking algorithms does not mean
that this field has achieved perfect success. When problems of occlusion,
illumination change and viewpoint variation occur, the accurate tracking in
real applications still remains a challenge. This is because the appearance
and motion properties at such conditions are different from their correspond-
ing templates, which will cause the difficulty of between-frame association
and lead to the drifting problem. Typical examples of these situations are
illustrated in Fig. 1. Actually, these exceptional conditions might not be a
problem for our human vision system. But the computer is incapable of such
tasks. The reason, we think, derives from two aspects. 1) Firstly, the de-
signed algorithms have no comparable learning ability with humans. Though
popular machine learning techniques [22] demonstrate certain level of gen-
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Figure 1: Typical examples of challenging video sequences from [8][20][21]. There are
occlusion, illumination change, scale variation, and rotation in these sequences, which
make the tracking task difficult.

3



eralizing and incremental ability, they are still limited. 2) Secondly, not all
useful clues are properly utilized for processing [23][24]. This is similarly
indicated from human visual mechanism that people make decisions based
on multiple clues, such as color, texture, motion, depth and other prior in-
formation. Nevertheless, most algorithms employ not so many clues, which
leads to a confused tracking result when the environment changes. For ex-
ample, when a person walks on the street, the lighting condition may change
from one place to another. If only color appearance is considered, the tracker
cannot work efficiently. But once the motion or depth continuity is involved,
the task becomes easier.

Based on the above considerations, we propose a tracking method based
on multiple cues combination (TMC) in this paper. Optical flow, color and
depth information are involved simultaneously. Our assumption is that dif-
ferent features can provide complementary supporting information. When a
feature fails to track the target, the other features might act as supplemen-
tal evidences; or these features may enhance their individual effect together.
The general idea of our method is as follows. In the beginning, the target
object is manually labeled by a surrounding rectangle. The obtained tem-
plate is used to determine the promising candidate target in the following
frames. Then the optical flow field is calculated based on the two adjacent
frames. The obtained displacement for each pixel can provide an estimation
of its corresponding position in the next frame. After that, the target can-
didate is searched in the neighborhood of the estimated location. For every
possible location, its appearance statistics is compared with that of the ini-
tially labeled template by a part-based model. The depth continuity is also
considered in this process to make the result robust to noises from occlusion
and illumination.

The main contributions of this work are as follows:
1) Depth maps from Kinect sensor is utilized as a valuable clue for track-

ing objects. Though depth maps have been applied in existing applications as
introduced in Section 2, most of them are based on stereo rig. This makes the
speed less efficient because stereo algorithms usually employ an optimization
process. After the introduction of Microsoft Kinect sensor, the situation has
changed because the depth maps can be obtained in real time. But most re-
lated works based on Kinect are focused on the tracking of particular objects,
such as hands, face, etc. As for the general tracking problem, few works have
been reported. Based on this consideration, we present a tracking method
for general objects. No specific prior information is included for the tracking
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procedure, which makes the proposed tracker with wider application scope.
2) Part-based model is rephrased in the context of depth information.

For tracking problem, part-based method has been recognized for its abili-
ty to restrain from occlusion. But this ability still has its limitation when
confronting with challenging video sequences. In this work, we propose to
employ depth information in the part-based method, together with tradi-
tional color statistics. To the best of the authors’ knowledge, this is the first
time to extent the part-based tracking in this way.

3) Several video sequences are recorded and labeled as the benchmark
ground truth for depth-based tracking. Though there are data sets publicly
available for tracking research [8][20][21], they only have the traditional RGB
channels. On the contrary, the constructed data set in this work have both
RGB and depth information for each frame.

The rest of this paper is organized as follows. Section 2 reviews the related
work. Section 3 introduces the proposed multi-cue tracking model. Section 4
conducts extensive experiments to evaluate the presented method, based on
the four video sequences taken by ourselves. In the end, conclusion is made
in Section 5.

2. Related Work

Since this work is mainly focused on the incorporation of depth informa-
tion in the tracking process, we restrict the literature review on the depth
related scope. This type of methods can be categorized into two situations.
The first one explores a mapping from the 3D world to the 2D image plane,
instead of directly calculating depth maps in the tracking process. The sec-
ond one explicitly recovers the depth clue from image sequences or multi-view
geometry.

Many examples abound in the first situation. Michel et al. [25] present-
ed a monocular model-based 3D tracking approach. They first estimate the
camera projection matrix through a calibration procedure. Then the world
coordinates of 3D object are connected with its projective camera coordi-
nates and image coordinates. By matching the predefined object model with
extracted edges and nodes from current frame, the pose of the tracked object
relative to the camera is recursively updated. The work of hand tracking
by Stenger et al. [26] also followed this prototype, which used an Unscented
Kalman Filter (UKF) to minimize the geometric error between the prede-
fined profiles and edges extracted from the images. Li et al. [27] schemed
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tracking by combining the tracking results from different viewpoints. A dis-
crete relaxation algorithm is employed in this process to reduce the intrinsic
combinatorial complexity and unreliable prior information from independent
2D-tracking is pruned by the decision tree. Tu et al. [28] proposed an online
sequential pose estimation technique for tracking human arms. They utilize
the structure-from-motion to provide the 3D arm posture hypotheses of mul-
tiple importance sampling by particle filter. Li et al. [29] learned a mixture
of factor analyzers during off-line training, which can be considered as a local
dimensionality reducer that approximates the pose manifold. Then for the
online tracking of human motion, the clusters of factor analyzers are utilized
in a multiple hypothesis tracking algorithm.

As for the second situation, Tyagi et al. [30] extended the 2D mean-shift
kernel tracking to 3D by fusing appearance features from all available camera
views. They generate 3D point clouds in the scene and re-initialize the tracker
itself when necessary. This forms an automatic tracking framework. Ess et
al. [31] addressed the multiperson tracking problem by a stereo rig mounted
on a mobile platform. The interplay between the camera position, stereo
depth, object detection and tracking is represented by a graphical model.
Göktürk and Tomasi [32] described a head-tracking algorithm based on a
sequence of 3D depth images generated from a time-of-flight depth sensor.
The tracking process combines recognition and depth sensing. Frati and
Prattichizzo [33] combined wearable haptic devices with Kinect depth sensor
to develop a hand tracker. Oikonomidis et al. [34] treated the tracking
of hand articulations as an optimization problem. They seek a result that
minimizes the discrepancy between the hypothesized hand model and the
actual observation from Kinect sensor. Hu et al. [35] tracked the pose of
walker user’s lower limb with Kinect fixed on the bottom of a walker. A
probabilistic approach of particle filtering is used to estimate the the most
possible pose.

3. Multi-cue tracking model

In this Section, the proposed tracking model is introduced in detail. We
first describe the Kinect sensor employed for generating depth maps and
video sequences. Then the optical flow based estimation is derived to get the
promising location of the target in the next frame. After that, the part-based
appearance matching is presented to establish the accurate target position.
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Figure 2: (a) Kinect sensor. (b) The three components of Kinect sensor. This figure is
cited from [36].

3.1. Kinect Sensor

Kinect was released by Microsoft on November 2010 to serve as a motion
sensing input device. It aims to change the way people playing games and
experiencing entertainment. But the consequent Kinect Effect is not limited
to the gaming industry. Its impact also extends to researchers in computer
science and electronic engineering, by changing the way of doing research
[36]. The success of Kinect is mainly due to its ability to produce depth
information in real time.

The Kinect sensor has three components, the color camera, the infrared
(IR) projector, and the IR camera. Its structure is illustrated in Fig. 2. The
color camera outputs common RGB images. The IR projector and camera
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are used to produce depth maps based on the structured light mechanism.
To be specific, the IR projector projects a predefined pattern of dots with
varying intensity. The variation of these features relative to the known pat-
tern provides a clue for reconstructing depth [35]. The obtained depth map
is represented as gray scale image. The darker a pixel, the closer it is to
the camera. Besides, black pixels indicate their depth values are unknown.
Typical example images captured by Kinect are shown in Fig. 3.

3.2. Calculating Optical Flow

In our processing, the search for a candidate target in the next frame is
bounded in a neighborhood area, which is estimated by the optical flow. The
employed optical flow method is based on a variational formulation [37][38].
Before deriving the model, three assumptions should be introduced firstly.

• The pixel intensities in adjacent frames do not change. This assump-
tion is intuitively understandable because the two neighboring frames
are closely connected. Suppose (u, v) is the displacement (defined as
optical flow) for pixel (x, y) of image I, from frame t to t+1. Then we
have

I(x+ u, y + v, t+ 1) = I(x, y, t). (1)

A simple deduction will yield

Ixu+ Iyv + It = 0. (2)

• The pixel gradients in adjacent frames do not change. This assumption
is the direct result of the intensity constancy assumption. Besides, it
makes the obtained optical flow more robust in real applications. Be-
cause, more or less, the intensity variation cannot be avoided actually.
But the relative brightness does not change much. This lead to

� I(x+ u, y + v, t+ 1) = �I(x, y, t), (3)

where � = (∂x, ∂y) is the spatial gradient.

• Smoothness constraint. This assumption supposes the optical flow
varies continuously in the spacial image. Abrupt change is not en-
couraged and is punished. Most computer vision problems have this
constraint too, considering the characteristics of neighborhood pixels
are similar.
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Figure 3: Example images captured by Kinect sensor. They are Book, Face, Inno and
TeaCan, respectively. Left: color image; Right: depth map.
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Based on the above descriptions, an energy function can be derived to
embody these assumptions. The energy function is composed of two terms,
data term and smoothness term. The data term is defined as

Edata(u, v) =

∫
Ω

(|I(x+ u, y + v, t+ 1)− I(x, y, t)|2+

λ| � I(x+ u, y + v, t+ 1)−�I(x, y, t)|2)dxdy, (4)

where Ω is the image plane, and λ is the weighting parameter between the in-
tensity and gradient constancy assumptions. The smoothness term is defined
as

Esmooth(u, v) =

∫
Ω

(| �3 u|2 + | �3 v|2)dxdy, (5)

where �3 is defined as (∂x, ∂y, ∂t). Finally, the whole energy function is a
combination of the data term and smoothness term

E(u, v) = Edata + μEsmooth, (6)

with μ being the regularization parameter adjusting the balance between
Edata and Esmooth. The optimal u and v that minimize the energy function
is the desired optical flow. The solution of this optimization problem is not
a trivial task. It can be obtained based on the Euler-Lagrange equation.
Details about this topic can be found in [37].

3.3. Estimating New Location

With the acquired optical flow values for every pixel in the image, the
new location of the target in the next frame can be estimated. Suppose the
center of object O in current frame t is located at (xt, yt). Then its position
in next frame t+1 is calculated as (xt+1, yt+1) = (xt + dx, yt + dy), where dx
and dy are the displacements estimated by averaging the optical flow within
O. To be specific,

dx =
∑
i∈O

OFx(i)/P ixNumInO,

dy =
∑
i∈O

OFy(i)/P ixNumInO,
(7)

where OFx(i) and OFy(i) are the optical flow of pixel i in the horizontal and
vertical directions respectively, and PixNumInO is the number of pixels
within the target object. This procedure is demonstrated in Fig. 4.
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Figure 4: Illustration of the candidate target search. Firstly, the target center (xt, yt)
in frame t moves to (xt+1, yt+1) in frame t + 1 according to the optical flow estimation.
Then the searching for a more accurate localization is conducted in the gray neighborhood
around (xt+1, yt+1). At the same time, scale change of target object is allowed by enlarging
or shrinking the rectangle.

The following search then starts from (xt+1, yt+1). The center of O is al-
lowed to shift within a neighborhood region (the gray search region in Fig. 4).
To further incorporate the scale changes during tracking, the bounding box
of candidate target is allowed with an adaptive enlarging or shrinking. But
to ensure a reasonable appearance change between adjacent frames, the scale
change is suppressed by a maximum of 10% in the horizontal and vertical
directions.

3.4. Part-based Appearance Matching

The optical flow can get a rough estimation of the target location and
reduce the searching space. As for the accurate localization, an appearance
based matching is required. The region with the minimum distance from the
template target is the desired one. In this work, we adopt the part-based
model as illustrated in Fig. 5. We do not directly divide the target region
into a combination of parts. Instead, we first partition it in different ways
(horizontally and vertically) and then treat the acquired four patches (Top,
Down, Left, Right) with equal importance. The statistics used for matching
is color histogram, depth mean and variance, and pixel number within the
target object.

1) For calculating color histograms, the RGB channels are equally divided
into 8 intervals, which leads to a total of 83 bins. Since the possible target
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Figure 5: Part-based structure in this work.
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region is not a small number, getting their histograms is not a cheap task. For
this reason, we employ the integral histogram technique [39] which has been
adopted by other researchers in tracking to enhance the processing speed.
The distance between the candidate target and the template target is then
defined as

dc =
√
1− ρ(P, T ), (8)

where ρ(P, T ) is the Bhattacharyya coefficient between the two distributions
(histograms) of candidate P and target T . This expression of color distance
is proved to be effective by kernel based trackers [10]. It follows as

ρ(P, T ) =
N∑

n=1

√
PnTn, (9)

where n is the bin index and N = 83 is the total bin number. Since the target
object is divided into four parts, this distance is indeed calculated separately.
In the end, the minimum one is selected as the color distance Dc

Dc = min{dUc , dDc , dLc , dRc }. (10)

2) For the depth clue, it is more robust to illumination change than the
color clue. We use the depth mean and variance in the target region to
measure the difference between the candidate and template. Besides, since
the object location does not change much for adjacent frames, we can also
suppose a smoothness constraint. That means the depth statistics of next
frame is similar with current frame. Mathematically, it follows

dp =
mean(P )−mean(T )

mean(T )
+

var(P )− var(T )

var(T )
, (11)

where mean(·) represents the mean and var(·) the variance. Similarly, the
minimum depth distance is chosen as the representation

Dp = min{dUp , dDp , dLp , dRp }. (12)

3) The third parameter for defining appearance is the pixel number within
the object region. The difference between pixel numbers of the two target
objects in adjacent frames is their distance

Dn =
num(P )− num(T )

num(T )
, (13)
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where num(·) is the number of pixels.
After all these terms are defined, the final distance function D is a linear

combination of the three distances

D = λ1Dc + λ2Dp + λ3Dn, (14)

where λ1, λ2, λ3 are the weighting parameters.

4. Experiments

4.1. Data Set

In this Section, we conduct intensive experiments to evaluate the perfor-
mance of the proposed method. We first introduce the data set employed
here. Though there are many publicly available data sets for evaluating
tracking algorithms, they are not suitable for our method. This is because
existing data sets contain video sequences of only RGB channels, without
depth information. For this reason, we employ the Kinect sensor to take four
videos for our purpose. They are Book, Face, Inno and TeaCan as illustrated
in Fig. 3. These video sequences represent different challenging cases, such
as occlusion, rotation, illumination change, shape variation of flexible object,
and small target. We manually marked the ground truth every five frames
and the obtained results are used for evaluation.

4.2. Comparative Algorithms

In order to gauge the absolute performance, we also compare our method
with five competitive ones, representing state of the arts. They are Frag-
Track [8], OAB [40], SemiBoost [41], MIL-Track [12], and ASLSAM [42].
Frag-Track is a canonical work for part-based tracking. It demonstrates great
robustness to occlusion because of its part structure. OAB is the pioneer of
boosting technique applied in tracking and SemiBoost is its developmen-
t aiming at alleviating drifting problem. MIL-Track uses the multiple in-
stance learning to train the classifier to discriminate target and background.
ASLSAM is a sparse based tracking method exploring both partial informa-
tion and spatial information. The codes for implementing these algorithms
are downloaded from the authors’ respective homepages.
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4.3. Evaluation Metrics

Besides presenting subjective evaluation, objective measurements are also
necessary to provide a quantitative comparison. For the objective metrics,
two indexes are mostly adopted in the tracking community. The first one
is the Center Location Error (CLE), which measures the center distraction
of the target rectangle from the ground truth center. The smaller the error,
the better the method is. The second one is the precision, which summarizes
the percentage of frames within a certain level of distance from the ground
truth. Given an accepted threshold bias, the bigger percentage indicates a
more robust performance.

4.4. Implementation Details

Some detailed points in our experiments are clarified in this Section. The
first problem we should note is that the color image and depth image do
not have the same content. There is a displacement of the scene. Take Fig.
3 for example. A close look of the fourth row TeaCan image pair will find
that the two images do not match exactly. In the color image, half of the
human body appears in the image. But in the depth map, only the arm is
present. In our experiments, we find this displacement is correlated with the
distance between the object and camera sensor. As for the four captured
video sequences, their horizontal and vertical shifts are respectively Book
(10,15), Face (5,12), Inno (6,13) and TeaCan (5,10) in pixels. In fact, there
are other reported techniques for Kinect calibration [36]. We didn’t utilize
them because our simple adjustment suffices for the tracking task and the
calibration is not the focus of this work.

Another question should be addressed is the choice of parameters. The
weighting parameter μ in Eq. 6 is set as 1 according to [43]. The λ1, λ2, λ3

are all set to 1 for video sequences of Face, Inno and TeaCan. As for Book,
the parameters are set as λ1 = λ2 = 1, λ3 = 0.2, because the target object
book in this sequence is changing its shape and the pixel number within it
varies from frame to frame. Therefore, we put less weight on the influence of
pixel number on the final distance function.

Besides, in our implementation, the enlarging and shrinking operations
for the target rectangle are allowed in two directions simultaneously or differ-
ently. That means the shape change in the horizontal and vertical directions
may occur at the same time or only at one direction.
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Figure 6: Screenshots of tracking results.
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Figure 7: Plots of center location error. Horizontal axis: frame number. Vertical axis:
displacements (in pixels) of target center from the ground truth center.
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Figure 8: Precision curves. Horizontal axis: threshold bias (in pixels) between the target
center and the ground truth center. Vertical axis: percentage of frame numbers with the
center location error below the threshold.

4.5. Results

We perform experiments on the four video sequences. The manually
labeled template rectangle for each video in the first frame is kept the same
for all methods. This can ensure a fair comparison. The captured clip shots
are shown in Fig. 6 for subjective evaluation. Objective analysis is displayed
in Fig. 7, Fig. 8, and Table 1, where the center location error, precision, and
averaged overlap ratio are compared. Detailed discussion is presented below.

Book. There are 700 frames for the Book video. In the first 100 frames,
the book movements include 2D translation, 3D moving towards and beyond
the camera. Then in the remaining frames, the book is subject to rotating,
folding and unfolding. In fact, it is a non-rigid object that goes through
flexible transformation. Besides, there is also certain level of illumination
change because the book cover reflects the light from the ceiling. Therefore,
it is a challenging sequence. From Fig. 7, it is clear that our method and
MIL-Track have comparable performance of lower errors; both outperform
the other four tracking methods. Similar results can be found in Fig. 8.
Nevertheless, though the MIL-Track demonstrates a good adaptivity as our
method from Fig. 7 and Fig. 8, its actual tracking results are not satisfying
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Table 1: Comparison of overlap ratios. The statistics reflect the percentage of frames with
an overlap ratio greater than 40%. Higher value indicates a better performance.

Methods
Successful frames (%)

Book Face Inno TeaCan
Frag-Track 37.86 66.02 63.56 42.91
OAB 66.43 56.28 19.02 0.0
SemiBoost 9.29 59.52 69.57 0.0
MIL-Track 56.43 27.06 41.54 21.45
ASLSLAM 63.57 99.57 50.05 7.61
ours 80.71 99.57 71.57 87.20

because the rectangle box is finally shrank to a small box, which covers only
part of the book. This can be seen from frame #527 and #600 in Fig. 6. For
the percentage of successful frames with an overlap ratio larger than 40%,
our method performs the best among all the competitors. This is clearly
shown in Table 1. Considering all these aspects, the proposed method is
better than the other five competitive ones on the Book video.

Face. For the Face sequence, there are 460 frames in together. It is
mainly recorded for testing the robustness to occlusion. From the beginning,
we use a mouse mat to shade the face from all directions, keeping the head
fixed at the initial place. Then the occluded head moves horizontally, to-
gether with the mouse mat. Statistics from Table 1 indicate our method is
equally well as ASLSAM. But the results in Fig. 7 and Fig. 8 are manifest
that the proposed method performs far better than the other five ones. Our
method has a more accurate localization no matter how the face is occluded.
This can be proved in Fig. 6.

Inno. The Inno sequence is a long video containing 1100 frames. The
target object is a medicine bottle with different appearances from different
viewpoints. One of its sides is completely white with no texts and pictures
on the surface. This makes the appearance similar with the background
wall. The target movement is also complex. It is taken close to or far
beyond the camera, leading to a scale change. It is also moved from all
directions in a 2D plane. At the same time, the bottle itself is rotated
from all directions, making what it seems varied. Experimental results from
Fig. 7 and 8 show that our method does not perform best before frame
400. But this inferior is not so much because the subjective evaluation from
Fig. 6 indicates our tracking results are also satisfying. Later in the video
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sequence, the target appearance changes rapidly and the background wall
interferes with the tracking procedure. In this case, our method can track
the target until the last frame but the other five methods all drift away finally.
This demonstrates great robustness of the proposed method. The successful
frames in Table 1 agree with this conclusion.

TeaCan. The TeaCan video sequence is designed to evaluate the track-
er’s ability to track small object. There are in total 290 frames. The target
of tea can occupies a small portion of the image content and it moves in the
3D space from all directions. For this testing video, our method is absolutely
superior to the other five ones. The marked rectangle size is no much dif-
ference with the actual target size. On the contrary, the other five methods
generate tracking rectangles much larger than it should be, or even drifting
away. This conclusion is consistent from Fig. 7, Fig. 8 and Table 1.

4.6. Discussion

Based on the above analysis, we can see that the proposed method is
effective and robust. It can endure different kinds of transformations and
changes, in a certain level. This success is primarily due to the incorporation
of depth information. The depth clue can provide a discriminative ability
from the background. It is more stable compared with the appearance s-
tatistics. Once the color information cannot provide the discriminative clue,
the depth information can still act as a supplement. Besides, the optical flow
can provide a rough estimation of the target position, which can ensure no
drifting problem occurs. All these factors together make the tracker work
effectively. On the other hand, the five competitive ones only utilize color in-
formation. If there is similar background or illumination change, the trackers
will fail most of the time.

To further justify the superiority of combining the color clue with the
depth clue, we conduct comparative experiments with each individual infor-
mation. Then the averaged center location error is calculated to evaluate the
performance. Table 2 shows the statistics. We can see clearly that the color
and depth along cannot achieve the best performance. Besides, the tracking
results are not stable enough. For Face and TeaCan sequences, the color clue
(ourC) performs better. But for Book and Inno sequences, the depth clue
(ourD) is better. Nevertheless, combing them together (ourCD) always has
the best performance. This proves that the strategy proposed in this work
is reasonably effective.
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Table 2: Comparison of color and depth clues for the proposed method. The statistics are
averaged center location errors.

Methods
Averaged center location error
Book Face Inno TeaCan

Frag-Track 63 19 17 8
OAB 21 22 22 10
SemiBoost 64 22 19 9
MIL-Track 6 23 12 15
ASLSLAM 18 6 34 15
oursC 11 5 39 3
oursD 39 15 11 57
ourCD 8 5 8 2

5. Conclusion

In this paper, a multi-cue based tracker is presented. Unlike most other
methods that only utilizing color clue, the optical flow, color and depth clues
are all incorporated in the tracking process. This provides more supporting
information for the determination of tracked objects. To justify its robust-
ness, we took four video sequences representing various challenging situation-
s, such as occlusion, scaling, illumination change, and shape transformation.
Each sequence has both RGB channels and depth channel. Experiments
compared with five popular trackers representing state of the arts indicate
that the proposed method is effective.

In the future, we plan to adaptively change the target template during
the tracking procedure, because the target object always changes its shape
and appearance. How to model this adaptivity and reduce the accumulated
error are the keypoints for a successful tracking method.
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