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Abstract—Automatic detection of salient objects in visual me-
dia (e.g., videos and images) has been attracting much attention.
The detected salient objects can be utilized for segmentation,
recognition, retrieval, etc. However, the accuracy of saliency
detection remains a challenge. The reason behind this challenge
is mainly due to lack of well-defined model for interpreting
saliency formulation. To tackle the problem, this paper proposes
to detect salient objects based on selective contrast. Selective
contrast intrinsically explores the most distinguishable compo-
nent information in color, texture, and location. A large amount
of experiments are thereafter carried out upon a benchmark
dataset and the results are compared with those of 12 other
popular algorithms as state-of-the-art. In addition, the advantage
of the proposed algorithm is also demonstrated in a retargeting
application.

Index Terms—Visual media, selective contrast, saliency, atten-
tion.

I. INTRODUCTION

HUMAN visual system interprets the world in a selec-
tive manner [1]. This phenomenon makes it natural to

understand that when looking at an image or video, only
part of it attracts the observer’s interest while other parts are
paid less attention. Similar evidences concerning the selective
processing of visual information abound profoundly in other
experiments [2]. In order to explain the phenomenon of visual
attention, many efforts have been spent from different disci-
plines [3], [4], [5], [1], [6], such as neurobiology, computer
vision, cognitive psychology, and psychophysics. However, the
mechanism behind these observations remains a question.

In this paper, the focus is mainly from the viewpoint
of computer vision, in which visual attention is approached
by saliency detection. Basically, a model, computational or
biological, is empirically established and then a saliency map
is computed accordingly. The saliency value in the map is
normally normalized to the scope of [0, 1]. The greater value
the pixel has, the higher possibility it is being salient. After
detection, the extracted saliency maps can be used in a broad
scope of applications in computer vision.

Based on the efforts by previous work, great progress has
been made in the last few years [6]. However, there are
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still limitations for existing algorithms [7]. Firstly, models
for interpreting saliency formulation do not necessarily con-
form with the human visual principle, which leads to an
inconsistent saliency map. Secondly, the features involved for
calculation are limited and feature expression is inappropriate.
Considering these two limitations of the previous efforts, in
this paper, a saliency detection algorithm based on selective
contrast (SC) is firstly proposed. That means the most selective
information from the visual media is chosen for the distinctive
contrast calculation. The novel characteristics that distinguish
the proposed algorithm with others are mainly twofold:

Firstly, a selective model for saliency calculation is pre-
sented. According to the research from physiological experi-
ments, the neuron’s receptive field (RF) is sensitive to the at-
tended stimulus when multiple stimuli appear simultaneously.
This observation suggests a principle that cortical cells respond
preferentially to the highest-contrast stimulus in their RF [26].
Based on this principle, the designed algorithm focuses on the
choice of selective and distinctive components in visual media.

Secondly, in accordance with the selective model, a more
compact feature description is utilized. There are three features
involved in this paper, color, texture, and location.

The rest of this paper is organized as follows. In Section
II, related work is reviewed. In Section III, the proposed
saliency detection algorithm based on selective contrast is
presented. Then in Section IV, experiments on a dataset of
1,000 images are conducted to prove the effectiveness of the
proposed algorithm. Furthermore, evaluation in the context of
image retargeting is shown in Section V to demonstrate its
successful application of the proposed algorithm. Conclusion
is finally made in Section VI.

II. RELATED WORK

Existing algorithms for saliency detection are generally
categorized as model based and computation based.

Model based algorithms are based on the imitation of human
visual structure of selective attention mechanism. Koch and
Ullman [2] introduce a concept of attention shift. The work
by Itti et al. [1] is another typical example of this type which
is inspired by the behavior and the neuronal architecture of
human visual system. Based on this work, Walther et al.
[8] combine the saliency system of [1] with a hierarchical
recognition system to recognize objects in images. Different
from the above three models, Hou and Zhang [9] present
a method for saliency detection independent of low-level
features and prior knowledge. They start from the principle
of natural image statistics and introduce a spectral residual
model.

Different from model based algorithms, the computation
based ones calculate saliency maps by contrast. Among those
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algorithms, most try to use different techniques to calculate
contrast. For example, Frintrop et al. [10] capture the saliency
by difference between central pixel and its surrounding area. A
smart feature computation technique based on integral image
is also involved to speed up the process. Han et al. [11]
incorporate visual saliency with region growing. Harel et al.
[12] propose a bottom-up saliency model based on graph
computation. Liu et al. [13] formulate the problem of saliency
detection as an image segmentation task. Cheng et al. [6] pro-
pose a regional saliency extraction algorithm simultaneously
evaluating the global contrast and spatial coherence. Ke et
al. [5] enhance images and evaluate the results based on the
detected saliency map. Ha et al. [4] try to minimize video
distortion in transmission by putting more weights on the
saliency content in the media. Li and Ngan [3] employ saliency
to segment video into focused foreground and uninteresting
background. Judd et al. [14] treat saliency detection as a
supervised learning problem. They construct an eye-tracking
dataset to train a SVM classifier as the detection model.

There are still other algorithms calculating saliency with a
new definition of it. Achanta et al. [15] introduce a method that
produces well-defined boundaries of salient objects. This is
achieved by retaining substantially more frequency content of
the input image than existing techniques. Goferman et al. [16]
propose a new type of saliency called context-aware saliency
which aims at extracting the image regions representing the
scene.

III. SALIENCY DETECTION ALGORITHM

Video and image are the most common visual media in
daily life. The calculation of video saliency is different from
that of image. For the former, saliency is usually extracted
from individual images and spatial constraint is then added to
get more consistent results. In this paper, we mainly focus on
the first step, which is considered to be one most important
step. Thus the discussion is constrained on images extracted
from videos. The extracted clues for contrast calculation are
from color, texture and location [17].

A. Selective Color

Biological experiments indicate that, opponent colors, in-
stead of the RGB bands, are present in the early color process-
ing of human vision system [18]. Therefore, a transformation
might be applied to extract the intrinsic component of color
space. For this task, several techniques including linear and
nonlinear are available. Here PCA is taken as an example to
illustrate the proposed algorithm. The transformed expression
of color vector by PCA is named as selective color, because
the representation is more compact and distinctive.

Assume the pixels in an input image is denoted as
{Xn}n=1,...,N , where N is the number of pixels in the image
and Xn is a 3-dimentional color vector [r, g, b]. The covariance
matrix is then defined as

M =
1

N

N∑
n=1

(Xn −X)(Xn −X)T , (1)

where X =
N∑

n=1
Xn/N . By decomposing the covariance ma-

trix, eigenvalues and eigenvectors can be obtained [19], [20].
The eigenvetors corresponding to larger eigenvalues are the
more representative basis vectors. The original color vector is
then projected to the transformed space with three orthogonal
axes to get another expression. After this transformation, each
pixel’s saliency can be described as

Sc(i, Ri) =
∑

j ̸=i,j∈Ri

dc(i, j), (2)

where i is the examined pixel, Ri is the supporting region for
defining the saliency of pixel i, and dc(i, j) is the distance of
color descriptors between i and j. We employ the ℓ2 norm as
the distance measure of color descriptors. Specifically,

dc(i, j) = ∥yi − yj∥2, (3)

where yi and yj are the transformed color expression of pixel
i and j by PCA.

The supporting region can be small as the 8-neighbors or
large as the whole image. But larger region may produce a
more reliable result because it can exclude the influence of
noise. In this case, the computational cost is expensive for
calculating O(N2) distances. In this work, it is chosen as the
other regions different from where the examined pixel belongs.

In order to further improve the efficiency by reducing the
computational complexity, the transformed color space is first
clustered into kc groups {cm}m=1:kc by k-means. Each pixel’s
color is therefore represented by its nearest group center. By
this means, the computation is reduced to looking up a distance
dictionary Dc of kc × kc dimensions, with its element Dij

being the distance between the ith and jth color prototypes.
Accordingly, Eq. 2 should be changed into

Sc(i, Ri) =
∑

φ(j),j ̸=i

~φ(j)Dc(φ(i), φ(j)), (4)

where φ(i) is the function mapping pixel i to its corresponding
prototype color and ~φ(j) is the frequency of φ(j) in region
Ri.

B. Selective Texture

An image is not just a random collection of colorful pixels,
but a meaningful arrangement of them. Different organizations
of these pixels form different textures, which would provide
us with descriptive information. The obtained textures can be
described by different ways but are generally characterized
by the outputs of a set of filters. Since these outputs spans a
wide range of high dimensional space, we hope to express
them in a more compact manner. Therefore, these texture
expressions are firstly clustered by k-means. Then the cluster
centers are treated as the representative textures. Each texture
in the future is denoted as its nearest texture prototype. We
call this expression selective texture.

As an example, the filter bank used in this paper is rotated
copies of a Gaussian derivative and its Hilbert transform along
the y axis, which model the symmetric receptive fields of
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simple cells in visual cortex [21]. To be more specific, they
are

f1(x, y) =
d2

dy2 (
1
C exp( y

2

σ2 ) exp(
x2

ℓ2σ2 )),

f2(x, y) = Hilbert(f1(x, y)),

(5)

where σ is the scale, ℓ is the ratio of the filter, and C is a
normalization constant. Similarly, the texture saliency of pixel
i is defined as

St(i, Ri) =
∑

j ̸=i,j∈Ri

dt(i, j), (6)

where Ri and dt(i, j) have an analogous meaning as in Section
III-A. Since the texture descriptor is a continuous-valued
vector, the problem of computational complexity exists, too. In
order to be more efficient, limited number of textons is trained
from a set of images. This equals to say that the textures are
quantized to kt textons. Then a distance dictionary Dt can
also be constructed to be used as a lookup table. This leads
to the following form of Eq. 6

St(i, Ri) =
∑

ϕ(j),j ̸=i

~ϕ(j)Dt(ϕ(i), ϕ(j)), (7)

where these notations have a similar meaning with those in
Section III-A, but they reflect the texture information.

C. Center Prone Prior

Salient objects are prone to be at the center of an image,
which has been pointed out by [16], [11]. This selective
principle is mostly incorporated by putting more weights on
the area in the center and less on the area near the boundary.
But in this paper, the reweighing is done on regions instead
of pixels because region based calculation can resist certain
level of noise. Therefore, the input image is firstly over-
segmented by mean-shift algorithm [22] using the default
parameter setting. Then the segmented regions are treated as
the basic unit for calculating saliency. We denote the obtained
regions as {Rk}k=1,...,r. After that, the center prone prior is
added. However, it is usually found that salient object lies at
the boundary of the image and the attention is not absolutely
centered. So we adopt the principle of [6] that emphasizes
more on the close region and less on the far region for the
examined one. Therefore, we have

S(Rk) =
∑
l ̸=k

e{−ρs(k,l)}[λcSc(Rk, Rl) + λtSt(Rk, Rl)]

=
∑
l ̸=k

∑
p∈Rk

e{−ρs(k,l)}[λcSc(p,Rl) + λtSt(p,Rl)],

(8)
where S(Rk, Rl) is the contrast between region Rk and Rl,
λc and λt are the weighting factors between color and texture
with the constraint λc + λt = 1, and ρs(k, l) is the spatial
distance between the centers of region k and l. Besides, regions
with µ (0−1, in percentage) edge pixels lying on the boundary
of the image should be punished with their saliency reduced
to 50%.
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Fig. 1. Averaged precision, recall, and F-measure in terms of different
dimensions after PCA operation on RGB color space.

IV. EXPERIMENTS

In this Section, experiments are done on the dataset [15]
of 1,000 images with ground truth labeled salient objects,
among which 200 images for training while the rest 800 as
testing samples. This dataset contains enough varieties and has
received recognition in [15], [6] and other works. The obtained
results are finally compared with 12 popular algorithms to
justify the effectiveness of the proposed method.

A. Parameter Selection

The first step in the experiments is to select proper parame-
ters for the proposed algorithm. There are mainly three types
of parameter to be decided. The first one is the number of
prototype colors and textons, kc and kt, in addition to the
parameter µ. Generally, kc and kt are set as 32, 64, or 128.
But experiments show that the selection of 128 is computa-
tionally infeasible while 32 is too small to be distinguishable.
Therefore, they are set to 64. As for µ, it is empirically set to
0.2.

The second parameter is the dimension of color component
after PCA. The reduced color representation on the orthogonal
axes may be one, two, or three dimensional. In order to get
a quantitative evaluation, three indexes based on 200 training
images are calculated with respect to different dimensions.
They are precision, recall, and F-measure. The statistical
results are shown in Fig. 1. From the bars representing
averaged precision, recall, and F-measure, it is obvious that
the dimension of two is the best choice. Smaller dimension
will lead to a decrease of performance while larger one will
increase no performance but the computational cost.

The third parameter is λc and λt for weighting color
saliency and texture saliency. Experiments of different param-
eter combinations are also done on the 200 training images,
the corresponding parameters λc = 0.8, λt = 0.2 are selected
as the best weighting factors.

B. Saliency Detection Results

With the selected parameters, experiments are conducted on
the other 800 images. In order to justify that the combination
of color and texture is more effective than the single clue,
saliency maps are calculated independently using color and
texture information. Then the results are compared with the
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Fig. 2. Precision-recall curves of the saliency detection results using color,
texture individually and their integration.

one that integrating them with Eq. 8. Fig. 2 illustrates the
results. From the precision-recall curves, it is apparent that
the combination of color and texture is superior to the basic
clue alone. This result justifies the proposition that increased
image clues support better for saliency detection. In fact, each
information channel, color or texture, can only reflect the per-
ceptual knowledge from one aspect. But their results might be
complementary for each other. For example, when the saliency
from color is not good enough, their corresponding saliency
from texture may be satisfying. This phenomenon appears
frequently in the experiments. In this case, the integrated
saliency map ensures a consistent result. The above procedure
can be explained with the early representation of human visual
system [2].

Then the results of the proposed algorithm are compared
with 12 state-of-the-art algorithms. They are respectively
AC [23], CA [16], FT [15], GB [12], IT [1], LC [24], MZ [25],
SR [9], HC [6], ASW [26], IM [27], and SeR [28]. The
principle for selecting these algorithms is their recency, variety
and popularity. To be more specific, CA, HC, AWS and IM
are proposed in recent two years. GB, IT, and SR have been
cited over 200 times. GB is based on graph theory, SR and
FT frequency motivated, CA context related and LC spatially
and temporally combined. AC, FT and SeR are local based,
and HC, MZ are global based. Our aim is to compare the
proposed method with different kinds of saliency detection
techniques to see whether the presented selective mechanism
is effective. The codes for implementing these algorithms are
from the authors’ homepages or [6]. Every algorithm processes
all of the 800 images and the results are compared with the
ground truth labelings to get a quantitative evaluation. Fig. 3
illustrates the results. The precision-recall curves are obvious
to show that the proposed algorithm outperforms the other
ones. Achieving at the same precision value, the proposed
algorithm can detect more salient regions; with the same recall
value, the proposed algorithm is more accurate.

Several example results are also presented in Fig. 4 for
qualitative evaluation. These saliency maps are representative
for the algorithms’ performance. A careful investigation of
the details of the produced maps would find out that the
proposed algorithm generates more consistent results than the
other ones. The saliency of the target object is profoundly
distinguished with the background. This is generally because
the selective clues can be more distinguishable than other
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Fig. 3. Precision-recall curves of saliency detection results by different
algorithms. This result is obtained based on the 1,000 images.

representations and the spatial constraint is more appropriate.
Therefore, the proposed model can ensure that the target object
stands out in a greater probability in each image.

V. APPLICATION IN RETARGETING

In order to comprehensively evaluate the proposed algo-
rithm, the detected saliency map is further employed in an
application of seam carving. Seam carving is an important
technique for content based visual retargeting [29], [30], [31].
In this work, the saliency map is evaluated in the context of
retargeting application by defining the energy function with it.
Then the seams with the minimum energy paths are removed
according a graph-cut framework [29]. In the end, the media
is resized to 75% width of the original one and the results
are judged subjectively. By this means, the effectiveness of
saliency detection can be evaluated.

The algorithm of HC [6], which has a comparable perfor-
mance according to the precision-recall curves in Fig. 3, is
chosen to be compared with the proposed SC algorithm. Fig. 5
shows the experimental results of seam carving. It is manifest
that the saliency maps by the proposed algorithm are better
than the HC maps, with a higher and consistent saliency degree
in the target area. Therefore, the removed red seams in Fig.
5 (d) and Fig. 5 (g) are mainly from the background regions
instead of disturbing the target ones.

VI. CONCLUSION AND FUTURE WORK

In this paper, an algorithm of saliency detection based on
selective contrast (SC) is firstly proposed. Motivated by the
success of opponent analysis evidenced in human visual exper-
iments, the most distinguishable and selective components of
color, texture and location are chosen and incorporated in the
saliency detection framework. Experimental results show that
the presented algorithm outperforms the other 12 competitive
ones in terms of the metric of precision-recall.

In the future, high level features such as boundary, shape,
and specific prior knowledge in applications will be further
explored. Other techniques for component data representation
including LLE, LPP, etc, will also be considered, especially
when the feature vector is of higher dimensionality. In addi-
tion, the application in videos will also be explored, which we
think is a straightforward extension.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o)

Fig. 4. (a) Original image; (b) Ground truth; Saliency maps produced by (c) AC [23], (d) CA [16], (e) FT [15], (f) GB [12], (g) IT [1], (h) LC [24], (i)
MZ [25], (j) SR [9], (k) HC [6], (l) AWS [26], (m) IM [27], (n)SeR [28], and the proposed (o) SC in this paper.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5. (a) Original image; (b) Ground truth; (c) Saliency map by HC [6], (d) its corresponding carved seams, and (e) resized image; (f) Saliency map by
the proposed algorithm SC, (g) its corresponding carved seams, and (h) resized image.

REFERENCES

[1] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 20, no. 11, pp. 1254–1259, 1998.

[2] C. Koch and S. Ullman, “Shifts in selective visual attention: towards
the underlying neural circuitry,” Human Neurobiology, vol. 4, no. 4, pp.
219–227, 1985.

[3] H. Li and K. N. Ngan, “Unsupervized video segmentation with low depth
of field,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 12, pp.
1742–1751, 2007.

[4] H. Ha, J. Park, S. Lee, and A. C. Bovik, “Perceptually unequal packet
loss protection by weighting saliency and error propagation,” IEEE
Trans. Circuits Syst. Video Technol., vol. 20, no. 9, pp. 1187–1199, 2010.

[5] W. Ke, C. Chen, and C. Chiu, “Bita/swce: Image enhancement with
bilateral tone adjustment and saliency weighted contrast enhancement,”
IEEE Trans. Circuits Syst. Video Technol., vol. 21, no. 3, pp. 360–364,
2011.

[6] M. M. Cheng, G. X. Zhang, N. J. Mitra, X. Huang, and S. M. Hu,
“Global contrast based salient region detection,” in CVPR, 2011, pp.
409–416.

[7] R. Achanta and S. Susstrunk, “Global contrast based salient region
detection,” in ICIP, 2010, pp. 2653–2656.

[8] D. Walther, L. Itti, M. Riesenhuber, T. Poggio, and C. Koch, “Attentional
selection for object recognition - a gentle way,” Biologically Motivated
Computer Vision, vol. 2525, pp. 251–267, 2002.

[9] X. Hou and L. Zhang, “Saliency detection: a spectral residual approach,”
in CVPR, 2007, pp. 1–8.

[10] S. Frintrop, M. Klodt, and E. Rome, “A real-time visual attention system
using integral images,” in 5th Int’l Conf. Computer Vision Systems, 2007.

[11] J. Han, K. Ngan, M. Li, and H. Zhang, “Unsupervised extraction of
visual attention objects in color images,” IEEE Trans. Circuits Syst.
Video Technol., vol. 16, no. 1, pp. 141–145, 2006.

[12] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” in NIPS,
2006, pp. 545–552.

[13] T. Liu, J. Sun, N. N. Zheng, X. Tang, and H. Y. Shum, “Learning to
detect a salient object,” in CVPR, 2007, pp. 1–8.

[14] T. Judd, K. A. Ehinger, F. Durand, and A. Torralba, “Learning to predict
where humans look,” in ICCV, 2009, pp. 2106–2113.

[15] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, “Frequency-tuned
salient region detection,” in CVPR, 2009, pp. 1597–1604.

[16] S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency
detection,” in CVPR, 2010, pp. 2376–2383.

[17] Q. Wang, P. Yan, Y. Yuan, and X. Li, “Multi-spectral saliency detection,”
Pattern Recognition Letters, 2012.

[18] G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours
coding and optimum colour information transmission in the retina,” in
Proceedings of the Royal Society of London, vol. 220, 1983, pp. 89–113.

[19] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[20] M. Brown and S. Susstrunk, “Multi-spectral sift for scene category
recognition,” in CVPR, 2011, pp. 177–184.

[21] J. Malik, S. Belongie, T. Leung, and J. Shi, “Contour and texture analysis
for image segmentation,” International Journal of Computer Vision,
vol. 43, no. 1, pp. 7–27, 2001.

[22] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 5, pp. 603–619, 2002.

[23] R. Achanta, F. Estrada, P. Wils, and S. Süsstrunk, “Salient region
detection and segmentation,” Computer Vision Systems, vol. 5008, pp.
66–75, 2008.

[24] Y. Zhai and M. Shah, “Visual attention detection in video sequences
using spatiotemporal cues,” in ACM Multimedia, 2006, pp. 815–824.

[25] Y. F. Ma and H. J. Zhang, “Contrast-based image attention analysis by
using fuzzy growing,” in ACM Multimedia, 2003, pp. 374–381.

[26] A. Garcı́a-Dı́az, X. R. Fernández-Vidal, X. M. Pardo, and R. Dosil,
“Saliency from hierarchical adaptation through decorrelation and vari-
ance normalization,” Image and Vision Computing, vol. 30, no. 1, pp.
51–64, 2012.

[27] N. Murray, M. Vanrell, X. Otazu, and C. A. Párraga, “Saliency estima-
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